コード例 #1
0
 def get_energy(self, b):
     self.iter += 1
     ba = b[:self.nbf]
     bb = b[self.nbf:]
     self.Hoepa = get_Hoep(ba, self.H0, self.Gij)
     self.Hoepb = get_Hoep(bb, self.H0, self.Gij)
     self.orbea, self.orbsa = geigh(self.Hoepa, self.S)
     self.orbeb, self.orbsb = geigh(self.Hoepb, self.S)
     if self.etemp:
         self.Da, entropya = mkdens_fermi(2 * self.nalpha, self.orbea,
                                          self.orbsa, self.etemp)
         self.Db, entropyb = mkdens_fermi(2 * self.nbeta, self.orbeb,
                                          self.orbsb, self.etemp)
         self.entropy = 0.5 * (entropya + entropyb)
     else:
         self.Da = mkdens(self.orbsa, 0, self.nalpha)
         self.Db = mkdens(self.orbsb, 0, self.nbeta)
         self.entropy = 0
     J = getJ(self.Ints, self.Da + self.Db)
     Ka = getK(self.Ints, self.Da)
     Kb = getK(self.Ints, self.Db)
     self.Fa = self.h + J - Ka
     self.Fb = self.h + J - Kb
     self.energy = 0.5*(trace2(self.h+self.Fa,self.Da) +
                        trace2(self.h+self.Fb,self.Db))\
                        + self.Enuke + self.entropy
     if self.iter == 1 or self.iter % 10 == 0:
         logging.debug("%4d %10.5f %10.5f" %
                       (self.iter, self.energy, dot(b, b)))
     return self.energy
コード例 #2
0
ファイル: OEP.py プロジェクト: certik/pyquante
 def get_energy(self,b):
     self.iter += 1
     ba = b[:self.nbf]
     bb = b[self.nbf:]
     self.Hoepa = get_Hoep(ba,self.H0,self.Gij)
     self.Hoepb = get_Hoep(bb,self.H0,self.Gij)
     self.orbea,self.orbsa = geigh(self.Hoepa,self.S)
     self.orbeb,self.orbsb = geigh(self.Hoepb,self.S)
     if self.etemp:
         self.Da,entropya = mkdens_fermi(2*self.nalpha,self.orbea,self.orbsa,
                                         self.etemp)
         self.Db,entropyb = mkdens_fermi(2*self.nbeta,self.orbeb,self.orbsb,
                                         self.etemp)
         self.entropy = 0.5*(entropya+entropyb)
     else:
         self.Da = mkdens(self.orbsa,0,self.nalpha)
         self.Db = mkdens(self.orbsb,0,self.nbeta)
         self.entropy=0
     J = getJ(self.Ints,self.Da+self.Db)
     Ka = getK(self.Ints,self.Da)
     Kb = getK(self.Ints,self.Db)
     self.Fa = self.h + J - Ka
     self.Fb = self.h + J - Kb
     self.energy = 0.5*(trace2(self.h+self.Fa,self.Da) +
                        trace2(self.h+self.Fb,self.Db))\
                        + self.Enuke + self.entropy
     if self.iter == 1 or self.iter % 10 == 0:
         logging.debug("%4d %10.5f %10.5f" % (self.iter,self.energy,dot(b,b)))
     return self.energy
コード例 #3
0
ファイル: PyQuante2.py プロジェクト: certik/pyquante
    def update(self,**opts):
        from PyQuante.Ints import getJ,getK
        from PyQuante.LA2 import geigh,mkdens
        from PyQuante.rohf import ao2mo
        from PyQuante.hartree_fock import get_energy
        from PyQuante.NumWrap import eigh,matrixmultiply

        if self.orbs is None:
            self.orbe,self.orbs = geigh(self.h, self.S)
        Da = mkdens(self.orbs,0,self.nalpha)
        Db = mkdens(self.orbs,0,self.nbeta)

        Ja = getJ(self.ERI,Da)
        Jb = getJ(self.ERI,Db)
        Ka = getK(self.ERI,Da)
        Kb = getK(self.ERI,Db)
        Fa = self.h+Ja+Jb-Ka
        Fb = self.h+Ja+Jb-Kb
        energya = get_energy(self.h,Fa,Da)
        energyb = get_energy(self.h,Fb,Db)
        self.energy = (energya+energyb)/2 + self.Enuke

        Fa = ao2mo(Fa,self.orbs)
        Fb = ao2mo(Fb,self.orbs)

