コード例 #1
0
def test_wind(wind_resource):
    data = wind_resource.data
    for key in ('heights', 'fields', 'data'):
        assert (key in data)
    model = wp.default("WindPowerNone")
    model.Resource.wind_resource_filename = wind_resource.filename
    model.execute(0)
    assert (model.Outputs.annual_energy == approx(85049139.587))
    model = wp.default("WindPowerNone")
    model.Resource.wind_resource_data = wind_resource.data
    model.execute(0)
    assert (model.Outputs.annual_energy == approx(85049139.587))
コード例 #2
0
    def getWindCF(windSRW, iecClass, powerCurve):
        d = wp.default("WindPowerNone")

        powerout = powerCurve["Composite IEC Class {iecClass}".format(iecClass=iecClass)]
        speed = powerCurve["Wind Speed"]

        ##### Parameters #######
        d.Resource.wind_resource_filename = windSRW
        d.Resource.wind_resource_model_choice = 0
        d.Turbine.wind_turbine_powercurve_powerout = powerout
        d.Turbine.wind_turbine_powercurve_windspeeds = speed
        d.Turbine.wind_turbine_rotor_diameter = 90
        d.Turbine.wind_turbine_hub_ht = 100
        nameplate_capacity = 1500 #kw
        d.Farm.system_capacity = nameplate_capacity # System Capacity (kW)
        d.Farm.wind_farm_wake_model = 0
        d.Farm.wind_farm_xCoordinates = np.array([0]) # Lone turbine (centered at position 0,0 in farm)
        d.Farm.wind_farm_yCoordinates = np.array([0])
        ########################

        d.execute()
        windCF = np.array(d.Outputs.gen) / nameplate_capacity #convert AC generation (kw) to capacity factor

        if args.verbose:
            print('\t','Average Wind CF = {cf}'.format(cf=round(np.average(windCF),2)))

        if not args.save_resource:
            os.remove(windSRW)

        return windCF
コード例 #3
0
    def __init__(self,
                 site: SiteInfo,
                 system_capacity_kw : float,
                 rating_range_kw: tuple = (1000, 3000),
                 grid_not_row_layout: bool = False):
        """

        :param system_capacity_kw:
        :param grid_not_row_layout:
            make a regular grid instead of a row whose layout is irrespective of site boundaries
        :param rating_range_kw:
            allowable kw range of turbines, default is 1000 - 3000 kW
        """
        self._rating_range_kw = rating_range_kw

        system_model = Windpower.default("WindPowerSingleOwner")
        financial_model = Singleowner.from_existing(system_model, "WindPowerSingleOwner")

        super().__init__("WindPlant", site, system_model, financial_model)

        self.system_model.Resource.wind_resource_data = self.site.wind_resource.data

        self._grid_not_row_layout = grid_not_row_layout
        self.row_spacing = 5 * self.system_model.Turbine.wind_turbine_rotor_diameter
        self.grid_spacing = None

        self.system_capacity_closest_fit(system_capacity_kw)
コード例 #4
0
ファイル: wind_power.py プロジェクト: KonicaMulani/dispatches
    def setup_atb_turbine(self):
        self.wind_simulation = wind.default("WindpowerSingleowner")

        # Use ATB Turbine 2018 Market Average
        self.wind_simulation.Turbine.wind_turbine_hub_ht = 88
        self.wind_simulation.Turbine.wind_turbine_rotor_diameter = 116
        self.wind_simulation.Turbine.wind_turbine_powercurve_windspeeds = [
            0.25 * i for i in range(161)
        ]
        self.wind_simulation.Turbine.wind_turbine_powercurve_powerout = [
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 78, 104, 133, 167, 204,
            246, 293, 345, 402, 464, 532, 606, 686, 772, 865, 965, 1072, 1186,
            1308, 1438, 1576, 1723, 1878, 2042, 2215, 2397, 2430, 2430, 2430,
            2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430,
            2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430,
            2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430,
            2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430,
            2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430, 2430,
            2430, 2430, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        ]

