コード例 #1
0
def get_rnd_file(file_names,
                 seg_duration,
                 step,
                 fileIndex,
                 n_files=None,
                 debug=True):
    """ returns a LongSignal object allowing fast disk access """

    if n_files is None:
        n_files = len(file_names)

    RandomAudioFilePath = file_names[fileIndex]

    sig = signals.LongSignal(audio_files_path + RandomAudioFilePath,
                             frame_duration=seg_duration,
                             mono=True,
                             Noverlap=(1.0 -
                                       float(step) / float(seg_duration)))

    #    pySig = signals.Signal(
    #        audio_files_path + RandomAudioFilePath, mono=True, normalize=True)
    #
    #    segmentLength = ((seg_duration * pySig.fs) / sizes[-1]) * sizes[-1]
    seg_pad = step * sig.fs
    #    nbSeg = int(pySig.length / segPad - 1)
    ##        print pySig.fs , segmentLength , nbSeg
    #
    deb_str = 'Working on %s (%d/%d) with %d segments ' % (
        RandomAudioFilePath, fileIndex + 1, n_files, sig.n_seg)
    print deb_str
    return sig, seg_pad
コード例 #2
0
    def runTest(self):
        ppdb = XMDCTBDB('tempdb.db',
                        load=False,
                        persistent=True,
                        time_max=500.0)

        pySig = signals.LongSignal(op.join(audio_files_path, file_names[0]),
                                   frame_duration=5,
                                   mono=False,
                                   Noverlap=0)

        self.assertEqual(pySig.segment_size, 5.0 * pySig.fs)

        max_nb_seg = 10
        nb_atoms = 150

        scales = SpreadDico([8192], penalty=0.1, mask_time=2, mask_freq=20)

        #        scales = Dico([8192])
        for segIdx in range(min(max_nb_seg, pySig.n_seg)):
            pySigLocal = pySig.get_sub_signal(segIdx,
                                              1,
                                              mono=True,
                                              normalize=False,
                                              channel=0,
                                              pad=scales.get_pad())
            print "MP on segment %d" % segIdx
            # run the decomposition
            approx, decay = mp.mp(pySigLocal, scales, 2, nb_atoms, pad=False)

            print "Populating database with offset " + str(
                segIdx * pySig.segment_size / pySig.fs)
            ppdb.populate(approx,
                          None,
                          0,
                          offset=float((segIdx * pySig.segment_size) -
                                       scales.get_pad()) / float(pySig.fs))

        # ok we have a DB with only 1 file and different segments, now
        nb_test_seg = 15
        long_sig_test = signals.LongSignal(op.join(audio_files_path,
                                                   file_names[0]),
                                           frame_duration=5,
                                           mono=False,
                                           Noverlap=0.5)
        count = 0
        for segIdx in range(min(nb_test_seg, long_sig_test.n_seg)):
            pySigLocal = long_sig_test.get_sub_signal(segIdx,
                                                      1,
                                                      mono=True,
                                                      normalize=False,
                                                      channel=0,
                                                      pad=scales.get_pad())
            #            print "MP on segment %d" % segIdx
            # run the decomposition
            approx, decay = mp.mp(pySigLocal, scales, 2, nb_atoms, pad=False)
            print approx.atom_number

            histograms = ppdb.retrieve(approx, None, nbCandidates=1)
            maxI = np.argmax(histograms[:])
            OffsetI = maxI / 1
            estFileI = maxI % 1

            oracle_value = segIdx * long_sig_test.segment_size * (
                1 - long_sig_test.overlap) / long_sig_test.fs
            print "Seg %d Oracle: %1.1f - found %1.1f" % (segIdx, oracle_value,
                                                          OffsetI)
            if abs(OffsetI - oracle_value) < 5:
                count += 1

        glob = float(count) / float(min(nb_test_seg, long_sig_test.n_seg))
        print "Global Score of %1.3f" % glob
        self.assertGreater(glob, 0.8)
コード例 #3
0
    def runTest(self):
        ''' time to test the fingerprinting scheme, create a base with 10 atoms for 8 songs, then
            Construct the histograms and retrieve the fileIndex and time offset that is the most
            plausible '''
        print "------------------ Test5  DB construction ---------"
        #        # create the base : persistent
        ppdb = XMDCTBDB('LargeMPdb.db', load=False, time_res=0.2)
        print ppdb
        padZ = 2 * sizes[-1]
        # BUGFIX: pour le cas MP classique: certains atome reviennent : pas
        # cool car paire key/data existe deja!
        pyDico = LODico(sizes)
        segDuration = 5
        nbAtom = 50
        sig = signals.LongSignal(op.join(audio_files_path, file_names[0]),
                                 frame_size=sizes[-1],
                                 mono=False,
                                 Noverlap=0)