        # Building the approximate Fock matrices in the MO basis
        F = 0.5*(Fa+Fb)
        K = Fb-Fa

        # The Fock matrix now looks like
        #      F-K    |  F + K/2  |    F
        #   ---------------------------------
        #    F + K/2  |     F     |  F - K/2
        #   ---------------------------------
        #       F     |  F - K/2  |  F + K

        # Make explicit slice objects to simplify this
        do = slice(0,self.nbeta)
        so = slice(self.nbeta,self.nalpha)
        uo = slice(self.nalpha,self.norbs)
        F[do,do] -= K[do,do]
        F[uo,uo] += K[uo,uo]
        F[do,so] += 0.5*K[do,so]
        F[so,do] += 0.5*K[so,do]
        F[so,uo] -= 0.5*K[so,uo]
        F[uo,so] -= 0.5*K[uo,so]

        self.orbe,mo_orbs = eigh(F)
        self.orbs = matrixmultiply(self.orbs,mo_orbs)
        
        return
コード例 #4
0
    def update(self, **kwargs):
        from PyQuante.Ints import getJ, getK
        from PyQuante.LA2 import geigh, mkdens
        from PyQuante.rohf import ao2mo
        from PyQuante.hartree_fock import get_energy
        from PyQuante.NumWrap import eigh, matrixmultiply

        if self.orbs is None:
            self.orbe, self.orbs = geigh(self.h, self.S)
        Da = mkdens(self.orbs, 0, self.nalpha)
        Db = mkdens(self.orbs, 0, self.nbeta)

        Ja = getJ(self.ERI, Da)
        Jb = getJ(self.ERI, Db)
        Ka = getK(self.ERI, Da)
        Kb = getK(self.ERI, Db)
        Fa = self.h + Ja + Jb - Ka
        Fb = self.h + Ja + Jb - Kb
        energya = get_energy(self.h, Fa, Da)
        energyb = get_energy(self.h, Fb, Db)
        self.energy = (energya + energyb) / 2 + self.Enuke

        Fa = ao2mo(Fa, self.orbs)
        Fb = ao2mo(Fb, self.orbs)

        # Building the approximate Fock matrices in the MO basis
        F = 0.5 * (Fa + Fb)
        K = Fb - Fa

        # The Fock matrix now looks like
        #      F-K    |  F + K/2  |    F
        #   ---------------------------------
        #    F + K/2  |     F     |  F - K/2
        #   ---------------------------------
        #       F     |  F - K/2  |  F + K

        # Make explicit slice objects to simplify this
        do = slice(0, self.nbeta)
        so = slice(self.nbeta, self.nalpha)
        uo = slice(self.nalpha, self.norbs)
        F[do, do] -= K[do, do]
        F[uo, uo] += K[uo, uo]
        F[do, so] += 0.5 * K[do, so]
        F[so, do] += 0.5 * K[so, do]
        F[so, uo] -= 0.5 * K[so, uo]
        F[uo, so] -= 0.5 * K[uo, so]

        self.orbe, mo_orbs = eigh(F)
        self.orbs = matrixmultiply(self.orbs, mo_orbs)

        return
コード例 #5
0
ファイル: make_hf_driver.py プロジェクト: berquist/PyQuante
def test_mol(mol,**opts):
    basis_data = opts.get('basis_data',None)
    do_python_tests = opts.get('do_python_tests',True)
    
    make_hf_driver(mol,basis_data=basis_data)
    if do_python_tests:
        bfs = getbasis(mol,basis_data)
        S= getS(bfs)
        T = getT(bfs)
        V = getV(bfs,mol)
        Ints = get2ints(bfs)
        nclosed,nopen = mol.get_closedopen()
        enuke = mol.get_enuke()
        assert nopen==0
  
        h = T+V

        orbe,orbs = GHeigenvectors(h,S)
        print "Eval of h: ",
        print orbe
        for i in range(10):
            D = mkdens(orbs,0,nclosed)
            J = getJ(Ints,D)
            K = getK(Ints,D)
            orbe,orbs = GHeigenvectors(h+2*J-K,S)
            eone = TraceProperty(D,h)
            ej = TraceProperty(D,J)
            ek = TraceProperty(D,K)
            energy = enuke+2*eone+2*ej-ek
            print i,energy,enuke,eone,ej,ek
    return
コード例 #6
0
ファイル: make_hf_driver.py プロジェクト: svn2github/pyquante
def test_mol(mol, **opts):
    basis_data = opts.get('basis_data', None)
    do_python_tests = opts.get('do_python_tests', True)

