コード例 #1
0
def test_rssmodel():
    # load the image and determine its spectrograph parameters
    hdu = fits.open(inimage)

    # create the header information
    grating = hdu[1].header['GRATING'].strip()
    grang = hdu[1].header['GR-ANGLE']
    arang = hdu[1].header['AR-ANGLE']
    slit = float(hdu[1].header['MASKID'])
    xbin, ybin = hdu[1].header['CCDSUM'].strip().split()

    # create the RSS Model
    rss = RSSModel.RSSModel(grating_name=grating, gratang=grang,
                            camang=arang, slit=slit, xbin=int(xbin),
                            ybin=int(ybin))
    alpha = rss.alpha()
    beta = rss.beta()

    sigma = 1e7 * rss.calc_resolelement(alpha, beta)
    print("SIGMA: ", sigma)

    # test to see if giving the wrong name it will raise an error
    try:
        rss = RSSModel.RSSModel(grating_name="not a grating", gratang=grang,
                                camang=arang, slit=slit, xbin=int(xbin),
                                ybin=int(ybin))
    except RSSModel.RSSError as e:
        pass
コード例 #2
0
def test_Identify():
    hdu = fits.open(inimage)

    # create the data arra
    data = hdu[1].data

    # create the header information
    instrume = hdu[1].header['INSTRUME'].strip()
    grating = hdu[1].header['GRATING'].strip()
    grang = hdu[1].header['GR-ANGLE']
    arang = hdu[1].header['AR-ANGLE']
    filter = hdu[1].header['FILTER'].strip()
    slit = float(hdu[1].header['MASKID'])
    xbin, ybin = hdu[1].header['CCDSUM'].strip().split()

    print(instrume, grating, grang, arang, filter)
    print(xbin, ybin)
    print(len(data), len(data[0]))

    # create the RSS Model
    rssmodel = RSSModel.RSSModel(grating_name=grating,
                                 gratang=grang,
                                 camang=arang,
                                 slit=slit,
                                 xbin=int(xbin),
                                 ybin=int(ybin))
コード例 #3
0
def calcsol(xarr, y_i, instrume, grating, grang, arang,
            filtername, slit, xbin, ybin, function, order):
    rss = RSSModel.RSSModel(grating_name=grating.strip(), gratang=grang,
                            camang=arang, slit=slit, xbin=xbin, ybin=ybin)
    gamma = 180.0 / math.pi * math.atan((y_i * rss.detector.pix_size * rss.detector.ybin
                                         - 0.5 * rss.detector.find_height()) / rss.camera.focallength)
    # y_i/rssmodel.detector.height*rssmodel
    d = rss.detector.xbin * rss.detector.pix_size * \
        (xarr - rss.detector.get_xpixcenter())
    alpha = rss.alpha()
    beta = -rss.beta()
    dbeta = -np.degrees(np.arctan(d / rss.camera.focallength))
    w_arr = 1e7 * rss.calc_wavelength(alpha, beta + dbeta, gamma=gamma)

    return w_arr
コード例 #4
0
def test_Linefit():

    hdu = pyfits.open(inimage)

    # create the data arra
    data = hdu[1].data

    # create the header information
    instrume = hdu[1].header['INSTRUME'].strip()
    grating = hdu[1].header['GRATING'].strip()
    grang = hdu[1].header['GR-ANGLE']
    arang = hdu[1].header['AR-ANGLE']
    filter = hdu[1].header['FILTER'].strip()
    slit = float(hdu[1].header['MASKID'])
    xbin, ybin = hdu[1].header['CCDSUM'].strip().split()

    # print instrume, grating, grang, arang, filter
    # print xbin, ybin
    # print len(data), len(data[0])

    # create the RSS Model
    rssmodel = RSSModel.RSSModel(grating_name=grating,
                                 gratang=grang,
                                 camang=arang,
                                 slit=slit,
                                 xbin=int(xbin),
                                 ybin=int(ybin))
    alpha = rssmodel.rss.gratang
    beta = rssmodel.rss.gratang - rssmodel.rss.camang

    sigma = 1e7 * rssmodel.rss.calc_resolelement(alpha, beta)