        # Use a single turbine, do not model wake effects
        self.wind_simulation.Farm.wind_farm_xCoordinates = [0]
        self.wind_simulation.Farm.wind_farm_yCoordinates = [0]
        self.wind_simulation.Farm.system_capacity = max(
            self.wind_simulation.Turbine.wind_turbine_powercurve_powerout)
        self.wind_simulation.Resource.wind_resource_model_choice = 2
コード例 #5
0
ファイル: defaults.py プロジェクト: mmdione/reV
 def default():
     """Get the default PySAM object"""
     res_file = os.path.join(DEFAULTSDIR, 'WY Southern-Flat Lands.csv')
     obj = PySamWindPower.default('WindPowerNone')
     obj.Resource.wind_resource_filename = res_file
     obj.execute()
     return obj
コード例 #6
0
ファイル: test_Windpower.py プロジェクト: skoeb/pysam
def test_Resource_wind_resource_distribution_default():
    a = wp.default("WindPowerNone")
    a.Resource.wind_resource_model_choice = 2
    a.Resource.wind_resource_distribution = ((1.5, 180, .12583),
                                             (5, 180, .3933), (8, 180, .18276),
                                             (10, 180, .1341),
                                             (13.5, 180, .14217), (19, 180,
                                                                   .0211))
    a.Farm.wind_farm_wake_model = 0
    a.execute(1)
    assert (a.Outputs.annual_energy > 0)
コード例 #7
0
    def _setup_simulation(self) -> None:
        """
        Wind simulation
            -> PySAM windpower model
        """
        def run_wind_model(windmodel: windpower.Windpower):
            windmodel.Farm.system_capacity = \
                max(windmodel.Turbine.wind_turbine_powercurve_powerout) * len(windmodel.Farm.wind_farm_xCoordinates)
            windmodel.execute(0)
            return windmodel.Outputs.annual_energy

        self._scenario = dict()
        wind_model = windpower.default("WindPowerSingleOwner")
        wind_model.Resource.wind_resource_data = self.site_info.wind_resource.data
        self.turb_diam = wind_model.Turbine.wind_turbine_rotor_diameter
        wind_model.Farm.wind_farm_wake_model = 2  # use eddy viscosity wake model
        self._scenario['Wind'] = (wind_model, run_wind_model)
コード例 #8
0
def run_wp(wind_srw, wind_class, power_curve):

    d = wp.default("WindPowerNone")

    #assigning values for respective wind power classes
    if wind_class == 4:
        powerout = power_curve['Vestas 7MW']['powerout']
        speed = power_curve['Vestas 7MW']['powerout']
        #here is where one can put in the specific power class data for OFFSHORE turbines(may need to restructure as there may not be a single offshore turbine needed)
        #Currently treating them as a IEC level 1
        powerout = power_curve["Composite IEC Class I"]["powerout"]
        speed = power_curve["Composite IEC Class I"]["speed"]
    elif wind_class == 1:
        powerout = power_curve["Composite IEC Class I"]["powerout"]
        speed = power_curve["Composite IEC Class I"]["speed"]
    elif wind_class == 2:
        powerout = power_curve["Composite IEC Class II"]["powerout"]
        speed = power_curve["Composite IEC Class II"]["speed"]
    else:
        powerout = power_curve["Composite IEC Class III"]["powerout"]
        speed = power_curve["Composite IEC Class III"]["speed"]

    ##### Parameters #######
    d.Resource.wind_resource_filename = wind_srw
    d.Resource.wind_resource_model_choice = 0
    d.Turbine.wind_turbine_powercurve_powerout = powerout
    d.Turbine.wind_turbine_powercurve_windspeeds = speed
    d.Turbine.wind_turbine_rotor_diameter = 90
    d.Turbine.wind_turbine_hub_ht = 80
    nameplate_capacity = 1500  #kw
    d.Farm.system_capacity = nameplate_capacity  # System Capacity (kW)
    d.Farm.wind_farm_wake_model = 0
    d.Farm.wind_farm_xCoordinates = np.array(
        [0])  # Lone turbine (centered at position 0,0 in farm)
    d.Farm.wind_farm_yCoordinates = np.array([0])
    ########################

    d.execute()
    output_cf = np.array(
        d.Outputs.gen
    ) / nameplate_capacity  #convert AC generation (kw) to capacity factor

    return output_cf
コード例 #9
0
ファイル: hybrid_layout_tools.py プロジェクト: jlcox119/HOPP
def calculate_max_hybrid_aep(site_info: SiteInfo,
                             num_turbines: int,
                             solar_capacity_kw: float
                             ) -> dict:
    """
    Calculates the max total pv and solar annual energy output by assuming no wake, gcr or flicker losses.
    All other factors and losses are not adjusted because they remain constant throughout the optimization
    :return: dictionary of "wind", "solar" and "total" max AEPs
    """
    upper_bounds = dict()
    