    make_hf_driver(mol, basis_data=basis_data)
    if do_python_tests:
        bfs = getbasis(mol, basis_data)
        S = getS(bfs)
        T = getT(bfs)
        V = getV(bfs, mol)
        Ints = get2ints(bfs)
        nclosed, nopen = mol.get_closedopen()
        enuke = mol.get_enuke()
        assert nopen == 0

        h = T + V

        orbe, orbs = GHeigenvectors(h, S)
        print "Eval of h: ",
        print orbe
        for i in range(10):
            D = mkdens(orbs, 0, nclosed)
            J = getJ(Ints, D)
            K = getK(Ints, D)
            orbe, orbs = GHeigenvectors(h + 2 * J - K, S)
            eone = TraceProperty(D, h)
            ej = TraceProperty(D, J)
            ek = TraceProperty(D, K)
            energy = enuke + 2 * eone + 2 * ej - ek
            print i, energy, enuke, eone, ej, ek
    return
コード例 #7
0
ファイル: rohf.py プロジェクト: MFSJMenger/pyquante
def get_os_hams(Ints,Ds):
    # GVB2P5 did this a little more efficiently; they stored
    # 2J-K for the core, then J,K for each open shell. Didn't
    # seem worth it here, so I'm jst storing J,K separately
    Hs = []
    for D in Ds:
        Hs.append(getJ(Ints,D))
        Hs.append(getK(Ints,D))
    return Hs
コード例 #8
0
ファイル: PyQuante2.py プロジェクト: certik/pyquante
    def update(self,**opts):
        from PyQuante.LA2 import trace2
        from PyQuante.Ints import getJ,getK

        self.amat,entropya = self.solvera.solve(self.Fa)
        self.bmat,entropyb = self.solverb.solve(self.Fb)

        Da = self.amat
        Db = self.bmat

        D = Da+Db
        self.entropy = 0.5*(entropya+entropyb)

        self.J = getJ(self.ERI,D)
        self.Ej = 0.5*trace2(D,self.J)
        self.Ka = getK(self.ERI,Da)
        self.Kb = getK(self.ERI,Db)
        self.Exc = -0.5*(trace2(Da,self.Ka)+trace2(Db,self.Kb))
        self.Eone = trace2(D,self.h)
        self.Fa = self.h + self.J - self.Ka
        self.Fb = self.h + self.J - self.Kb
        self.energy = self.Eone + self.Ej + self.Exc + self.Enuke + self.entropy
        return
コード例 #9
0
    def update(self, **kwargs):
        from PyQuante.LA2 import trace2
        from PyQuante.Ints import getJ, getK

        self.amat, entropya = self.solvera.solve(self.Fa)
        self.bmat, entropyb = self.solverb.solve(self.Fb)

        Da = self.amat
        Db = self.bmat

        D = Da + Db
        self.entropy = 0.5 * (entropya + entropyb)

        self.J = getJ(self.ERI, D)
        self.Ej = 0.5 * trace2(D, self.J)
        self.Ka = getK(self.ERI, Da)
        self.Kb = getK(self.ERI, Db)
        self.Exc = -0.5 * (trace2(Da, self.Ka) + trace2(Db, self.Kb))
        self.Eone = trace2(D, self.h)
        self.Fa = self.h + self.J - self.Ka
        self.Fb = self.h + self.J - self.Kb
        self.energy = self.Eone + self.Ej + self.Exc + self.Enuke + self.entropy
        return
コード例 #10
0
ファイル: PyQuante2.py プロジェクト: certik/pyquante
    def update(self,**opts):
        from PyQuante.LA2 import trace2
        from PyQuante.Ints import getJ,getK

        if self.DoAveraging and self.dmat is not None:
            self.F = self.Averager.getF(self.F,self.dmat)
        self.dmat,self.entropy = self.solver.solve(self.F,**opts)
        D = self.dmat
        
        self.J = getJ(self.ERI,D)
        self.Ej = 2*trace2(D,self.J)
        self.K = getK(self.ERI,D)
        self.Exc = -trace2(D,self.K)
        self.Eone = 2*trace2(D,self.h)
        self.F = self.h + 2*self.J - self.K
        self.energy = self.Eone + self.Ej + self.Exc + self.Enuke + self.entropy
        return
コード例 #11
0
    def update(self, **kwargs):
        from PyQuante.LA2 import trace2
        from PyQuante.Ints import getJ, getK

        if self.DoAveraging and self.dmat is not None:
            self.F = self.Averager.getF(self.F, self.dmat)
        self.dmat, self.entropy = self.solver.solve(self.F, **kwargs)
        D = self.dmat

        self.J = getJ(self.ERI, D)
        self.Ej = 2 * trace2(D, self.J)
        self.K = getK(self.ERI, D)
        self.Exc = -trace2(D, self.K)
        self.Eone = 2 * trace2(D, self.h)
        self.F = self.h + 2 * self.J - self.K
        self.energy = self.Eone + self.Ej + self.Exc + self.Enuke + self.entropy
        return
コード例 #12
0
ファイル: OEP.py プロジェクト: certik/pyquante
def oep_uhf_an(atoms,orbsa,orbsb,**opts):
    """oep_hf - Form the optimized effective potential for HF exchange.

