def train(self, data, **args): # store the current cpu time: self._clock = time.clock() if not data.labels.numericLabels: # check if there is a class that is not represented in the training data: if min(data.labels.classSize) == 0: raise ValueError, 'there is a class with no data' # store just as much about the labels as is needed: self.labels = misc.Container() self.labels.addAttributes(data.labels, ['numClasses', 'classLabels']) # if dealing with a VectorDataSet test data needs to have the same features if data.__class__.__name__ == 'VectorDataSet': self.featureID = data.featureID[:] data.train(**args) # if there is some testing done on the data, it requires the training data: if data.testingFunc is not None: self.trainingData = data
def convert (object, attributes) : obj = misc.Container() obj.addAttributes(object, attributes) return obj
def __init__(self, arg=None, **args): PyMLobject.__init__(self, arg, **args) if type(arg) == type(''): self.load(arg) self.log = misc.Container()