    # wind
    wind_model = windpower.default("WindPowerSingleOwner")
    wind_model.Resource.wind_resource_data = site_info.wind_resource.data
    
    wind_params_orig = wind_model.export()
    wind_model.Farm.wind_farm_xCoordinates = np.zeros(num_turbines)
    wind_model.Farm.wind_farm_yCoordinates = np.zeros(num_turbines)
    wind_model.Farm.system_capacity = num_turbines * max(wind_model.Turbine.wind_turbine_powercurve_powerout)
    wind_model.Farm.wind_farm_wake_model = 3  # constant wake loss model which we can set to 0
    wind_model.Losses.wake_int_loss = 0
    wind_model.execute(0)
    
    # solar
    solar_model = pvwatts.default("PVWattsSingleOwner")
    solar_model.SolarResource.solar_resource_data = site_info.solar_resource.data
    solar_model.SystemDesign.array_type = 2  # single-axis tracking
    
    solar_params_orig = solar_model.export()
    solar_model.SystemDesign.gcr = 0.01  # lowest possible gcr
    solar_model.SystemDesign.system_capacity = solar_capacity_kw
    solar_model.execute(0)
    
    upper_bounds['wind'] = wind_model.Outputs.annual_energy / 1000
    upper_bounds['solar'] = solar_model.Outputs.annual_energy / 1000
    upper_bounds['total'] = upper_bounds['wind'] + upper_bounds['solar']
    
    # restore original parameters
    wind_model.assign(wind_params_orig)
    solar_model.assign(solar_params_orig)
    
    return upper_bounds
コード例 #10
0
def test_wind_powercurve():
    model = windpower.default("WindpowerSingleowner")
    model.Turbine.wind_turbine_rotor_diameter = 75

    # calculate system capacity.  To evaluate other turbines, update the defaults dictionary
    model.Turbine.calculate_powercurve(
        wind_default_rated_output,
        int(model.Turbine.wind_turbine_rotor_diameter), wind_default_elevation,
        wind_default_max_cp, wind_default_max_tip_speed,
        wind_default_max_tip_speed_ratio, wind_default_cut_in_speed,
        wind_default_cut_out_speed, wind_default_drive_train)

    windspeeds_truth = [round(x, 2) for x in powercurveWS]
    windspeeds_calc = [
        round(x, 2) for x in model.Turbine.wind_turbine_powercurve_windspeeds
    ]
    powercurve_truth = [round(x, 0) for x in powercurveKW]
    powercurve_calc = [
        round(x, 0) for x in model.Turbine.wind_turbine_powercurve_powerout
    ]

    assert all([a == b for a, b in zip(windspeeds_truth, windspeeds_calc)])
    assert all([a == b for a, b in zip(powercurve_truth, powercurve_calc)])
コード例 #11
0
import PySAM.ResourceTools as tools
import PySAM.Windpower as wp
import PySAM.Singleowner as so
    
# --- Initialize Wind Fetcher ---
wtkfetcher = tools.FetchResourceFiles(
                tech='wind',
                workers=1, #thread workers if fetching multiple files
                nrel_api_key=<NREL_API_KEY>,
                nrel_api_email=<NREL_API_EMAIL>)

# --- Pass a list of (lon, lat) tuples or Shapely points to fetch the nearest resource data ---
lon_lats = [(-105.1800775, 39.7383155)]  # golden CO
wtkfetcher.fetch(lon_lats)
    
# --- Get resource data file path ---
wtk_path_dict = wtkfetcher.resource_file_paths_dict
wtk_fp = wtk_path_dict[lon_lats[0]]

# --- Initialize Generator ---
generator = wp.default('WindPowerSingleOwner')
generator.Resource.assign({'wind_resource_model_choice': 0})
generator.Resource.assign({'wind_resource_filename': wtk_fp}) #pass path to resource file

# --- Initialize Financial Model ---
financial = so.from_existing(generator, "WindPowerSingleOwner")

# --- Execute Models ---
generator.execute()
financial.execute()
コード例 #12
0
    def _setup_simulation(self) -> None:
        """
        Wind simulation
            -> PySAM windpower model