    Implementation of Wu and Yang's Approximate Newton Scheme
    from J. Theor. Comp. Chem. 2, 627 (2003).

    oep_uhf(atoms,orbs,**opts)

    atoms       A Molecule object containing a list of the atoms
    orbs        A matrix of guess orbitals

    Options
    -------
    bfs           None    The basis functions to use for the wfn
    pbfs          None    The basis functions to use for the pot
    basis_data    None    The basis data to use to construct bfs
    integrals     None    The one- and two-electron integrals to use
                          If not None, S,h,Ints
    """
    maxiter = opts.get('maxiter',100)
    tol = opts.get('tol',1e-5)
    ETemp = opts.get('ETemp',False)
    bfs = opts.get('bfs',None)
    if not bfs:
        basis = opts.get('basis',None)
        bfs = getbasis(atoms,basis)

    # The basis set for the potential can be set different from
    #  that used for the wave function
    pbfs = opts.get('pbfs',None) 
    if not pbfs: pbfs = bfs
    npbf = len(pbfs)

    integrals = opts.get('integrals',None)
    if integrals:
        S,h,Ints = integrals
    else:
        S,h,Ints = getints(bfs,atoms)

    nel = atoms.get_nel()
    nclosed,nopen = atoms.get_closedopen()
    nalpha,nbeta = nclosed+nopen,nclosed

    Enuke = atoms.get_enuke()

    # Form the OEP using Yang/Wu, PRL 89 143002 (2002)
    nbf = len(bfs)
    norb = nbf

    ba = zeros(npbf,'d')
    bb = zeros(npbf,'d')

    # Form and store all of the three-center integrals
    # we're going to need.
    # These are <ibf|gbf|jbf> (where 'bf' indicates basis func,
    #                          as opposed to MO)
    # N^3 storage -- obviously you don't want to do this for
    #  very large systems
    Gij = []
    for g in range(npbf):
        gmat = zeros((nbf,nbf),'d')
        Gij.append(gmat)
        gbf = pbfs[g]
        for i in range(nbf):
            ibf = bfs[i]
            for j in range(i+1):
                jbf = bfs[j]
                gij = three_center(ibf,gbf,jbf)
                gmat[i,j] = gij
                gmat[j,i] = gij

    # Compute the Fermi-Amaldi potential based on the LDA density.
    # We're going to form this matrix from the Coulombic matrix that
    # arises from the input orbitals. D0 and J0 refer to the density
    # matrix and corresponding Coulomb matrix
    
    D0 = mkdens(orbsa,0,nalpha)+mkdens(orbsb,0,nbeta)
    J0 = getJ(Ints,D0)
    Vfa = ((nel-1.)/nel)*J0
    H0 = h + Vfa

    eold = 0

    for iter in range(maxiter):
        Hoepa = get_Hoep(ba,H0,Gij)
        Hoepb = get_Hoep(ba,H0,Gij)

        orbea,orbsa = geigh(Hoepa,S)
        orbeb,orbsb = geigh(Hoepb,S)

        if ETemp:
            efermia = get_efermi(2*nalpha,orbea,ETemp)
            occsa = get_fermi_occs(efermia,orbea,ETemp)
            Da = mkdens_occs(orbsa,occsa)
            efermib = get_efermi(2*nbeta,orbeb,ETemp)
            occsb = get_fermi_occs(efermib,orbeb,ETemp)
            Db = mkdens_occs(orbsb,occsb)
            entropy = 0.5*(get_entropy(occsa,ETemp)+get_entropy(occsb,ETemp))
        else:
            Da = mkdens(orbsa,0,nalpha)
            Db = mkdens(orbsb,0,nbeta)

        J = getJ(Ints,Da) + getJ(Ints,Db)
        Ka = getK(Ints,Da)
        Kb = getK(Ints,Db)

        energy = (trace2(2*h+J-Ka,Da)+trace2(2*h+J-Kb,Db))/2\
                 +Enuke
        if ETemp: energy += entropy
        
        if abs(energy-eold) < tol:
            break
        else:
            eold = energy
        
        logging.debug("OEP AN Opt: %d %f" % (iter,energy))

