コード例 #1
0
 def get_wind_energy_output(self):
     ssc = pssc.PySSC()
     f = open(self.sam_export_json)
     self.dic = json.load(f)
     self.dic['wind_resource_filename'] = self.fp_srw
     wp_dat = pssc.dict_to_ssc_table(self.dic, "windpower")
     grid_dat = pssc.dict_to_ssc_table(self.dic, "grid")
     f.close()
     wp = Windpower.wrap(wp_dat)
     grid = Grid.from_existing(wp)
     grid.assign(Grid.wrap(grid_dat).export())
     wp.execute()
     grid.execute()
     self.json_dict = wp.Outputs.export()
     # print(self.json_dict.keys())
     # print (self.json_dict['gen'])
     self.df_output = pd.DataFrame()
     self.df_output[self.year] = self.json_dict['gen']
     for col in self.df_output.columns:
         self.df_output[col] = preprocessing.minmax_scale(
             self.df_output[col].values.reshape(1, -1),
             feature_range=(0, 1),
             axis=1,
             copy=True).T
     if self.df_all is None:
         self.df_all = self.df_output.copy()
     else:
         self.df_all = pd.concat([self.df_all, self.df_output], axis=1)
コード例 #2
0
    def get_solar_energy_output(self):
        ssc = pssc.PySSC()
        f = open(self.sam_export_json)
        self.dic = json.load(f)
        self.dic['solar_resource_file'] = self.fp_srw

        ### uncomment if you want to change any model input parameters
        #         self.dic['system_capacity'] = 20000
        #         self.dic['module_type'] = 0
        #         self.dic['dc_ac_ratio'] = 1.3
        #         self.dic['array_type'] =  2
        #         self.dic['tilt'] =  35
        #         self.dic['azimuth'] = 180
        #         self.dic['gcr'] = 0.40
        #         self.dic['losses'] = 14
        #         self.dic['en_snowloss'] =  0
        #         self.dic['inv_eff'] = 95

        pv_dat = pssc.dict_to_ssc_table(self.dic, "pvwattsv7")
        grid_dat = pssc.dict_to_ssc_table(self.dic, "grid")
        f.close()
        pv = PVWatts.wrap(pv_dat)
        grid = Grid.from_existing(pv)
        grid.assign(Grid.wrap(grid_dat).export())
        pv.execute()
        grid.execute()
        self.json_dict = pv.Outputs.export()
        #         print(self.json_dict.keys())
        self.df_output = pd.DataFrame()
        self.df_output[self.year] = self.json_dict['gen']
        for col in self.df_output.columns:
            self.df_output[col] = preprocessing.minmax_scale(
                self.df_output[col].values.reshape(1, -1),
                feature_range=(0, 1),
                axis=1,
                copy=True).T

        if self.df_all is None:
            self.df_all = self.df_output.copy()
        else:
            self.df_all = pd.concat([self.df_all, self.df_output], axis=1)
コード例 #3
0
ファイル: sam.py プロジェクト: Breakthrough-Energy/PreREISE
def calculate_power(solar_data, pv_dict):
    """Use PVWatts to translate weather data into power.

    :param dict solar_data: weather data as returned by :meth:`Psm3Data.to_dict`.
    :param dict pv_dict: solar plant attributes.
    :return: (*numpy.array*) hourly power output.
    """
    pv_dat = pssc.dict_to_ssc_table(pv_dict, "pvwattsv7")
    pv = PVWatts.wrap(pv_dat)
    pv.SolarResource.assign({"solar_resource_data": solar_data})
    pv.execute()
    return np.array(pv.Outputs.gen)
コード例 #4
0
Created on Wed Mar  4 13:47:58 2020

Most recently tested against PySAM 2.2.3

@author: frohro
"""
import json
import PySAM.GenericSystem as GenericSystem
import PySAM.Grid as Grid
import PySAM.Singleowner as Singleowner
import PySAM.PySSC as pssc

ssc = pssc.PySSC()
with open("Examples/100mW_Generic.json") as f:
    dic = json.load(f)
    gs_dat = pssc.dict_to_ssc_table(dic, "generic_system")
    grid_dat = pssc.dict_to_ssc_table(dic, "grid")
    so_dat = pssc.dict_to_ssc_table(dic, "singleowner")

    gs = GenericSystem.wrap(gs_dat)
    grid = Grid.from_existing(gs)
    grid.assign(Grid.wrap(grid_dat).export())

    # to create GenericSystem and Singleowner combined simulation, sharing the same data
    so = Singleowner.from_existing(gs)
    so.assign(Singleowner.wrap(so_dat).export())

gs.execute()
grid.execute()
so.execute()
print('Made it past execute.')
コード例 #5
0
ファイル: sam.py プロジェクト: kurucan/PreREISE
def retrieve_data(solar_plant, email, api_key, year="2016", rate_limit=0.5):
    """Retrieves irradiance data from NSRDB and calculate the power output using
    the System Adviser Model (SAM).

