コード例 #1
0
class TestMPDATA2D:
    def test_Arabas_et_al_2014_sanity(self, case):
        case = {
            "nx": case[0],
            "ny": case[1],
            "Cx": case[2],
            "Cy": case[3],
            "nt": case[4],
            "ni": case[5],
            "input": case[6],
            "output": case[7]
        }
        # Arrange
        sut = Factories.constant_2d(case["input"].reshape(
            (case["nx"], case["ny"])), [case["Cx"], case["Cy"]],
                                    options=Options(n_iters=case["ni"]))

        # Act
        sut.advance(nt=case["nt"])

        # Assert
        np.testing.assert_almost_equal(sut.advectee.get(),
                                       case["output"].reshape(
                                           case["nx"], case["ny"]),
                                       decimal=4)
コード例 #2
0
def test_upwind(shape, ij0, out, C):
    value = 44
    scalar_field_init = np.zeros(shape)
    scalar_field_init[ij0] = value

    vector_field_init = (np.full((shape[0] + 1, shape[1]),
                                 C[0]), np.full((shape[0], shape[1] + 1),
                                                C[1]))
    options = Options(n_iters=1)

    advectee = ScalarField(scalar_field_init,
                           halo=options.n_halo,
                           boundary_conditions=(PeriodicBoundaryCondition(),
                                                PeriodicBoundaryCondition()))
    advector = VectorField(vector_field_init,
                           halo=options.n_halo,
                           boundary_conditions=(PeriodicBoundaryCondition(),
                                                PeriodicBoundaryCondition()))

    mpdata = Solver(stepper=Stepper(options=options, grid=shape, n_threads=1),
                    advector=advector,
                    advectee=advectee)
    mpdata.advance(nt=1)

    np.testing.assert_array_equal(mpdata.advectee.get(), out)
コード例 #3
0
def test_upwind_1d():
    state = np.array([0, 1, 0])
    C = 1

    mpdata = Factories.constant_1d(state, C, Options(n_iters=1))
    nt = 5

    conserved = np.sum(mpdata.advectee.get())
    mpdata.advance(nt)

    assert np.sum(mpdata.advectee.get()) == conserved
コード例 #4
0
ファイル: test_run_all.py プロジェクト: Michaeldz36/PyMPDATA
    def test_fig11(dtype: np.floating):
        # Arrange
        simulation = Simulation(
            Setup("rect"), Options(infinite_gauge=True, n_iters=2,
                                   dtype=dtype))

        # Act
        simulation.run()
        psiT = simulation.state

        # Assert
        assert psiT.dtype == dtype
        assert -1.9 < np.amin(psiT) < 2
        assert 4 < np.amax(psiT) < 4.2
コード例 #5
0
ファイル: test_run_all.py プロジェクト: Michaeldz36/PyMPDATA
    def test_fig10(dtype: np.floating):
        # Arrange
        simulation = Simulation(
            Setup("cosine"),
            Options(infinite_gauge=True, n_iters=2, dtype=dtype))

        # Act
        simulation.run()
        psiT = simulation.state

        # Assert
        assert psiT.dtype == dtype
        assert -.1 < np.amin(psiT) < 0
        assert 1.75 < np.amax(psiT) < 1.9
コード例 #6
0
ファイル: test_dpdc.py プロジェクト: Michaeldz36/PyMPDATA
def test_DPDC(n_iters):
    state = np.array([0, 1, 0])
    C = .5

    mpdata = Factories.constant_1d(
        state, C,
        Options(n_iters=n_iters, DPDC=True, flux_corrected_transport=True))
    nt = 1

    conserved = np.sum(mpdata.advectee.get())
    mpdata.advance(nt)
    print(mpdata.advectee.get())

    assert np.sum(mpdata.advectee.get()) == conserved
コード例 #7
0
ファイル: test_run_all.py プロジェクト: Michaeldz36/PyMPDATA
    def test_fig4(dtype: np.floating):
        # Arrange
        simulation = Simulation(Setup("cosine"), Options(n_iters=2,
                                                         dtype=dtype))
        psi0 = simulation.state