        # Do alpha and beta separately
        # Alphas
        dV_ao = J-Ka-Vfa
        dV = matrixmultiply(orbsa,matrixmultiply(dV_ao,transpose(orbsa)))
        X = zeros((nbf,nbf),'d')
        c = zeros(nbf,'d')
        for k in range(nbf):
            Gk = matrixmultiply(orbsa,matrixmultiply(Gij[k],
                                                    transpose(orbsa)))
            for i in range(nalpha):
                for a in range(nalpha,norb):
                    c[k] += dV[i,a]*Gk[i,a]/(orbea[i]-orbea[a])
            for l in range(nbf):
                Gl = matrixmultiply(orbsa,matrixmultiply(Gij[l],
                                                        transpose(orbsa)))
                for i in range(nalpha):
                    for a in range(nalpha,norb):
                        X[k,l] += Gk[i,a]*Gl[i,a]/(orbea[i]-orbea[a])
        # This should actually be a pseudoinverse...
        ba = solve(X,c)
        # Betas
        dV_ao = J-Kb-Vfa
        dV = matrixmultiply(orbsb,matrixmultiply(dV_ao,transpose(orbsb)))
        X = zeros((nbf,nbf),'d')
        c = zeros(nbf,'d')
        for k in range(nbf):
            Gk = matrixmultiply(orbsb,matrixmultiply(Gij[k],
                                                    transpose(orbsb)))
            for i in range(nbeta):
                for a in range(nbeta,norb):
                    c[k] += dV[i,a]*Gk[i,a]/(orbeb[i]-orbeb[a])
            for l in range(nbf):
                Gl = matrixmultiply(orbsb,matrixmultiply(Gij[l],
                                                        transpose(orbsb)))
                for i in range(nbeta):
                    for a in range(nbeta,norb):
                        X[k,l] += Gk[i,a]*Gl[i,a]/(orbeb[i]-orbeb[a])
        # This should actually be a pseudoinverse...
        bb = solve(X,c)

    logging.info("Final OEP energy = %f" % energy)
    return energy,(orbea,orbeb),(orbsa,orbsb)
コード例 #13
0
ファイル: rohf.py プロジェクト: MFSJMenger/pyquante
def rohf(atoms,**opts):
    """\
    rohf(atoms,**opts) - Restriced Open Shell Hartree Fock
    atoms       A Molecule object containing the molecule
    """

    ConvCriteria = opts.get('ConvCriteria',1e-5)
    MaxIter = opts.get('MaxIter',40)
    DoAveraging = opts.get('DoAveraging',True)
    averaging = opts.get('averaging',0.95)
    verbose = opts.get('verbose',True)

    bfs = opts.get('bfs',None)
    if not bfs:
        basis_data = opts.get('basis_data',None)
        bfs = getbasis(atoms,basis_data)
    nbf = len(bfs)

    integrals = opts.get('integrals', None)
    if integrals:
        S,h,Ints = integrals
    else:
        S,h,Ints = getints(bfs,atoms)

    nel = atoms.get_nel()

    nalpha,nbeta = atoms.get_alphabeta()
    S,h,Ints = getints(bfs,atoms)

    orbs = opts.get('orbs',None)
    if orbs is None:
        orbe,orbs = geigh(h,S)
    norbs = nbf

    enuke = atoms.get_enuke()
    eold = 0.

    if verbose: print "ROHF calculation on %s" % atoms.name
    if verbose: print "Nbf = %d" % nbf
    if verbose: print "Nalpha = %d" % nalpha
    if verbose: print "Nbeta = %d" % nbeta
    if verbose: print "Averaging = %s" % DoAveraging
    print "Optimization of HF orbitals"

    for i in xrange(MaxIter):
        if verbose: print "SCF Iteration:",i,"Starting Energy:",eold
        Da = mkdens(orbs,0,nalpha)
        Db = mkdens(orbs,0,nbeta)
        if DoAveraging:
            if i: 
                Da = averaging*Da + (1-averaging)*Da0
                Db = averaging*Db + (1-averaging)*Db0
            Da0 = Da
            Db0 = Db

        Ja = getJ(Ints,Da)
        Jb = getJ(Ints,Db)
        Ka = getK(Ints,Da)
        Kb = getK(Ints,Db)