    # create artificial spectrum
    # create the spectrum
    stype = 'line'
    w, s = np.loadtxt(inspectra, usecols=(0, 1), unpack=True)
    spec = Spectrum(w,
                    s,
                    wrange=[4000, 5000],
                    dw=0.1,
                    stype='line',
                    sigma=sigma)
    spec.flux = spec.set_dispersion(sigma=sigma)

    sw_arr, sf_arr = spec.wavelength, spec.flux
コード例 #5
0
def test_ModelSolution():

    hdu = fits.open(inimage)

    # create the data arra
    data = hdu[1].data

    # create the header information
    instrume = hdu[1].header['INSTRUME'].strip()
    grating = hdu[1].header['GRATING'].strip()
    grang = hdu[1].header['GR-ANGLE']
    arang = hdu[1].header['AR-ANGLE']
    filter = hdu[1].header['FILTER'].strip()
    slit = float(hdu[1].header['MASKID'])
    xbin, ybin = hdu[1].header['CCDSUM'].strip().split()

    print(instrume, grating, grang, arang, filter)
    print(xbin, ybin)
    print(len(data), len(data[0]))

    # create the RSS Model
    rssmodel = RSSModel.RSSModel(grating_name=grating,
                                 gratang=grang,
                                 camang=arang,
                                 slit=slit,
                                 xbin=int(xbin),
                                 ybin=int(ybin))

    err = xp * 0.0 + 0.1
    ls = MS.ModelSolution(xp, wp, rssmodel.rss, xlen=len(data[0]), order=4)
    ls.fit(cfit='all')
    ls.fit(ls.ndcoef)
    for c in ls.coef:
        print(c(), end=' ')
    print()
    print(ls.sigma(ls.x, ls.y))
    print(ls.chisq(ls.x, ls.y, err))
    print(ls.value(2000))

    pl.figure()
    pl.plot(xp, wp - ls.value(xp), ls='', marker='o')
    # pl.plot(ls.x, ls.y-ls(ls.x), ls='', marker='o')
    pl.show()
    return
コード例 #6
0
def calc_resolution(hdu):
    """Calculate the resolution for a setup"""
    instrume=saltkey.get('INSTRUME', hdu[0]).strip()
    grating=saltkey.get('GRATING', hdu[0]).strip()
    grang=saltkey.get('GR-ANGLE', hdu[0])
    grasteps=saltkey.get('GRTILT', hdu[0])
    arang=saltkey.get('AR-ANGLE', hdu[0])
    arsteps=saltkey.get('CAMANG', hdu[0])
    rssfilter=saltkey.get('FILTER', hdu[0])
    specmode=saltkey.get('OBSMODE', hdu[0])
    masktype=saltkey.get('MASKTYP', hdu[0]).strip().upper()
    slitname=saltkey.get('MASKID', hdu[0])
    xbin, ybin = saltkey.ccdbin( hdu[0], '')
    slit=st.getslitsize(slitname)
    
    #create RSS Model
    rss=RSSModel.RSSModel(grating_name=grating.strip(), gratang=grang, \
                          camang=arang,slit=slit, xbin=xbin, ybin=ybin, \
                          )
    res=1e7*rss.calc_resolelement(rss.alpha(), -rss.beta())
    return res 
コード例 #7
0
def test_CreateImage():

    # read in the data
    hdu = fits.open(inimg)
    im_arr = hdu[1].data
    hdu.close()

    # set up the spectrum
    stype = 'line'
    w, s = np.loadtxt('Xe.dat', usecols=(0, 1), unpack=True)
    spec = Spectrum(w, s, wrange=[4000, 5000], dw=0.1, stype=stype)

    # set up the spectrograph
    dx = 2 * 0.015 * 8.169
    dy = 2 * 0.015 * 0.101
    # set up the spectrograph
    # rssmodel=RSSModel.RSSModel(grating_name='PG0900', gratang=13.625, camang=27.25, slit=1.0, xbin=2, ybin=2, xpos=dx, ypos=dy)
    rssmodel = RSSModel.RSSModel(
        grating_name='PG3000',
        gratang=43.625,
        camang=87.25,
        slit=2.0,
        xbin=2,
        ybin=2,
        xpos=dx,
        ypos=dy)

    rssmodel.set_camera(name='RSS', focallength=330.0)
    rss = rssmodel.rss

    # set up the outfile
    if os.path.isfile(outfile):
        os.remove(outfile)

    arr = im_arr.copy()
    arr = CreateImage(spec, rss)
    arr = arr * im_arr.max() / spec.flux.max()
    writeout(arr, outfile)
コード例 #8
0
def rssinfo(grating, grang, arang, slitname, xbin, ybin):
    """RSSINFO--Given informtion about the set up of the spectrograph,
      return information about the spectrograph
    
      grating--name of the grating used
      gratang--angle of the grating in degrees
      arang--articulation ange in degrees
      slitname--name of the slit being used
      xbin--binning in x-direction
      ybin--binning in y-direction

      returns central wavelength, blue wavelength, red wavelenth, resolution
              resolution element
   """