        Solar simulation
            -> Surrogate model of PySAM Pvwatts model since the AEP scales linearly and independently
            w.r.t solar capacity and gcr
        """
        def run_wind_model(windmodel: windpower.Windpower):
            windmodel.Farm.system_capacity = \
                max(windmodel.Turbine.wind_turbine_powercurve_powerout) * len(windmodel.Farm.wind_farm_xCoordinates)
            windmodel.execute(0)
            return windmodel.Outputs.annual_energy

        def run_pv_model(pvmodel: pvwatts.Pvwattsv7):
            cap = pvmodel.SystemDesign.system_capacity
            gcr = pvmodel.SystemDesign.gcr
            est = cap * self._solar_size_aep_multiplier * self.solar_gcr_loss_multiplier(
                gcr)
            # pvmodel.execute()
            # rl = pvmodel.Outputs.annual_energy
            # err = (rl - est)/rl
            # if err > 0.05:
            #     print("High approx error found with {} kwh and {} gcr of {}".format(cap, gcr, err))
            return est

        # create wind model
        self._scenario = dict()
        wind_model = windpower.default("WindPowerSingleOwner")
        wind_model.Resource.wind_resource_data = self.site_info.wind_resource.data
        self.turb_diam = wind_model.Turbine.wind_turbine_rotor_diameter
        wind_model.Farm.wind_farm_wake_model = 2  # use eddy viscosity wake model

        self._scenario['Wind'] = (wind_model, run_wind_model)

        # create pv model
        solar_model = pvwatts.default("PVWattsSingleOwner")
        solar_model.SolarResource.solar_resource_data = self.site_info.solar_resource.data
        solar_model.SystemDesign.array_type = 2  # single-axis tracking
        solar_model.SystemDesign.tilt = 0

        # setup surrogate
        solar_model.execute(0)
        self._solar_size_aep_multiplier = solar_model.Outputs.annual_energy / solar_model.SystemDesign.system_capacity

        solar_model.SystemDesign.gcr = 0.01  # lowest possible gcr
        solar_model.SystemDesign.system_capacity = 1
        solar_model.execute(0)
        if solar_model.Outputs.annual_energy > 0:
            self._solar_gcr_loss_multiplier[
                'unit'] = solar_model.Outputs.annual_energy
        else:
            raise RuntimeError(
                "Solar GCR Loss Multiplier: Setup failed due to 0 for unit value"
            )

        self._scenario['Solar'] = (solar_model, run_pv_model)

        # estimate max AEP
        self.upper_bounds = calculate_max_hybrid_aep(self.site_info,
                                                     self.num_turbines,
                                                     self.solar_capacity_kw)

        logger.info(
            "Setup Wind and Solar models. Max AEP is {} for wind, {} solar, {} total"
            .format(self.upper_bounds['wind'], self.upper_bounds['solar'],
                    self.upper_bounds['total']))
コード例 #13
0
    def __init__(
            self,
            site: SiteInfo,
            farm_config: dict,
            rating_range_kw: tuple = (1000, 3000),
    ):
        """
        Set up a WindPlant

        :param farm_config: dict, with keys ('num_turbines', 'turbine_rating_kw', 'rotor_diameter', 'hub_height', 'layout_mode', 'layout_params')
            where layout_mode can be selected from the following:
            - 'boundarygrid': regular grid with boundary turbines, requires WindBoundaryGridParameters as 'params'
            - 'grid': regular grid with dx, dy distance, 0 angle; does not require 'params'

        :param rating_range_kw:
            allowable kw range of turbines, default is 1000 - 3000 kW
        """
        self._rating_range_kw = rating_range_kw

        if 'model_name' in farm_config.keys():
            if farm_config['model_name'] == 'floris':
                print('FLORIS is the system model...')
                system_model = Floris(farm_config,
                                      site,
                                      timestep=farm_config['timestep'])
                financial_model = Singleowner.default("WindPowerSingleOwner")
            else:
                raise NotImplementedError
        else:
            system_model = Windpower.default("WindPowerSingleOwner")
            financial_model = Singleowner.from_existing(
                system_model, "WindPowerSingleOwner")

        super().__init__("WindPlant", site, system_model, financial_model)
        self._system_model.value("wind_resource_data",
                                 self.site.wind_resource.data)