        segmentLength = ((segDuration * sig.fs) / sizes[-1]) * sizes[-1]
        max_seg_num = 5
        #        " run MP on a number of files"
        nbFiles = 8
        keycount = 0
        for fileIndex in range(nbFiles):
            RandomAudioFilePath = file_names[fileIndex]
            print fileIndex, RandomAudioFilePath
            if not (RandomAudioFilePath[-3:] == 'wav'):
                continue

            pySig = signals.LongSignal(op.join(audio_files_path,
                                               RandomAudioFilePath),
                                       frame_size=segmentLength,
                                       mono=False,
                                       Noverlap=0)

            nbSeg = int(pySig.n_seg)
            print 'Working on ' + str(RandomAudioFilePath) + ' with ' + str(
                nbSeg) + ' segments'
            for segIdx in range(min(nbSeg, max_seg_num)):
                pySigLocal = pySig.get_sub_signal(segIdx,
                                                  1,
                                                  True,
                                                  True,
                                                  channel=0,
                                                  pad=padZ)
                print "MP on segment %d" % segIdx
                # run the decomposition
                approx, decay = mp.mp(pySigLocal,
                                      pyDico,
                                      40,
                                      nbAtom,
                                      pad=False)

                print "Populating database with offset " + str(
                    segIdx * segmentLength / sig.fs)
                ppdb.populate(approx,
                              None,
                              fileIndex,
                              offset=float((segIdx * segmentLength) - padZ) /
                              sig.fs)

                keycount += approx.atom_number

        print ppdb.get_stats()
コード例 #4
0
def load_data_one_audio_file(filepath,
                             fs,
                             sigma_noise=0,
                             wintime=0.032,
                             steptime=0.008,
                             max_frame_num_per_file=3000,
                             startpoint=0,
                             features=[
                                 'zcr',
                             ]):

    N = max_frame_num_per_file * steptime * fs

    if startpoint > 0:
        # guess which segment need to be selected
        segIdx = int(float(startpoint * fs) / N)
        print "Starting at segment", segIdx
    else:
        segIdx = 0

#    print 'Loading from file ', filepath
# pre loading the file using a longSignal object
    preload = signals.LongSignal(filepath, frame_size=N, mono=True)

    if preload.n_seg < 1:
        del preload
        sigx = signals.Signal(filepath, mono=True)
    else:
        print 'Cropping at %d' % N
        sigx = preload.get_sub_signal(segIdx, 1)

    # resample ?
    if not fs == sigx.fs:
        sigx.downsample(fs)


#    %add some noise ?
    if sigma_noise > 0.0:
        sigx.data += sigma_noise * np.random.randn(sigx.data.shape[0], )

    x = sigx.data
    fs = sigx.fs
    #    print wintime * fs, steptime * fs
    yaafe_dict = get_yaafe_dict(int(wintime * fs), int(steptime * fs))

    featureList = []
    # we already know we want the magnitude spectrum
    featureList.append(yaafe_dict['magspec'])
    for feature in features:
        featureList.append(yaafe_dict[feature])

    feats = get_yaafe_features(featureList, filepath, target_fs=fs)

    Feats = np.array([])
    featseq = []

    n_frames = feats['magspec'].shape[0]

    for feature in features:
        if feature in feats:
            #            print feature, feats[feature].shape
            if feats[feature].shape[0] > n_frames:
                feats[feature] = feats[feature][0:n_frames, :]
            featseq.append(feats[feature])
        else:
            print 'Warning, feature ', feature, ' not found'

    Feats = np.hstack(featseq)
    return feats['magspec'], Feats, x
コード例 #5
0
def db_test(fgpthandle,
            sk,
            sparsity,
            file_names,
            files_path='',
            test_seg_prop=0.5,
            seg_duration=5.0,
            resample=-1,
            step=2.5,
            tolerance=5.0,
            shuffle=0,
            debug=False,
            n_jobs=3):
    ''' Lets try to identify random segments from the files 
    using the pre-calculated database
    