    #get the slitsize
    slit = getslitsize(slitname)

    #set up the rss model
    rss=RSSModel.RSSModel(grating_name=grating, gratang=grang, \
                          camang=arang,slit=slit, xbin=xbin, ybin=ybin)

    #calcuation the resolution element
    res = 1e7 * rss.calc_resolelement(rss.alpha(), -rss.beta())

    #calculate the central wavelength
    wcen = 1e7 * rss.calc_centralwavelength()

    #calculate the wavelength edges
    w2 = 1e7 * rss.calc_bluewavelength()
    w1 = 1e7 * rss.calc_redwavelength()
    print w1, w2

    #calculate the
    R = rss.calc_resolution(wcen / 1e7, rss.alpha(), rss.beta())

    return wcen, w1, w2, res, R, slit
コード例 #9
0
def plotarcspectra(arclist='Ne.txt',
                   grating='PG0900',
                   gratang=15.0,
                   camang=30.0,
                   slit=1.5,
                   xbin=2,
                   ybin=2):
    """Plot an Arc Line list for a given RSS set up 
      arclist--an arc line list in the format of 'wavelength flux' for arc lines
      grating--name of the grating
      gratang--angle of the grating
      camang--angle of the camera (articulation angle)
      slit--slit width in arcseconds
      xbin--xbinning
      ybin--ybinning

   """
    rss = RSSModel.RSSModel(grating_name=grating,
                            gratang=gratang,
                            camang=camang,
                            slit=slit,
                            xbin=xbin,
                            ybin=ybin)

    #print out some basic statistics
    print 1e7 * rss.calc_bluewavelength(), 1e7 * rss.calc_centralwavelength(
    ), 1e7 * rss.calc_redwavelength()
    R = rss.calc_resolution(rss.calc_centralwavelength(), rss.alpha(),
                            -rss.beta())
    res = 1e7 * rss.calc_resolelement(rss.alpha(), -rss.beta())
    print R, res

    #set up the detector
    ycen = rss.detector.get_ypixcenter()
    d_arr = rss.detector.make_detector()[ycen, :]  #creates 1-D detector map
    xarr = np.arange(len(d_arr))
    w = 1e7 * rss.get_wavelength(xarr)

    #set up the artificial spectrum
    sw, sf = pl.loadtxt(arclist, usecols=(0, 1), unpack=True)
    wrange = [1e7 * rss.calc_bluewavelength(), 1e7 * rss.calc_redwavelength()]
    spec = Spectrum.Spectrum(sw,
                             sf,
                             wrange=wrange,
                             dw=res / 10,
                             stype='line',
                             sigma=res)

    #interpolate it over the same range as the detector
    spec.interp(w)

    #plot it
    pl.figure()
    pl.plot(spec.wavelength, d_arr * ((spec.flux) / spec.flux.max()))

    print pl.gca().get_ylim()
    for i, f in zip(sw, sf):
        if i > spec.wavelength.min() and i < spec.wavelength.max():
            print i, f, sf.max(), spec.flux.max()
            #pl.text(i, f/sf.max(), i, fontsize='large', rotation=90)
            y = max(0.1, f / sf.max())
            pl.text(i, y, i, rotation=90)

    pl.show()
コード例 #10
0
def test_Linefit():

    hdu = fits.open(inimage)

    # create the data arra
    data = hdu[1].data

    # create the header information
    grating = hdu[1].header['GRATING'].strip()
    grang = hdu[1].header['GR-ANGLE']
    arang = hdu[1].header['AR-ANGLE']
    slit = float(hdu[1].header['MASKID'])
    xbin, ybin = hdu[1].header['CCDSUM'].strip().split()