        if 'layout_mode' not in farm_config.keys():
            layout_mode = 'grid'
        else:
            layout_mode = farm_config['layout_mode']

        params: Optional[WindBoundaryGridParameters] = None
        if layout_mode == 'boundarygrid':
            if 'layout_params' not in farm_config.keys():
                raise ValueError(
                    "Parameters of WindBoundaryGridParameters required for boundarygrid layout mode"
                )
            else:
                params: WindBoundaryGridParameters = farm_config[
                    'layout_params']

        self._layout = WindLayout(site, system_model, layout_mode, params)

        self._dispatch: WindDispatch = None

        if 'turbine_rating_kw' not in farm_config.keys():
            raise ValueError("Turbine rating required for WindPlant")

        if 'num_turbines' not in farm_config.keys():
            raise ValueError("Num Turbines required for WindPlant")

        self.turb_rating = farm_config['turbine_rating_kw']
        self.num_turbines = farm_config['num_turbines']
        if 'hub_height' in farm_config.keys():
            self._system_model.Turbine.wind_turbine_hub_ht = farm_config[
                'hub_height']
        if 'rotor_diameter' in farm_config.keys():
            self.rotor_diameter = farm_config['rotor_diameter']
コード例 #14
0
    def __init__(self, tech,
                re_capacity_mw, #float, or tuple with lower and upper bounds
                batt_capacity_mw=0, #float, or tuple with lower and upper bounds
                batt_duration=[0,2,4], #0, 2, or 4hr
                verbose=True,
                params=None):
        
        if verbose:
            log.info('\n')
            log.info(f'Initializing BayesianSystemDesigner for {tech}')
        
        self.tech = tech

        if isinstance(re_capacity_mw, (float, int)):
            self.re_capacity_kw=re_capacity_mw * 1000  # pysam takes this as kw
        elif isinstance(re_capacity_mw, (tuple, list)):
            self.re_capacity_kw = (re_capacity_mw[0] * 1000, re_capacity_mw[1] * 1000)
        
        if isinstance(batt_capacity_mw, (float, int)):
            self.batt_capacity_kw = batt_capacity_mw * 1000  # pysam takes this as kw
        elif isinstance(batt_capacity_mw, (tuple, list)):
            self.batt_capacity_kw = (batt_capacity_mw[0] * 1000, batt_capacity_mw[1] * 1000)
        else:
            self.batt_capacity_kw = 0

        if isinstance(batt_duration, (float, int)):
            self.batt_duration = batt_duration
        elif isinstance(batt_duration, (tuple, list)):
            self.batt_duration = np.array(batt_duration)

        self.storage = False
        if isinstance(self.batt_capacity_kw, (int, float)):
            if self.batt_capacity_kw > 0:
                self.storage = True
        elif isinstance(self.batt_capacity_kw, (tuple)):
            if max(self.batt_capacity_kw) > 0:
                self.storage = True

        # --- Initiate Generator and assign params if not passed ---
        if tech == 'pv':
            self.gen = pv.default('PVWattsSingleOwner')
            self.default_params = self.gen.SystemDesign.export()

            if params == None:  # assign default grid of solar params
                self.param_grid = {
                    'SystemDesign':{
                        'system_capacity': self.re_capacity_kw,
                        'subarray1_track_mode': 1, #np.array([0, 1, 2, 4]), #1 = fixed
                        'subarray1_tilt': np.arange(0, 90, 10),
                        'subarray1_azimuth': np.arange(1, 359, 10),
                        'dc_ac_ratio': np.arange(0.8, 1.3, 0.1),
                    }
                }

        elif tech == 'wind':
            self.gen = wp.default('WindPowerSingleOwner')
            self.default_params = self.gen.Turbine.export()

            if params == None:  # assign default grid of wind params
                self.param_grid = {
                    'Turbine': {'wind_turbine_hub_ht': np.array([60, 170]), 'turbine_class': np.array([1, 10])},
                    'Farm': {'system_capacity': self.re_capacity_kw},
                }
        
        else: raise NotImplementedError(f'Please write a wrapper to account for the new technology type {tech}')


