コード例 #1
0
ファイル: gravlensnaturepriors.py プロジェクト: cxwx/PyGRB
def evidence_for_3770():
    nSamples = 2000
    model_keys = ['XsL', 'XsXs']
    channels = [0, 1, 2, 3]

    directory_labels = [
        'small_box_log_flat_nr', 'mid_box_log_flat_nr',
        'large_box_log_flat_nr', 'small_box_flat_nr', 'mid_box_flat_nr',
        'large_box_flat_nr', 'delta_nr', 'gaussian_nr'
    ]

    model_dict = {}
    for key in model_keys:
        for directory_label in directory_labels:
            m_key = f'{key}_{directory_label}'
            model_dict[m_key] = create_model_from_key(
                key, custom_name=f'{key}_{directory_label}')

    models = [model for key, model in model_dict.items()]
    GRB = PulseFitter(3770,
                      times=(-.1, 1),
                      datatype='tte',
                      nSamples=nSamples,
                      sampler=SAMPLER,
                      priors_pulse_start=-.1,
                      priors_pulse_end=0.6,
                      priors_td_lo=0,
                      priors_td_hi=0.5)
    GRB.offsets = [0, 4000, 8000, -3000]

    for model in models:
        GRB.get_residuals(channels=[0, 1, 2, 3], model=model)
        GRB.lens_calc(channels=[0, 1, 2, 3], model=model)
    GRB.get_evidence_from_models(model_dict)
コード例 #2
0
ファイル: gravlensnaturepriors.py プロジェクト: cxwx/PyGRB
def run_gaussian_priors(indices, model_keys, channels, nSamples, n_per_split,
                        test):
    directory_label = 'gaussian_nr'
    if not test:
        GRB_wrap = PulseFitter(3770,
                               times=(-.1, 1),
                               datatype='tte',
                               nSamples=nSamples,
                               sampler=SAMPLER,
                               priors_pulse_start=-.1,
                               priors_pulse_end=0.6,
                               priors_td_lo=0,
                               priors_td_hi=0.5,
                               directory_label=directory_label)
        GRB_wrap.offsets = [0, 4000, 8000, -3000]
    else:
        print('Currently running Gaussian priors')
    model_dict = {}
    for key in model_keys:
        model_dict[key] = create_model_from_key(
            key, custom_name=f'{key}_{directory_label}')
    models = [model for key, model in model_dict.items()]
    for mm, model in enumerate(models):
        if not test:
            GRB_wrap._setup_labels(model)
            overwrite_priors = dict()
            for n in range(1, GRB_wrap.num_pulses + 1):
                overwrite_priors[f'gamma_{n}_a'] = bilbyGaussian(
                    mu=0.7, sigma=2.5, latex_label=f'$\\gamma$ {n} a')
                overwrite_priors[f'gamma_{n}_b'] = bilbyGaussian(
                    mu=0.3, sigma=0.4, latex_label=f'$\\gamma$ {n} b')
                overwrite_priors[f'gamma_{n}_c'] = bilbyGaussian(
                    mu=0.38, sigma=0.3, latex_label=f'$\\gamma$ {n} c')
                overwrite_priors[f'gamma_{n}_d'] = bilbyGaussian(
                    mu=0.5, sigma=5, latex_label=f'$\\gamma$ {n} d')
                overwrite_priors[f'nu_{n}_a'] = bilbyGaussian(
                    mu=2, sigma=2, latex_label=f'$\\nu$ {n} a')
                overwrite_priors[f'nu_{n}_b'] = bilbyGaussian(
                    mu=3.3, sigma=1.2, latex_label=f'$\\nu$ {n} b')
                overwrite_priors[f'nu_{n}_c'] = bilbyGaussian(
                    mu=2.74, sigma=0.8, latex_label=f'$\\nu$ {n} c')
                overwrite_priors[f'nu_{n}_d'] = bilbyGaussian(
                    mu=2.7, sigma=5, latex_label=f'$\\nu$ {n} d')
            GRB_wrap.overwrite_priors = overwrite_priors