        # Act
        simulation.run()
        psiT = simulation.state

        # Assert
        epsilon = 1e-20
        assert psiT.dtype == dtype
        assert np.amin(psi0) == 0
        assert np.amax(psi0) == 2
        assert 0 < np.amin(psiT) < epsilon
        assert 1.3 < np.amax(psiT) < 1.4
コード例 #8
0
    def test_fig3(dtype: np.floating):
        # Arrange
        simulation = Simulation(Settings("cosine"),
                                Options(n_iters=1, dtype=dtype))
        psi_0 = simulation.state

        # Act
        simulation.run()
        psi_t = simulation.state

        # Assert
        epsilon = 1e-20
        assert psi_t.dtype == dtype
        assert np.amin(psi_0) == 0
        assert np.amax(psi_0) == 2
        assert 0 < np.amin(psi_t) < epsilon
        assert .45 < np.amax(psi_t) < .5
コード例 #9
0
ファイル: test_run_all.py プロジェクト: Michaeldz36/PyMPDATA
    def test_fig12(dtype: np.floating):
        # Arrange
        simulation = Simulation(
            Setup("rect"),
            Options(n_iters=2,
                    infinite_gauge=True,
                    flux_corrected_transport=True,
                    dtype=dtype))

        # Act
        simulation.run()
        psiT = simulation.state

        # Assert
        assert psiT.dtype == dtype
        assert np.amin(psiT) >= 2
        assert np.amax(psiT) <= 4
        assert np.amax(psiT) > 3
コード例 #10
0
    def test_fig12(dtype: np.floating):
        # Arrange
        simulation = Simulation(
            Settings("rect"),
            Options(n_iters=2,
                    infinite_gauge=True,
                    nonoscillatory=True,
                    dtype=dtype))

        # Act
        simulation.run()
        psi_t = simulation.state

        # Assert
        assert psi_t.dtype == dtype
        assert np.amin(psi_t) >= 2
        assert np.amax(psi_t) <= 4
        assert np.amax(psi_t) > 3
コード例 #11
0
def test_init(grid_layout, psi_coord, flux_corrected_transport):
    # Arrange
    opts = Options(flux_corrected_transport=flux_corrected_transport)
    # Act
    simulation = Simulation(setup,
                            grid_layout=grid_layout,
                            GC_max=default_GC_max,
                            psi_coord=psi_coord,
                            opts=opts)
    simulation.step(1)
    # Asserts for array shapes
    assert simulation.n_of_r.shape[0] == setup.nr

    # Asserts for Jacobian
    G_with_halo = simulation.solver.g_factor.data
    assert np.isfinite(G_with_halo).all()
    if type(psi_coord) == type(grid_layout):
        np.testing.assert_array_almost_equal(np.diff(G_with_halo), 0)
    else:
        assert (np.diff(G_with_halo) >= 0).all() or (np.diff(G_with_halo) <=
                                                     0).all()
コード例 #12
0
def test_init(grid_layout, psi_coord, nonoscillatory):
    # Arrange
    opts = Options(nonoscillatory=nonoscillatory)

    # Act
    simulation = Simulation(settings,
                            grid_layout=grid_layout,
                            GC_max=default_GC_max,
                            psi_coord=psi_coord,
                            opts=opts)
    simulation.step(1)

    # Asserts for array shapes
    assert simulation.n_of_r.shape[0] == settings.nr

    # Asserts for Jacobian
    g_factor_with_halo = simulation.solver.g_factor.data
    assert np.isfinite(g_factor_with_halo).all()
    if isinstance(psi_coord, type(grid_layout)):
        np.testing.assert_array_almost_equal(np.diff(g_factor_with_halo), 0)
    else:
        assert (np.diff(g_factor_with_halo) >=
                0).all() or (np.diff(g_factor_with_halo) <= 0).all()
コード例 #13
0

def from_pdf_2d(pdf, xrange, yrange, gridsize):
    z = np.empty(gridsize)
    dx, dy = (xrange[1] - xrange[0]) / gridsize[0], (yrange[1] -
                                                     yrange[0]) / gridsize[1]
    for i in range(gridsize[0]):
        for j in range(gridsize[1]):
            z[i, j] = pdf(xrange[0] + dx * (i + .5), yrange[0] + dy * (j + .5))
    x = np.linspace(xrange[0] + dx / 2, xrange[1] - dx / 2, gridsize[0])
    y = np.linspace(yrange[0] + dy / 2, yrange[1] - dy / 2, gridsize[1])
    return x, y, z