        Fa = h+Ja+Jb-Ka
        Fb = h+Ja+Jb-Kb
        energya = get_energy(h,Fa,Da)
        energyb = get_energy(h,Fb,Db)
        eone = (trace2(Da,h) + trace2(Db,h))/2
        etwo = (trace2(Da,Fa) + trace2(Db,Fb))/2
        energy = (energya+energyb)/2 + enuke
        print i,energy,eone,etwo,enuke
        if abs(energy-eold) < ConvCriteria: break
        eold = energy

        Fa = ao2mo(Fa,orbs)
        Fb = ao2mo(Fb,orbs)

        # Building the approximate Fock matrices in the MO basis
        F = 0.5*(Fa+Fb)
        K = Fb-Fa

        # The Fock matrix now looks like
        #      F-K    |  F + K/2  |    F
        #   ---------------------------------
        #    F + K/2  |     F     |  F - K/2
        #   ---------------------------------
        #       F     |  F - K/2  |  F + K

        # Make explicit slice objects to simplify this
        do = slice(0,nbeta)
        so = slice(nbeta,nalpha)
        uo = slice(nalpha,norbs)
        F[do,do] -= K[do,do]
        F[uo,uo] += K[uo,uo]
        F[do,so] += 0.5*K[do,so]
        F[so,do] += 0.5*K[so,do]
        F[so,uo] -= 0.5*K[so,uo]
        F[uo,so] -= 0.5*K[uo,so]

        orbe,mo_orbs = eigh(F)
        orbs = matrixmultiply(orbs,mo_orbs)
        
    if verbose:
        print "Final ROHF energy for system %s is %f" % (atoms.name,energy)
    return energy,orbe,orbs
コード例 #14
0
def oep_uhf_an(atoms, orbsa, orbsb, **opts):
    """oep_hf - Form the optimized effective potential for HF exchange.

    Implementation of Wu and Yang's Approximate Newton Scheme
    from J. Theor. Comp. Chem. 2, 627 (2003).

    oep_uhf(atoms,orbs,**opts)

    atoms       A Molecule object containing a list of the atoms
    orbs        A matrix of guess orbitals

    Options
    -------
    bfs           None    The basis functions to use for the wfn
    pbfs          None    The basis functions to use for the pot
    basis_data    None    The basis data to use to construct bfs
    integrals     None    The one- and two-electron integrals to use
                          If not None, S,h,Ints
    """
    maxiter = opts.get('maxiter', 100)
    tol = opts.get('tol', 1e-5)
    ETemp = opts.get('ETemp', False)
    bfs = opts.get('bfs', None)
    if not bfs:
        basis = opts.get('basis', None)
        bfs = getbasis(atoms, basis)

    # The basis set for the potential can be set different from
    #  that used for the wave function
    pbfs = opts.get('pbfs', None)
    if not pbfs: pbfs = bfs
    npbf = len(pbfs)

    integrals = opts.get('integrals', None)
    if integrals:
        S, h, Ints = integrals
    else:
        S, h, Ints = getints(bfs, atoms)

    nel = atoms.get_nel()
    nclosed, nopen = atoms.get_closedopen()
    nalpha, nbeta = nclosed + nopen, nclosed

    Enuke = atoms.get_enuke()

    # Form the OEP using Yang/Wu, PRL 89 143002 (2002)
    nbf = len(bfs)
    norb = nbf

    ba = zeros(npbf, 'd')
    bb = zeros(npbf, 'd')

    # Form and store all of the three-center integrals
    # we're going to need.
    # These are <ibf|gbf|jbf> (where 'bf' indicates basis func,
    #                          as opposed to MO)
    # N^3 storage -- obviously you don't want to do this for
    #  very large systems
    Gij = []
    for g in xrange(npbf):
        gmat = zeros((nbf, nbf), 'd')
        Gij.append(gmat)
        gbf = pbfs[g]
        for i in xrange(nbf):
            ibf = bfs[i]
            for j in xrange(i + 1):
                jbf = bfs[j]
                gij = three_center(ibf, gbf, jbf)
                gmat[i, j] = gij
                gmat[j, i] = gij

    # Compute the Fermi-Amaldi potential based on the LDA density.
    # We're going to form this matrix from the Coulombic matrix that
    # arises from the input orbitals. D0 and J0 refer to the density
    # matrix and corresponding Coulomb matrix