        loop_idx = np.arange(4 * mm, 4 * (mm + 1))
        if test:
            print(indices)
            print(mm)
            print('loop_idx = ', loop_idx)
        indx = np.intersect1d(indices, loop_idx) % 4
        if not test:
            GRB_wrap._split_array_job_to_4_channels(models=[model],
                                                    indices=indx,
                                                    channels=channels)
        else:
            print('index passed = ', indx)
コード例 #3
0
ファイル: gravlensnature.py プロジェクト: cxwx/PyGRB
def main_two_pulse_models():
    """ These are the most relevant models to the analysis of GRB 950830. """
    lens_keys = ['FL', 'FsL', 'XL', 'XsL']
    null_keys = ['FF', 'FsFs', 'XX', 'XsXs']
    keys = lens_keys + null_keys

    model_dict = {}
    for key in keys:
        model_dict[key] = create_model_from_key(key)
    return model_dict
コード例 #4
0
 def test_parameter_recovery(self):
     model_dict = {}
     for key in self.keys:
         model_dict[key] = create_model_from_key(key)
     models = [model for key, model in model_dict.items()]
     for model in models:
         self.discsc_fit.main_multi_channel(channels=[0, 1, 2, 3],
                                            model=model)
         lens_bounds = [(0.37, 0.42), (0.60, 1.8)]
         #  lens calc doesnt work because it is trying to multiply together 4 posteriors
         #  WHICH DO NOT OVERLAP
         # they do now 3770 is being tested
         self.discsc_fit.lens_calc(model=model, lens_bounds=lens_bounds)
     self.discsc_fit.get_evidence_from_models(model_dict=model_dict)
     shutil.rmtree('test_products/3770_model_comparison_201')
コード例 #5
0
ファイル: gravlens.py プロジェクト: cxwx/PyGRB
def evidence_for_973():
    num_samples = [2000]
    for samples in num_samples:
        GRB = load_973(sampler=SAMPLER, nSamples=samples)
        keys = ['FL', 'FF']
        model_dict = {}
        for key in keys:
            model_dict[key] = create_model_from_key(key)
        models = [model for key, model in model_dict.items()]
        for model in models:
            GRB.main_multi_channel(channels = [0, 1, 2, 3], model = model)

            lens_bounds = [(21, 22.6), (0.25, 0.55)]
            GRB.lens_calc(model = model, lens_bounds = lens_bounds)
        GRB.get_evidence_from_models(model_dict = model_dict)
コード例 #6
0
ファイル: gravlensnaturepriors.py プロジェクト: cxwx/PyGRB
def run_delta_priors(indices, model_keys, channels, nSamples, n_per_split,
                     test):
    directory_label = 'delta_nr'
    if not test:
        GRB_wrap = PulseFitter(3770,
                               times=(-.1, 1),
                               datatype='tte',
                               nSamples=nSamples,
                               sampler=SAMPLER,
                               priors_pulse_start=-.1,
                               priors_pulse_end=0.6,
                               priors_td_lo=0,
                               priors_td_hi=0.5,
                               directory_label=directory_label)
        GRB_wrap.offsets = [0, 4000, 8000, -3000]
    else:
        print('Currently running delta function priors')
    model_dict = {}
    for key in model_keys:
        model_dict[key] = create_model_from_key(
            key, custom_name=f'{key}_{directory_label}')
    models = [model for key, model in model_dict.items()]
    for mm, model in enumerate(models):
        if not test:
            GRB_wrap._setup_labels(model)
            overwrite_priors = dict()
            for n in range(1, GRB_wrap.num_pulses + 1):
                for k in ['a', 'b', 'c', 'd']:

                    overwrite_priors[f'gamma_{n}_{k}'] = bilbyDeltaFunction(
                        1, latex_label=f'$\\gamma$ {n} {k}')

                    overwrite_priors[f'nu_{n}_{k}'] = bilbyDeltaFunction(
                        1, latex_label=f'$\\nu$ {n} {k}')
            GRB_wrap.overwrite_priors = overwrite_priors