    # print instrume, grating, grang, arang, filter
    # print xbin, ybin
    # print len(data), len(data[0])

    # create the RSS Model
    rssmodel = RSSModel.RSSModel(grating_name=grating,
                                 gratang=grang,
                                 camang=arang,
                                 slit=slit,
                                 xbin=int(xbin),
                                 ybin=int(ybin))
    alpha = rssmodel.rss.gratang
    beta = rssmodel.rss.gratang - rssmodel.rss.camang

    sigma = 1e7 * rssmodel.rss.calc_resolelement(alpha, beta)

    # create the observed spectrum
    midpoint = int(0.5 * len(data))
    xarr = np.arange(len(data[0]), dtype='float')
    farr = data[midpoint, :]
    obs_spec = Spectrum(xarr, farr, stype='continuum')

    # create artificial spectrum
    stype = 'line'
    w, s = np.loadtxt(inspectra, usecols=(0, 1), unpack=True)
    cal_spec = Spectrum(w,
                        s,
                        wrange=[4000, 5000],
                        dw=0.1,
                        stype=stype,
                        sigma=sigma)
    cal_spec.flux = cal_spec.set_dispersion(sigma=sigma)
    cal_spec.flux = cal_spec.flux * obs_spec.flux.max() / cal_spec.flux.max(
    ) + 1

    lf = LF.LineFit(obs_spec, cal_spec, function='legendre', order=3)
    lf.set_coef(
        [4.23180070e+03, 2.45517852e-01, -4.46931562e-06, -2.22067766e-10])
    print(lf(2000))
    print(lf.obs_spec.get_flux(2000), lf.flux(2000))
    print('chisq ', (lf.errfit(lf.coef, xarr, farr)**2).sum() / 1e7)
    lf.set_coef(
        [4.23280070e+03, 2.45517852e-01, -4.46931562e-06, -2.22067766e-10])
    print(lf(2000))
    print(lf.obs_spec.get_flux(2000), lf.flux(2000))
    print('chisq ', (lf.errfit(lf.coef, xarr, farr)**2).sum() / 1e7)
    # print lf.lfit(xarr)
    # print lf.coef
    # print lf(2000)
    # print lf.results

    pl.figure()

    pl.plot(lf(lf.obs_spec.wavelength), lf.obs_spec.get_flux(xarr))
    pl.plot(lf.cal_spec.wavelength, lf.cal_spec.flux)
    pl.show()
コード例 #11
0
            print 'CHECK RESULTS'
            print
    return ivec[pk], xcorval[pk]

filename = 'mbxgpP201206140058.fits'
#??data,hdr=pyfits.getdata(filename,extname='sci',header='t')
data = pyfits.getdata(filename)
hdr = pyfits.getheader(filename)
grname = hdr['grating']
camang = hdr['camang']
gratang = hdr['gr-angle']

#create the spectrograph model
rss = RSSModel.RSSModel(grating_name=grname,
                        gratang=gratang,
                        camang=camang,
                        slit=1.50,
                        xbin=2,
                        ybin=2)

#print out some basic statistics
print 1e7 * rss.calc_bluewavelength(), 1e7 * rss.calc_centralwavelength(
), 1e7 * rss.calc_redwavelength()
R = rss.calc_resolution(rss.calc_centralwavelength(), rss.alpha(), -rss.beta())
res = 1e7 * rss.calc_resolelement(rss.alpha(), -rss.beta())
print R, res

#set up the detector
ycen = rss.detector.get_ypixcenter()
d_arr = rss.detector.make_detector()[ycen, :]
xarr = np.arange(len(d_arr))
w = 1e7 * rss.get_wavelength(xarr)
コード例 #12
0
def find_wavelength_solution(filename, line, debug=False):

    logger = logging.getLogger("FindWLS")

    if (type(filename) == str and os.path.isfile(filename)):
        hdulist = fits.open(filename)
    elif (type(filename) == fits.hdu.hdulist.HDUList):
        hdulist = filename
    else:
        logger.error("Invalid input, needs to be either HDUList or string, but found %s" % (str(type(filename))))
        return None

    if (line is None):
        line = hdulist['SCI'].data.shape[0] / 2
        logger.debug("Picking the central row, # = %d" % (line))
    else:
        logger.info("Using line %d for wavelength calibration" % (line))