    D0 = mkdens(orbsa, 0, nalpha) + mkdens(orbsb, 0, nbeta)
    J0 = getJ(Ints, D0)
    Vfa = ((nel - 1.) / nel) * J0
    H0 = h + Vfa

    eold = 0

    for iter in xrange(maxiter):
        Hoepa = get_Hoep(ba, H0, Gij)
        Hoepb = get_Hoep(ba, H0, Gij)

        orbea, orbsa = geigh(Hoepa, S)
        orbeb, orbsb = geigh(Hoepb, S)

        if ETemp:
            efermia = get_efermi(2 * nalpha, orbea, ETemp)
            occsa = get_fermi_occs(efermia, orbea, ETemp)
            Da = mkdens_occs(orbsa, occsa)
            efermib = get_efermi(2 * nbeta, orbeb, ETemp)
            occsb = get_fermi_occs(efermib, orbeb, ETemp)
            Db = mkdens_occs(orbsb, occsb)
            entropy = 0.5 * (get_entropy(occsa, ETemp) +
                             get_entropy(occsb, ETemp))
        else:
            Da = mkdens(orbsa, 0, nalpha)
            Db = mkdens(orbsb, 0, nbeta)

        J = getJ(Ints, Da) + getJ(Ints, Db)
        Ka = getK(Ints, Da)
        Kb = getK(Ints, Db)

        energy = (trace2(2*h+J-Ka,Da)+trace2(2*h+J-Kb,Db))/2\
                 +Enuke
        if ETemp: energy += entropy

        if abs(energy - eold) < tol:
            break
        else:
            eold = energy

        logging.debug("OEP AN Opt: %d %f" % (iter, energy))

        # Do alpha and beta separately
        # Alphas
        dV_ao = J - Ka - Vfa
        dV = matrixmultiply(orbsa, matrixmultiply(dV_ao, transpose(orbsa)))
        X = zeros((nbf, nbf), 'd')
        c = zeros(nbf, 'd')
        for k in xrange(nbf):
            Gk = matrixmultiply(orbsa, matrixmultiply(Gij[k],
                                                      transpose(orbsa)))
            for i in xrange(nalpha):
                for a in xrange(nalpha, norb):
                    c[k] += dV[i, a] * Gk[i, a] / (orbea[i] - orbea[a])
            for l in xrange(nbf):
                Gl = matrixmultiply(orbsa,
                                    matrixmultiply(Gij[l], transpose(orbsa)))
                for i in xrange(nalpha):
                    for a in xrange(nalpha, norb):
                        X[k, l] += Gk[i, a] * Gl[i, a] / (orbea[i] - orbea[a])
        # This should actually be a pseudoinverse...
        ba = solve(X, c)
        # Betas
        dV_ao = J - Kb - Vfa
        dV = matrixmultiply(orbsb, matrixmultiply(dV_ao, transpose(orbsb)))
        X = zeros((nbf, nbf), 'd')
        c = zeros(nbf, 'd')
        for k in xrange(nbf):
            Gk = matrixmultiply(orbsb, matrixmultiply(Gij[k],
                                                      transpose(orbsb)))
            for i in xrange(nbeta):
                for a in xrange(nbeta, norb):
                    c[k] += dV[i, a] * Gk[i, a] / (orbeb[i] - orbeb[a])
            for l in xrange(nbf):
                Gl = matrixmultiply(orbsb,
                                    matrixmultiply(Gij[l], transpose(orbsb)))
                for i in xrange(nbeta):
                    for a in xrange(nbeta, norb):
                        X[k, l] += Gk[i, a] * Gl[i, a] / (orbeb[i] - orbeb[a])
        # This should actually be a pseudoinverse...
        bb = solve(X, c)

    logger.info("Final OEP energy = %f" % energy)
    return energy, (orbea, orbeb), (orbsa, orbsb)
コード例 #15
0
ファイル: pyq1_comparison.py プロジェクト: Konjkov/pyquante2
def pyq1_rohf(atomtuples=[(2,(0,0,0))],basis = '6-31G**',maxit=10,mult=3):
    from PyQuante import Ints,settings,Molecule
    from PyQuante.hartree_fock import get_energy
    from PyQuante.MG2 import MG2 as MolecularGrid
    from PyQuante.LA2 import mkdens,geigh,trace2,simx
    from PyQuante.Ints import getJ,getK
    
    print ("PyQ1 ROHF run")
    atoms = Molecule('Pyq1',atomlist=atomtuples,multiplicity=mult)

    bfs = Ints.getbasis(atoms,basis=basis)
    S,h,I2e = Ints.getints(bfs,atoms)

    nbf = norbs = len(bfs)
    nel = atoms.get_nel()

    nalpha,nbeta = atoms.get_alphabeta()

    enuke = atoms.get_enuke()
    orbe,orbs = geigh(h,S)
    eold = 0

    for i in range(maxit):
        Da = mkdens(orbs,0,nalpha)
        Db = mkdens(orbs,0,nbeta)
        Ja = getJ(I2e,Da)
        Jb = getJ(I2e,Db)
        Ka = getK(I2e,Da)
        Kb = getK(I2e,Db)