        loop_idx = np.arange(4 * mm, 4 * (mm + 1))
        if test:
            print(indices)
            print(mm)
            print('loop_idx = ', loop_idx)
        indx = np.intersect1d(indices, loop_idx) % 4
        if not test:
            GRB_wrap._split_array_job_to_4_channels(models=[model],
                                                    indices=indx,
                                                    channels=channels)
        else:
            print('index passed = ', indx)
コード例 #7
0
ファイル: gravlensnaturebasic.py プロジェクト: cxwx/PyGRB
def evidence_for_3770():
    num_samples = [500]
    for samples in num_samples:
        GRB = load_3770(sampler=SAMPLER, nSamples=samples)
        GRB.offsets = [0, 4000, 8000, -3000]

        keys = ['FL', 'FF']
        model_dict = {}
        for key in keys:
            model_dict[key] = create_model_from_key(key)
        models = [model for key, model in model_dict.items()]

        for model in models:
            GRB.main_multi_channel(channels=[0, 1, 2, 3], model=model)
            lens_bounds = [(0.37, 0.42), (0.60, 1.8)]
            GRB.lens_calc(model=model, lens_bounds=lens_bounds)
        GRB.get_evidence_from_models(model_dict=model_dict)
コード例 #8
0
ファイル: test_single_pulse.py プロジェクト: cxwx/PyGRB
    def test_parameter_recovery(self):
        model = create_model_from_key(self.key)
        self.discsc_fit.main_1_channel(channel=1, model=model)
        result_label = f'{self.discsc_fit.fstring}{self.discsc_fit.clabels[1]}'
        open_result = f'{self.discsc_fit.outdir}/{result_label}_result.json'
        result = bilby.result.read_in_result(filename=open_result)

        prior_shell = MakePriors(priors_pulse_start=self.priors_pulse_start,
                                 priors_pulse_end=self.priors_pulse_end,
                                 channel=1,
                                 **model)
        priors = prior_shell.return_prior_dict()

        posteriors = dict()
        for parameter in priors:
            posteriors[parameter] = np.median(
                result.posterior[parameter].values)
        for parameter in priors:
            assert ((abs(posteriors[parameter] - self.parameters[parameter])) /
                    self.parameters[parameter]) < 0.1
コード例 #9
0
ファイル: gravlensnaturepriors.py プロジェクト: cxwx/PyGRB
def run_flat_priors(indices, model_keys, channels, nSamples, n_per_split,
                    test):

    directory_labels = [
        'small_box_flat_nr', 'mid_box_flat_nr', 'large_box_flat_nr'
    ]
    prior_sets = [
        {
            'priors_gamma_min': 1e-1,  ## generic
            'priors_gamma_max': 1e1,
            'priors_nu_min': 1e-1,
            'priors_nu_max': 1e1
        },
        {
            'priors_gamma_min': 1e-2,
            'priors_gamma_max': 1e2,
            'priors_nu_min': 1e-2,
            'priors_nu_max': 1e2
        },
        {
            'priors_gamma_min': 1e-3,
            'priors_gamma_max': 1e3,
            'priors_nu_min': 1e-3,
            'priors_nu_max': 1e3
        }
    ]

    for ii, prior_set in enumerate(prior_sets):
        if not test:
            GRB_wrap = PulseFitter(3770,
                                   times=(-.1, 1),
                                   datatype='tte',
                                   nSamples=nSamples,
                                   sampler=SAMPLER,
                                   priors_pulse_start=-.1,
                                   priors_pulse_end=0.6,
                                   priors_td_lo=0,
                                   priors_td_hi=0.5,
                                   directory_label=directory_labels[ii])