    avg_width = 10
    spec = extract_arc_spectrum(hdulist, line, avg_width)
    if (debug):
        numpy.savetxt("findwls.spec", spec)

    binx, biny = pysalt.get_binning(hdulist)
    logger.debug("Binning: %d x %d" % (binx, biny))

    hdr = hdulist[0].header
    rss = RSSModel.RSSModel(
        grating_name=hdr['GRATING'], 
        gratang=hdr['GR-ANGLE'], #45, 
        camang=hdr['CAMANG'], #45, 
        slit=1.0, 
        xbin=binx, ybin=biny, 
        xpos=-0.30659999999999998, ypos=0.0117, wavelength=None)

    central_wl = rss.calc_centralwavelength() * mm_to_A
    #print central_wl

    blue_edge = rss.calc_bluewavelength() * mm_to_A
    red_edge = rss.calc_redwavelength() * mm_to_A
    wl_range = red_edge - blue_edge
    #print "blue:", blue_edge
    #print "red:", red_edge

    dispersion = (rss.calc_redwavelength()-rss.calc_bluewavelength())*mm_to_A/spec.shape[0]
    #print "dispersion: A/px", dispersion
    
    #print "ang.dispersion:", rss.calc_angdisp(rss.beta())
    #print "ang.dispersion:", rss.calc_angdisp(-rss.beta())

    pixelsize = 15e-6
    #print "lin.dispersion:", rss.calc_lindisp(rss.beta())
    #print "lin.dispersion:", rss.calc_lindisp(rss.beta()) / (mm_to_A*pixelsize)

    #print "resolution @ central w.l.:", rss.calc_resolution(
    #     w=rss.calc_centralwavelength(), 
    #     alpha=rss.alpha(), 
    #     beta=-rss.beta())
    
    # print "resolution element:", rss.calc_resolelement(rss.alpha(), -rss.beta()) * mm_to_A
    logger.info("From RSS model: wl-range: %.1f - %.1f [%.1f], dispersion: %.3f" % (
            blue_edge, red_edge, central_wl, dispersion))

    #
    # Now find a list of strong lines
    #
    lineinfo = find_list_of_lines(spec, avg_width)
    if (debug):
        numpy.savetxt("findwls.foundlines", lineinfo)

    ############################################################################
    #
    # Now we have a full line-list with signal-to-noise ratios as brightness
    # indicators that we can use to select bright and/or faint lines.
    #
    ############################################################################

    # based on the wavelength model from RSS translate x-positions into wavelengths
    #print dispersion
    #print lineinfo[:,0]

    # Use Ken's RSS model data here
    logger.info("Creating dispersion model")
    cols = hdulist['SCI'].data.shape[1]
    kens_model = KenRSSModel(hdulist[0].header, cols)
    # primhdr = hdulist[0].header
    # rbin,cbin = numpy.array(primhdr["CCDSUM"].split(" ")).astype(int)
    # grating = primhdr['GRATING'].strip()
    # grang = float(primhdr['GR-ANGLE'])
    # artic = float(primhdr['CAMANG'])
    # logger.info("RSS model: bin: %d,%d - grating: %s - angle: %.2f - artic: %.2f  - columns: %d" % (
    #     rbin,cbin,grating,grang,artic,cols))
    # all_wavelength = rssmodelwave(grating,grang,artic,cbin,cols)
    # # fit a simple linear interpolation to the curve so we can look up 
    # # wavelengths for a given pixel more easily
    # wl_interpol = scipy.interpolate.interp1d(
    #     x=numpy.arange(all_wavelength.shape[0]),
    #     y=all_wavelength
    # )

    # Now use the wavelength model to translate line position in pixel coordinates
    # into wavelength positions
    wl = kens_model.compute_wl(lineinfo[:,0])
    if (debug):
        numpy.savetxt("rss_lines",
                      numpy.append(wl.reshape((-1,1)),
                                   lineinfo, axis=1))

        _x = numpy.arange(hdulist['SCI'].data.shape[1])
        _wl = kens_model.compute_wl(_x)
        numpy.savetxt("findwls.wl_vs_x", numpy.array([_x,_wl]).T)

    # wl = lineinfo[:,0] * dispersion + blue_edge
    #lineinfo = numpy.append(lineinfo, wl.reshape((-1,1)), axis=1)
    #numpy.savetxt("linecal", lineinfo)