    Parameters
    ----------
    fgpthandle : FgptHandle
        the object that encapsulate the fingerprints
    sk : AudioSketch
        any Sketch object that is able to compute the fingerprints handled by fgpthandle
    sparsity : int
        dimension of the fingerprint
    file_names :  list
        a list of file names
    files_path : string (opt)
        The static path to where the files are actually located. Use only
        if all the files belong to the same directory
    test_seg_prop :  float (opt)
        value between 0 and 1, the proportion of segments that
        serve for testing
    seg_duration : float (opt)
        The duration of the segments in seconds
    tolerance :  float (opt)
        The tolerance on the segment localization in the file.
    resample : int (opt)
        The desired resampling frequency, default is -1 for no resampling
    step : float (opt)
        The step between segments in seconds. Default is -1 for no overlap
    
    '''
    if test_seg_prop <= 0 or test_seg_prop > 1:
        raise ValueError(
            "Unproper test_seg_prop parameter should be between 0 and 1 but got %1.1f"
            % test_seg_prop)

    n_files = len(file_names)

    if fgpthandle.params.has_key('pad'):
        pad = fgpthandle.params['pad']
    else:
        pad = False

    # change the order of the files for testing"
    sortedIndexes = range(n_files)
    if shuffle:
        np.random.shuffle(sortedIndexes)

    countokok = 0.0  # number of correctly retrieved segments
    countokbad = 0.0  # number of segments retrieve in correct file but misplaced
    countbadbad = 0.0  # number of segments in the wrong file
    countall = 0.0  # total number of segments
    t0 = time.time()
    i = 0
    failures = []
    for fileIndex in sortedIndexes:
        i += 1
        if seg_duration > 0:
            # get file as a PyMP.LongSignal object
            l_sig = signals.LongSignal(
                op.join(files_path, file_names[fileIndex]),
                frame_duration=seg_duration,
                mono=True,
                Noverlap=(1.0 - float(step) / float(seg_duration)))
            n_segs = l_sig.n_seg
            if n_segs < 1:
                continue

            if debug:
                print "Loaded file %s - with %d segments of %1.1f seconds" % (
                    file_names[fileIndex], n_segs, seg_duration)

            segment_indexes = range(int(l_sig.n_seg))
            if shuffle:
                if isinstance(shuffle, int):
                    np.random.seed(shuffle)
                np.random.shuffle(segment_indexes)
            max_seg = int(test_seg_prop * l_sig.n_seg)
            print "Testing %d segments in %s" % (max_seg,
                                                 file_names[fileIndex])

            # Loop on random segments*
            if n_jobs > 1:
                fgpts = Parallel(n_jobs=n_jobs)(
                    delayed(_process_seg_test)(sk, sparsity, resample, pad,
                                               l_sig, segIdx)
                    for segIdx in segment_indexes[:max_seg - 1])
                # Again ugly hack to counter the effects of joblib recopy of sketch object
                fgpts.append(
                    _process_seg_test(sk, sparsity, resample, pad, l_sig,
                                      segment_indexes[-1]))
            else:
                fgpts = []
                for segIdx in segment_indexes[:max_seg - 1]:
                    fgpts.append(
                        _process_seg_test(sk, sparsity, resample, pad, l_sig,
                                          segIdx))

        else:
            l_sig = signals.Signal(op.join(files_path, file_names[fileIndex]),
                                   mono=True)
            n_segs = 1
            if resample > 0:
                l_sig.resample(resample)
                # computing the local fingerprint
            sk.recompute(l_sig)
            sk.sparsify(sparsity)
            fgpts = ((sk.fgpt(), 0), )

        for fgpt, segIdx in fgpts:
            countall += 1.0
            true_offset = segIdx * step
            estimated_index, estimated_offset = fgpthandle.get_candidate(
                fgpt, sk.params, nbCandidates=n_files, smooth=1)
            if (fileIndex == estimated_index):
                if debug:
                    print "Correct answer, file %d" % fileIndex
                if np.abs(estimated_offset - true_offset) < tolerance:
                    countokok += 1.0
                    if debug:
                        print "Correct offset %d" % int(estimated_offset)
                else:
                    countokbad += 1.0
                    if debug:
                        print "Wrong offset %d instead of %d" % (
                            int(estimated_offset), int(segIdx * step))
            else:
                countbadbad += 1.0
                failures.append(
                    (file_names[fileIndex], true_offset,
                     file_names[estimated_index], estimated_offset))
                if debug:
                    print " Wrong answer File %d offset %d instead of File %d offset %d" % (
                        estimated_index, int(estimated_offset), fileIndex,
                        int(segIdx * step))