        # --- Add Battery Params ---
        if self.storage:
            self.param_grid['BatteryTools'] = {'desired_power': self.batt_capacity_kw,
                                               'desired_capacity': self.batt_duration,
                                               'desired_voltage':500}
            self.param_grid['BatterySystem'] = {'en_batt':1,
                                                'batt_meter_position':0}
        else:
            self.param_grid['BatterySystem'] = {'en_batt': 0}
コード例 #15
0
ファイル: models.py プロジェクト: NREL/vapor
    def run_generator(self):
        self.tech = 'wind'
        self._size_system()
        self.generator = wp.default(
            'WindPowerSingleOwner'
        )  #Resource, Turbine, Farm, Losses, Uncertainty, AdjustmentFactors
        self.generator.Resource.wind_resource_filename = self.resource_file
        self.generator.Resource.wind_resource_model_choice = 0

        # --- Wind class power curve ---
        wind_class_dict = {
            1: {
                'cut_in': 9.01,
                'cut_out': 12.89
            },
            2: {
                'cut_in': 8.77,
                'cut_out': 9.01
            },
            3: {
                'cut_in': 8.57,
                'cut_out': 8.77
            },
            4: {
                'cut_in': 8.35,
                'cut_out': 8.57
            },
            5: {
                'cut_in': 8.07,
                'cut_out': 8.35
            },
            6: {
                'cut_in': 7.62,
                'cut_out': 8.07
            },
            7: {
                'cut_in': 7.1,
                'cut_out': 7.62
            },
            8: {
                'cut_in': 6.53,
                'cut_out': 7.1
            },
            9: {
                'cut_in': 5.9,
                'cut_out': 6.53
            },
            10: {
                'cut_in': 1.72,
                'cut_out': 5.9
            },
        }

        powercurve_dict = {
            'turbine_size': 2400,  #From ATB
            'rotor_diameter': 116,  #SAM default
            'elevation': 0,
            'max_cp': 0.45,  # SAM default
            'max_tip_speed': 116,  #Match rotor diameter
            'max_tip_sp_ratio': 8,  #SAM default
            'cut_in': wind_class_dict[self.turbine_class]['cut_in'],
            'cut_out':
            25,  #not sure how to interpret maximum wind speeds, as they are too low for sensible cutout
            'drive_train': 0,
        }

        self.generator.Turbine.calculate_powercurve(**powercurve_dict)
        self.generator.Turbine.wind_resource_shear = 0.14
        self.generator.Turbine.wind_turbine_rotor_diameter = 116

        # --- Create dummy farm layout in a row ---
        xcoords, ycoords = self._set_num_turbines_in_row(
            n_turbines=self.n_turbines, spacing=250)
        self.generator.Farm.wind_farm_xCoordinates = xcoords
        self.generator.Farm.wind_farm_yCoordinates = ycoords
        self.generator.Farm.assign({
            k: v
            for k, v in self.system_config['Farm'].items()
            if k in list(self.generator.Farm.export().keys())
        })
        self.generator.Farm.wind_farm_wake_model = 0
        self.generator.Farm.wind_resource_turbulence_coeff = 0.1
        self.generator.Farm.system_capacity = self.fitted_capacity

        self.generator.Losses.wake_int_loss = 0
        self.generator.Losses.wake_ext_loss = 1.1
        self.generator.Losses.wake_future_loss = 0
        self.generator.Losses.avail_bop_loss = 0.5
        self.generator.Losses.avail_grid_loss = 1.5
        self.generator.Losses.avail_turb_loss = 3.58
        self.generator.Losses.elec_eff_loss = 1.91
        self.generator.Losses.elec_parasitic_loss = 0.1
        self.generator.Losses.env_degrad_loss = config.DEGRADATION * 100
        self.generator.Losses.env_exposure_loss = 0
        self.generator.Losses.env_env_loss = 0.4
        self.generator.Losses.env_icing_loss = 0.21
        self.generator.Losses.ops_env_loss = 1
        self.generator.Losses.ops_grid_loss = 0.84
        self.generator.Losses.ops_load_loss = 0.99
        self.generator.Losses.ops_strategies_loss = 0
        self.generator.Losses.turb_generic_loss = 1.7
        self.generator.Losses.turb_hysteresis_loss = 0.4
        self.generator.Losses.turb_perf_loss = 1.1
        self.generator.Losses.turb_specific_loss = 0.81
        self.generator.Uncertainty.total_uncert = 12.085
        self.generator.execute()