    #
    # Load linelist
    #
    lamp=hdulist[0].header['LAMPID'].strip().replace(' ', '')
    lampfile=pysalt.get_data_filename("pysalt$data/linelists/%s.txt" % lamp)
    #lampfile=pysalt.get_data_filename("pysalt$data/linelists/%s.salt" % lamp)
    _, fn_only = os.path.split(lampfile)
    logger.info("Reading calibration line wavelengths from data->%s" % (fn_only))
    logger.debug("Full path to lamp line list: %s" % (lampfile))
    #lampfile=pysalt.get_data_filename("pysalt$data/linelists/%s.wav" % lamp)
    #lampfile=pysalt.get_data_filename("pysalt$data/linelists/Ar.salt")
    #lampfile="Ar.lines"
    if (os.path.isfile(lampfile)):
        try:
            lines = numpy.loadtxt(lampfile)
        except:
            lines = manual_loadtxt(lampfile)
    else:
        return None
    #print lines.shape
    #print lines

    #
    # Now select only lines that are in the estimated range of our ARC spectrum
    #
    in_range = (lines[:,0] > numpy.min(wl)) & (lines[:,0] < numpy.max(wl))
    ref_lines = lines #[in_range]
    logger.debug("Found these lines for fitting (range: %.2f -- %.2f):\n%s" % (
        numpy.min(wl), numpy.max(wl), 
        "\n".join(["%10.4f" % l for l in ref_lines[:,0]])))
    if (debug):
        numpy.savetxt("findwls.reflines", ref_lines)
    #print ref_lines

    ############################################################################
    #
    # Next step for wavelength calibration:
    #
    # Match lines between ARC spectrum and reference line list, 
    # allowing for a small uncertainty in dispersion
    #
    ############################################################################

    camangle = kens_model.artic
    gratingangle = kens_model.grang

    max_d_camangle = 1.
    max_d_gratingangle = 1.

    step_camangle = 0.05
    step_gratingangle = 0.1

    n_steps_camangle = int(math.ceil(2*max_d_camangle / step_camangle + 1))
    n_steps_gratingangle = int(math.ceil(2*max_d_gratingangle / step_gratingangle + 1))

    results = numpy.zeros((n_steps_camangle, n_steps_gratingangle))

    try_camangles = numpy.linspace(camangle-max_d_camangle, 
                                   camangle+max_d_camangle, 
                                   n_steps_camangle)
    try_gratingangles = numpy.linspace(gratingangle-max_d_gratingangle, 
                                       gratingangle+max_d_gratingangle, 
                                       n_steps_gratingangle)

    
    ref_kdtree = scipy.spatial.cKDTree(ref_lines[:,0].reshape((-1,1)))
    matching_radius=5.0
    for idx_camangle, idx_gratingangle in \
        itertools.product(range(n_steps_camangle), range(n_steps_gratingangle)):

        camangle = try_camangles[idx_camangle]
        gratingangle = try_gratingangles[idx_gratingangle]

        #print camangle, gratingangle


        #match_line_catalogs(arc, ref, matching_radius, verbose=False,
        #                col_ref=0, col_arc=-1, dumpfile=None):


        # compute the wavelength position for all lines using the
        # spectrograph parameters of this iteration
        wl_lines = kens_model.compute(grang=gratingangle,
                                      artic=camangle,
                                      colpos=lineinfo[:,0])

        #print wl_lines, ref_lines.shape
                                      
        nearest_neighbor, i = ref_kdtree.query(
            x=wl_lines.reshape((-1,1)), 
            k=1, # only find 1 nearest neighbor
            p=1, # use linear distance
            distance_upper_bound=matching_radius)

        # i is the index with the closest match
        # good matches have i within legal range
        good_match = i < ref_lines.shape[0]

        results[idx_camangle, idx_gratingangle] = numpy.sum(good_match)

    numpy.savetxt("results", results)

    # fig=matplotlib.pyplot.figure()
    # ax=fig.add_subplot(111)
    # ax.imshow(results, interpolation='none')
    # fig.show()
    # matplotlib.pyplot.show()

    most_matches = numpy.unravel_index(numpy.argmax(results), results.shape)

    logger.info("best results: %d matches for camangle=%.3f (%.3f), gratingangle=%.3f (%.3f)" % (
        results[most_matches], 
        try_camangles[most_matches[0]], hdulist[0].header['CAMANG'],
        try_gratingangles[most_matches[1]], hdulist[0].header['GR-ANGLE'],
    ))
    best_camangle = try_camangles[most_matches[0]]
    best_gratingangle = try_gratingangles[most_matches[1]]