        estTime = (float((time.time() - t0)) / float(i)) * (n_files - i)
        print 'Elapsed %d  min . Estimated : %d min and %d seconds' % (
            (time.time() - t0) / 60.0,
            (estTime / 60.0), estTime - (int(estTime / 60.0) * 60))

        print "Global Scores of %1.2f - %1.2f - %1.2f" % (
            (countokok / countall, countokbad / countall,
             countbadbad / countall))
    print "Final Scores of %1.2f - %1.2f - %1.2f" % (
        (countokok / countall, countokbad / countall, countbadbad / countall))
    return (countokok / countall, countokbad / countall,
            countbadbad / countall), failures
コード例 #6
0
def _process_file(fgpthandle, sk, sparsity, file_names, seg_duration, resample,
                  step, files_path, debug, n_files, pad, t0, fileIndex,
                  n_jobs):
    # get file as a PyMP.LongSignal object
    if seg_duration > 0:
        l_sig = signals.LongSignal(
            op.join(files_path, file_names[fileIndex]),
            frame_duration=seg_duration,
            mono=True,
            Noverlap=(1.0 - float(step) / float(seg_duration)))
        nbsegs = l_sig.n_seg
    else:
        l_sig = signals.Signal(op.join(files_path, file_names[fileIndex]),
                               mono=True)
        nbsegs = 1
#    if debug:
    print "Loaded file %s - with %d segments of %1.1f seconds" % (
        file_names[fileIndex], nbsegs, seg_duration)

    if n_jobs > 1 and nbsegs > 1:
        # Loop on segments :  Sparsifying all of them
        fgpt = Parallel(n_jobs=n_jobs)(
            delayed(_process_seg)(sk, sparsity, resample, step, debug, pad,
                                  l_sig, segIdx, file_names[fileIndex])
            for segIdx in range(l_sig.n_seg - 1))

        # ugly hack: do the last segment without parallel so that the sketch object
        # is correctly modified
        fgpt.append(
            _process_seg(sk, sparsity, resample, step, debug, pad, l_sig,
                         l_sig.n_seg - 1, file_names[fileIndex]))

        for segIdx in range(l_sig.n_seg):
            fgpthandle.populate(fgpt[segIdx],
                                sk.params,
                                fileIndex,
                                offset=segIdx * step,
                                debug=debug)

    else:
        if nbsegs > 1:
            #            fgpt = []
            for segIdx in range(nbsegs):
                try:
                    fgpthandle.populate(_process_seg(sk, sparsity, resample,
                                                     step, debug, pad, l_sig,
                                                     segIdx,
                                                     file_names[fileIndex]),
                                        sk.params,
                                        fileIndex,
                                        offset=segIdx * step,
                                        debug=debug)
                except:
                    continue
        else:
            if resample > 0:
                if not (l_sig.data.shape[0] % 2 == 0):
                    l_sig.crop(0, l_sig.data.shape[0] - 1)
                l_sig.resample(resample)
            sk.recompute(l_sig, **{
                'segIdx': 0,
                'sig_name': file_names[fileIndex]
            })
            sk.sparsify(sparsity)
            fgpthandle.populate(sk.fgpt(),
                                sk.params,
                                fileIndex,
                                offset=0,
                                debug=debug)


#            fgpt.append(_process_seg(sk, sparsity, resample, step, debug, pad, l_sig,  segIdx, file_names[fileIndex]))

# Cannot parallelized this part though ... because of disk access

    estTime = (float(
        (time.time() - t0)) / float(fileIndex + 1)) * (n_files - fileIndex)
    print 'Elapsed %d seconds Estimated : %d minutes and %d seconds' % (
        (time.time() - t0), (estTime / 60), estTime - (int(estTime / 60) * 60))
コード例 #7
0
def db_test_cortico(fgpthandle,
                    sk,
                    sparsity,
                    file_names,
                    files_path='',
                    test_seg_prop=0.5,
                    seg_duration=5.0,
                    resample=-1,
                    step=2.5,
                    tolerance=5.0,
                    shuffle=True,
                    debug=False,
                    n_jobs=3,
                    n_files=None):
    ''' Same as above but evaluation on each of the sub plots
    
