beta = complex(sqrt(2) / sqrt(3), 0) # beta = complex(1.0 / sqrt(2), 0) ro_0 = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, abs(alpha)**2, alpha * beta.conjugate(), 0], [0, 0, beta * alpha.conjugate(), abs(beta)**2, 0], [0, 0, 0, 0, 0]] # for i in ro_0: # print(i) _a = [[0, 0, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] a = Matrix(m=len(_a), n=len(_a), dtype=np.complex128) a.data = csc_matrix(_a) across = Matrix(m=len(_a), n=len(_a), dtype=np.complex128) across.data = a.data.getH() # ro_t = copy.deepcopy(ro_0) # ro_t = Matrix(m=len(ro_0), n=len(ro_0), dtype=np.complex128) # ro_t.data = csc_matrix(ro_0) # config.l = 0.01*config.g dt = 0.1 * 1e-9 # dt = 0.01 / config.l config.l = 1.0 / dt print(config.l / config.g)
# print('n_atoms', n_atoms) for n_levels in range(N_LEVELS_1, N_LEVELS_2 + 1): # print('n_levels', n_levels) for i in range(n_levels): # print('i', i, end='') for j in range(i): # print('j', j) for i_atom in range(1, n_atoms + 1): s = op.Sigma2(i_=i, j_=j, num=i_atom, n_atoms=n_atoms, n_levels=n_levels) # filename = 'dark_dense/' + '_'.join(str(i) # for i in [n_atoms, n_levels, i, j, i_atom]) + '.csv' # print(filename) m = Matrix(m=np.shape(s)[0], n=np.shape(s)[0], dtype=float) # print(s) m.data = s.todense() m.to_csv('dark_dense/' + '_'.join( str(i) for i in [n_atoms, n_levels, i, j, i_atom]) + '.csv', precision=0) # for p in s.todense(): # print(p)