        Fa = h+Ja+Jb-Ka
        Fb = h+Ja+Jb-Kb
        energya = get_energy(h,Fa,Da)
        energyb = get_energy(h,Fb,Db)
        eone = (trace2(Da,h) + trace2(Db,h))/2
        etwo = (trace2(Da,Fa) + trace2(Db,Fb))/2
        energy = (energya+energyb)/2 + enuke
        print (i,energy,eone,etwo,enuke)
        if abs(energy-eold) < 1e-5: break
        eold = energy

        Fa = simx(Fa,orbs)
        Fb = simx(Fb,orbs)
        # Building the approximate Fock matrices in the MO basis
        F = 0.5*(Fa+Fb)
        K = Fb-Fa

        # The Fock matrix now looks like
        #      F-K    |  F + K/2  |    F
        #   ---------------------------------
        #    F + K/2  |     F     |  F - K/2
        #   ---------------------------------
        #       F     |  F - K/2  |  F + K

        # Make explicit slice objects to simplify this
        do = slice(0,nbeta)
        so = slice(nbeta,nalpha)
        uo = slice(nalpha,norbs)
        F[do,do] -= K[do,do]
        F[uo,uo] += K[uo,uo]
        F[do,so] += 0.5*K[do,so]
        F[so,do] += 0.5*K[so,do]
        F[so,uo] -= 0.5*K[so,uo]
        F[uo,so] -= 0.5*K[uo,so]

        orbe,mo_orbs = np.linalg.eigh(F)
        orbs = np.dot(orbs,mo_orbs)
    return energy,orbe,orbs
コード例 #16
0
def pyq1_rohf(atomtuples=[(2, (0, 0, 0))], basis='6-31G**', maxit=10, mult=3):
    from PyQuante import Ints, settings, Molecule
    from PyQuante.hartree_fock import get_energy
    from PyQuante.MG2 import MG2 as MolecularGrid
    from PyQuante.LA2 import mkdens, geigh, trace2, simx
    from PyQuante.Ints import getJ, getK

    print("PyQ1 ROHF run")
    atoms = Molecule('Pyq1', atomlist=atomtuples, multiplicity=mult)

    bfs = Ints.getbasis(atoms, basis=basis)
    S, h, I2e = Ints.getints(bfs, atoms)

    nbf = norbs = len(bfs)
    nel = atoms.get_nel()

    nalpha, nbeta = atoms.get_alphabeta()

    enuke = atoms.get_enuke()
    orbe, orbs = geigh(h, S)
    eold = 0

    for i in range(maxit):
        Da = mkdens(orbs, 0, nalpha)
        Db = mkdens(orbs, 0, nbeta)
        Ja = getJ(I2e, Da)
        Jb = getJ(I2e, Db)
        Ka = getK(I2e, Da)
        Kb = getK(I2e, Db)

        Fa = h + Ja + Jb - Ka
        Fb = h + Ja + Jb - Kb
        energya = get_energy(h, Fa, Da)
        energyb = get_energy(h, Fb, Db)
        eone = (trace2(Da, h) + trace2(Db, h)) / 2
        etwo = (trace2(Da, Fa) + trace2(Db, Fb)) / 2
        energy = (energya + energyb) / 2 + enuke
        print(i, energy, eone, etwo, enuke)
        if abs(energy - eold) < 1e-5: break
        eold = energy

        Fa = simx(Fa, orbs)
        Fb = simx(Fb, orbs)
        # Building the approximate Fock matrices in the MO basis
        F = 0.5 * (Fa + Fb)
        K = Fb - Fa

        # The Fock matrix now looks like
        #      F-K    |  F + K/2  |    F
        #   ---------------------------------
        #    F + K/2  |     F     |  F - K/2
        #   ---------------------------------
        #       F     |  F - K/2  |  F + K

        # Make explicit slice objects to simplify this
        do = slice(0, nbeta)
        so = slice(nbeta, nalpha)
        uo = slice(nalpha, norbs)
        F[do, do] -= K[do, do]
        F[uo, uo] += K[uo, uo]
        F[do, so] += 0.5 * K[do, so]
        F[so, do] += 0.5 * K[so, do]
        F[so, uo] -= 0.5 * K[so, uo]
        F[uo, so] -= 0.5 * K[uo, so]

        orbe, mo_orbs = np.linalg.eigh(F)
        orbs = np.dot(orbs, mo_orbs)
    return energy, orbe, orbs