    '''
    if test_seg_prop <= 0 or test_seg_prop > 1:
        raise ValueError(
            "Unproper test_seg_prop parameter should be between 0 and 1 but got %1.1f"
            % test_seg_prop)

    if n_files is None:
        n_files = len(file_names)

    if fgpthandle.params.has_key('pad'):
        pad = fgpthandle.params['pad']
    else:
        pad = False
    import time
    # change the order of the files for testing"
    sortedIndexes = range(len(file_names))
    if shuffle:
        np.random.shuffle(sortedIndexes)

    (n_scales, n_rates) = fgpthandle.params['n_sv'], fgpthandle.params['n_rv']
    countokok = np.zeros(
        (n_scales, n_rates))  # number of correctly retrieved segments
    countokbad = np.zeros(
        (n_scales,
         n_rates))  # number of segments retrieve in correct file but misplaced
    countbadbad = np.zeros(
        (n_scales, n_rates))  # number of segments in the wrong file
    countall = 0.0  # total number of segments
    t0 = time.time()
    i = 0
    #    failures = []
    for fileIndex in sortedIndexes:
        i += 1
        # get file as a PyMP.LongSignal object
        l_sig = signals.LongSignal(
            op.join(files_path, file_names[fileIndex]),
            frame_duration=seg_duration,
            mono=True,
            Noverlap=(1.0 - float(step) / float(seg_duration)))

        if debug:
            print "Loaded file %s - with %d segments of %1.1f seconds" % (
                file_names[fileIndex], l_sig.n_seg, seg_duration)
        segment_indexes = range(int(l_sig.n_seg))
        if shuffle:
            np.random.shuffle(segment_indexes)
        max_seg = int(test_seg_prop * l_sig.n_seg)

        # Loop on random segments*
        fgpts = Parallel(n_jobs=n_jobs)(
            delayed(_process_seg_test)(sk, sparsity, resample, pad, l_sig,
                                       segIdx)
            for segIdx in segment_indexes[:max_seg - 1])
        # Again ugly hack to counter the effects of joblib recopy of sketch object
        fgpts.append(
            _process_seg_test(sk, sparsity, resample, pad, l_sig,
                              segment_indexes[max_seg - 1]))

        for fgpt, segIdx in fgpts:
            countall += 1.0
            true_offset = segIdx * step
            estimated_index, estimated_offset = fgpthandle.get_candidate(
                fgpt, sk.params, nbCandidates=n_files, smooth=1)
            for scaleIdx in range(n_scales):
                for rateIdx in range(n_rates):
                    if (fileIndex == estimated_index[scaleIdx, rateIdx]):
                        if debug:
                            print "%d- %d : Correct answer, file %d" % (
                                scaleIdx, rateIdx, fileIndex)
                        if np.abs(estimated_offset[scaleIdx, rateIdx] -
                                  true_offset) < tolerance:
                            countokok[scaleIdx, rateIdx] += 1.0
                            if debug:
                                print "%d- %d : Correct offset %d" % (
                                    scaleIdx, rateIdx,
                                    int(estimated_offset[scaleIdx, rateIdx]))
                        else:
                            countokbad[scaleIdx, rateIdx] += 1.0
                            if debug:
                                print "Wrong offset %d instead of %d" % (
                                    int(estimated_offset[scaleIdx, rateIdx]),
                                    int(segIdx * step))
                    else:
                        countbadbad[scaleIdx, rateIdx] += 1.0
                        #                        failures.append((file_names[fileIndex], true_offset, file_names[estimated_index], estimated_offset[scaleIdx,rateIdx]))
                        if debug:
                            print "%d- %d Wrong answer File %d offset %d instead of File %d offset %d" % (
                                scaleIdx, rateIdx, estimated_index[scaleIdx,
                                                                   rateIdx],
                                int(estimated_offset[scaleIdx, rateIdx]),
                                fileIndex, int(segIdx * step))

        estTime = (float((time.time() - t0)) / float(i)) * (n_files - i)
        print 'Elapsed %2.2f  min . Estimated : %2.2f min' % (
            (time.time() - t0) / 60.0, (estTime / 60.0))

        print "Ok Scores :", (countokok / countall)
    print "Final Ok Scores of ", (countokbad / countall)

    return (countokok / countall, countokbad / countall,
            countbadbad / countall)