@pytest.mark.parametrize("options", [
    Options(n_iters=1),
    Options(n_iters=2),
    Options(n_iters=3, infinite_gauge=True),
    Options(n_iters=2, infinite_gauge=True, flux_corrected_transport=True)
])
@pytest.mark.parametrize("dtype", (np.float64, ))
@pytest.mark.parametrize("grid_static_str", ("static", "dynamic"))
@pytest.mark.parametrize("concurrency_str", ("threads", "serial"))
def test_timing_2d(benchmark,
                   options,
                   dtype,
                   grid_static_str,
                   concurrency_str,
                   plot=False):
    if grid_static_str == "static":
        grid_static = True
コード例 #14
0
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import time
import numba
from PyMPDATA.options import Options
from PyMPDATA.impl.clock import clock

jit_flags = Options().jit_flags


class TestClock:
    @staticmethod
    def test_clock_python():
        clock()

    @staticmethod
    def test_clock_numba_jit():
        @numba.jit(**jit_flags)
        def test():
            clock()

        test()

    @staticmethod
    def test_clock_numba_njit():
        @numba.njit(**jit_flags)
        def test():
            clock()

        test()

    @staticmethod
コード例 #15
0
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pytest
import numpy as np
from PyMPDATA_examples.Smolarkiewicz_2006_Figs_3_4_10_11_12.settings import Settings
from PyMPDATA_examples.Smolarkiewicz_2006_Figs_3_4_10_11_12.simulation import Simulation
from PyMPDATA.options import Options


@pytest.mark.parametrize("options", [
    Options(n_iters=1),
    Options(n_iters=2),
    Options(n_iters=3),
    Options(n_iters=4),
    Options(n_iters=2, infinite_gauge=True),
    Options(n_iters=3, infinite_gauge=True),
    Options(n_iters=2, nonoscillatory=True),
    Options(n_iters=3, nonoscillatory=True),
    Options(n_iters=2, divergent_flow=True),
    Options(n_iters=3, divergent_flow=True),
    Options(n_iters=2, third_order_terms=True),
    Options(n_iters=3, third_order_terms=True)
])
# pylint: disable-next=redefined-outer-name
def test_timing_1d(benchmark, options):
    simulation = Simulation(Settings("cosine"), options)
    psi0 = simulation.stepper.advectee.get().copy()

    def set_psi():
        simulation.stepper.advectee.get()[:] = psi0

    benchmark.pedantic(simulation.run, {},
コード例 #16
0
from PyMPDATA.options import Options
from PyMPDATA_examples.Smolarkiewicz_2006_Figs_3_4_10_11_12.setup import Setup
from PyMPDATA_examples.Smolarkiewicz_2006_Figs_3_4_10_11_12.simulation import Simulation
import pytest
import numpy as np


@pytest.mark.parametrize("options", [
    Options(n_iters=1),
    Options(n_iters=2),
    Options(n_iters=3),
    Options(n_iters=4),

    Options(n_iters=2, infinite_gauge=True),
    Options(n_iters=3, infinite_gauge=True),

    Options(n_iters=2, flux_corrected_transport=True),
    Options(n_iters=3, flux_corrected_transport=True),

    Options(n_iters=2, divergent_flow=True),
    Options(n_iters=3, divergent_flow=True),

    Options(n_iters=2, third_order_terms=True),
    Options(n_iters=3, third_order_terms=True)
])
def test_timing_1d(benchmark, options):
    simulation = Simulation(Setup("cosine"), options)
    psi0 = simulation.stepper.advectee.get().copy()

    def set_psi():
        simulation.stepper.advectee.get()[:] = psi0