            GRB_wrap.offsets = [0, 4000, 8000, -3000]
        else:
            print('Currently running flat priors')
        model_dict = {}
        for key in model_keys:
            model_dict[key] = create_model_from_key(
                key, custom_name=f'{key}_{directory_labels[ii]}')
        models = [model for key, model in model_dict.items()]
        for mm, model in enumerate(models):
            if not test:
                GRB_wrap._setup_labels(model)
                overwrite_priors = dict()
                for n in range(1, GRB_wrap.num_pulses + 1):
                    for k in ['a', 'b', 'c', 'd']:
                        overwrite_priors[f'gamma_{n}_{k}'] = bilbyUniform(
                            minimum=prior_set['priors_gamma_min'],
                            maximum=prior_set['priors_gamma_max'],
                            latex_label=f'$\\gamma_{n} {k}$',
                            unit=' ')
                        overwrite_priors[f'nu_{n}_{k}'] = bilbyUniform(
                            minimum=prior_set['priors_nu_min'],
                            maximum=prior_set['priors_nu_max'],
                            latex_label=f'$\\nu_{n} {k}$',
                            unit=' ')
                GRB_wrap.overwrite_priors = overwrite_priors

            loop_idx = np.arange(8 * ii + 4 * mm, 8 * ii + 4 * (mm + 1))
            if test:
                print(indices)
                print(ii, mm)
                print('loop_idx = ', loop_idx)
            indx = np.intersect1d(indices, loop_idx) % 4
            if not test:
                GRB_wrap._split_array_job_to_4_channels(models=[model],
                                                        indices=indx,
                                                        channels=channels)
            else:
                print('index passed = ', indx)
コード例 #10
0
ファイル: gravlensnaturepriors.py プロジェクト: cxwx/PyGRB
def run_log_flat_priors(indices, model_keys, channels, nSamples, n_per_split,
                        test):

    directory_labels = [
        'small_box_log_flat_nr', 'mid_box_log_flat_nr', 'large_box_log_flat_nr'
    ]

    prior_sets = [
        {
            'priors_gamma_min': 1e-1,  ## generic
            'priors_gamma_max': 1e1,
            'priors_nu_min': 1e-1,
            'priors_nu_max': 1e1
        },
        {
            'priors_gamma_min': 1e-2,
            'priors_gamma_max': 1e2,
            'priors_nu_min': 1e-2,
            'priors_nu_max': 1e2
        },
        {
            'priors_gamma_min': 1e-3,
            'priors_gamma_max': 1e3,
            'priors_nu_min': 1e-3,
            'priors_nu_max': 1e3
        }
    ]

    for ii, prior_set in enumerate(prior_sets):
        if not test:
            GRB_wrap = PulseFitter(3770,
                                   times=(-.1, 1),
                                   datatype='tte',
                                   nSamples=nSamples,
                                   sampler=SAMPLER,
                                   priors_pulse_start=-.1,
                                   priors_pulse_end=0.6,
                                   priors_td_lo=0,
                                   priors_td_hi=0.5,
                                   directory_label=directory_labels[ii],
                                   **prior_set)

            GRB_wrap.offsets = [0, 4000, 8000, -3000]
        else:
            print('Currently running log-flat priors')
        model_dict = {}
        for key in model_keys:
            model_dict[key] = create_model_from_key(
                key, custom_name=f'{key}_{directory_labels[ii]}')
        models = [model for key, model in model_dict.items()]

        indx = np.intersect1d(
            indices, np.arange(n_per_split * ii, n_per_split *
                               (ii + 1))) % n_per_split

        ## given 2 models and 4 channels should be passed indx in [0-7]
        if not test:
            GRB_wrap._split_array_job_to_4_channels(models=models,
                                                    indices=indx,
                                                    channels=channels)
        else:
            print(indx)
コード例 #11
0
from PyGRB.main.fitpulse import PulseFitter
from PyGRB.backend.makemodels import create_model_from_key

GRB = PulseFitter(7475, times = (-2, 60),
          datatype = 'discsc', nSamples = 200, sampler = 'nestle',
          priors_pulse_start = -5, priors_pulse_end = 30,
          p_type = 'docs', HPC = False, )


keys = ['G', 'F', 'X', 'Gs', 'Fs', 'Xs']
# the last three models will take a non-trivial time to run
model_dict = {}
for key in keys:
    model_dict[key] = create_model_from_key(key)
models = [model for key, model in model_dict.items()]

for model in models:
    GRB.main_multi_channel(channels = [0, 1, 2, 3], model = model)
GRB.get_evidence_from_models(model_dict = model_dict)