    :param pandas.DataFrame solar_plant: plant data frame.
    :param str email: email used to`sign up <https://developer.nrel.gov/signup/>`_.
    :param str api_key: API key.
    :param str year: year.
    :param int/float rate_limit: minimum seconds to wait between requests to NREL
    :return: (*pandas.DataFrame*) -- data frame with *'Pout'*, *'plant_id'*,
        *'ts'* and *'ts_id'* as columns. Values are power output for a 1MW generator.
    """

    # SAM only takes 365 days.
    try:
        leap_day = (pd.Timestamp("%s-02-29-00" % year).dayofyear - 1) * 24
        is_leap_year = True
        dates = pd.date_range(start="%s-01-01-00" % 2015,
                              freq="H",
                              periods=365 * 24)
        dates = dates.map(lambda t: t.replace(year=int(year)))
    except ValueError:
        leap_day = None
        is_leap_year = False
        dates = pd.date_range(start="%s-01-01-00" % year,
                              freq="H",
                              periods=365 * 24)

    # Identify unique location
    coord = get_plant_id_unique_location(solar_plant)

    data = pd.DataFrame({"Pout": [], "plant_id": [], "ts": [], "ts_id": []})

    # PV tracking ratios
    # By state and by interconnect when EIA data do not have any solar PV in
    # the state
    pv_info = get_pv_tracking_data()
    zone_id = solar_plant.zone_id.unique()
    frac = {}
    for i in zone_id:
        state = id2abv[i]
        frac[i] = get_pv_tracking_ratio_state(pv_info, [state])
        if frac[i] is None:
            frac[i] = get_pv_tracking_ratio_state(
                pv_info, list(interconnect2abv[abv2interconnect[state]]))

    # Inverter Loading Ratio
    ilr = 1.25
    api = NrelApi(email, api_key, rate_limit)

    for key in tqdm(coord.keys(), total=len(coord)):
        lat, lon = key[1], key[0]
        solar_data = api.get_psm3_at(
            lat,
            lon,
            attributes="dhi,dni,wind_speed,air_temperature",
            year=year,
            leap_day=False,
            dates=dates,
        ).to_dict()

        for i in coord[key]:
            data_site = pd.DataFrame({
                "ts":
                pd.date_range(start="%s-01-01-00" % year,
                              end="%s-12-31-23" % year,
                              freq="H")
            })
            data_site["ts_id"] = range(1, len(data_site) + 1)
            data_site["plant_id"] = i

            power = 0
            for j, axis in enumerate([0, 2, 4]):
                pv_dict = {
                    "system_capacity": ilr,
                    "dc_ac_ratio": ilr,
                    "tilt": 30,
                    "azimuth": 180,
                    "inv_eff": 94,
                    "losses": 14,
                    "array_type": axis,
                    "gcr": 0.4,
                    "adjust:constant": 0,
                }

                pv_dat = pssc.dict_to_ssc_table(pv_dict, "pvwattsv7")
                pv = PVWatts.wrap(pv_dat)
                pv.SolarResource.assign({"solar_resource_data": solar_data})
                pv.execute()

                ratio = frac[solar_plant.loc[i].zone_id][j]
                power += ratio * np.array(pv.Outputs.gen)

            if is_leap_year is True:
                data_site["Pout"] = np.insert(power, leap_day,
                                              power[leap_day - 24:leap_day])
            else:
                data_site["Pout"] = power

            data = data.append(data_site, ignore_index=True, sort=False)

    data["plant_id"] = data["plant_id"].astype(np.int32)
    data["ts_id"] = data["ts_id"].astype(np.int32)

    data.sort_values(by=["ts_id", "plant_id"], inplace=True)
    data.reset_index(inplace=True, drop=True)

    return data
コード例 #6
0
verbose = True  # Make False if you don't want all the debugging info.

# Get the SAM json file, make the simulations we need for the commercial
# PVWatts simulation.

# The json file is generated from SAM using the "Generate Code" menu item
# in the added simulation case.  Choose "JSON for inputs" and a .json file
# with the title of your simulation case will be created where you select with
# the "Open" button on the file dialog.
json_file_path = 'Examples/100kW_PVWatts.json'  # Change this file name to yours!
with open(json_file_path) as f:
    dic = json.load(f)
# The next seven lines are needed to load the PySAM data structures with the
# inputs from the json file.
pv_dat = pssc.dict_to_ssc_table(dic, "pvwattsv7")
grid_dat = pssc.dict_to_ssc_table(dic, "grid")
ur_dat = pssc.dict_to_ssc_table(dic, "utilityrate5")
cl_dat = pssc.dict_to_ssc_table(dic, "cashloan")
pv = PVWatts.wrap(pv_dat)
grid = Grid.from_existing(pv)
ur = UtilityRate.from_existing(pv)
cl = Cashloan.from_existing(pv)
grid.assign(Grid.wrap(grid_dat).export())
ur.assign(UtilityRate.wrap(ur_dat).export())
cl.assign(Cashloan.wrap(cl_dat).export())

# The models are executed in order.  Note that the outputs from the first
# simulation are automatically available for the next one, and so on.  :-)
pv.execute()
grid.execute()