    #
    # Now write the complete spectrum with the wavelength calibration
    #
    #print spec.shape

    kens_model.compute(artic=best_camangle, grang=best_gratingangle, ncols=spec.shape[0])
    spec_wl = kens_model.get_wavelength_list()
    numpy.savetxt("spec_precalib", numpy.append(spec_wl.reshape((-1,1)),
                                                spec.reshape((-1,1)), axis=1))

    #
    # Now cross-identify all lines, and do a least-sq fit to further optimize 
    # the spectrograph angles and compute the final wavelength calibration fit
    # 

    lineinfo[:,5] = kens_model.compute(
        artic=best_camangle, 
        grang=best_gratingangle,
        colpos = lineinfo[:,0],
        )
    
    numpy.savetxt("linelist.calib", lineinfo)

    # one last time, match the two line lists, using the same matching radius 
    # as above

    nearest_neighbor, i = ref_kdtree.query(
        x=lineinfo[:,5].reshape((-1,1)), 
        k=1, # only find 1 nearest neighbor
        p=1, # use linear distance
        distance_upper_bound=matching_radius)
    good_matches = i < ref_lines.shape[0]

    # print "\n-------------"*5
    # print nearest_neighbor.shape
    # print nearest_neighbor
    # print i.shape
    # print i
    # print good_matches
    # print lineinfo.shape
    # print ref_lines.shape
    # print numpy.sum(good_matches)

    n_matches = numpy.sum(good_matches)

    # matched_ref = ref_lines[:,0][good_matches]
    # matched_line_idx = i[good_matches]
    
    # print "============"
    matched_catalog = numpy.zeros((n_matches, lineinfo.shape[1]+ref_lines.shape[1]))
    # print matched_catalog.shape
    
    matched_catalog[:,:lineinfo.shape[1]] = lineinfo[good_matches]
    matched_catalog[:,lineinfo.shape[1]:] = ref_lines[i[good_matches]]

    numpy.savetxt("matched_lines.dat", matched_catalog)

    # print "xxxxxxxxxxxxx"

    def fit__wavelength(p_fit, line_x, rssmodel):
        computed_wl = rssmodel.compute(
            grang=p_fit[0],
            artic=p_fit[1],
            colpos=line_x)
        return computed_wl

    def fit__wavelength_error(p_fit, matched_lines, rssmodel):
        line_wl = fit__wavelength(p_fit, matched_lines[:,0], rssmodel)
        ref_wl = matched_lines[:,len(lineinfo_cols)]
        delta_wl = line_wl - ref_wl # add some weighting here???
        return delta_wl

    p_start = [best_gratingangle, best_camangle]
    fit_args = (matched_catalog, kens_model)
    _fit = scipy.optimize.leastsq(fit__wavelength_error,
                                  p_start, 
                                  args=fit_args,
                                  maxfev=500,
                                  full_output=1)
    p_final = _fit[0]
    logger.info("Fit results: Was: %s --> Now: %s" % (
        " ".join(["%.4f" % f for f in p_start]),
        " ".join(["%.4f" % f for f in p_final]),
        ))
    
    # print p_start, " ==> ", p_final

    lineinfo[:,lineinfo_colidx['WAVELENGTH']] = fit__wavelength(
        p_final, lineinfo[:, lineinfo_colidx["PIXELPOS"]], kens_model)
    matched_catalog[:, lineinfo_colidx['WAVELENGTH']] = fit__wavelength(
        p_final, matched_catalog[:, lineinfo_colidx["PIXELPOS"]], kens_model)

    numpy.savetxt("matched_lines_afterfit.dat", matched_catalog)

    # 
    # compute rms
    #
    rms = numpy.std(matched_catalog[:, lineinfo_colidx['WAVELENGTH']] - \
                    matched_catalog[:, len(lineinfo_cols)])
    logger.info("Found RMS: %f" % (rms))

    wls = compute_wavelength_solution(matched_catalog, max_order=3)
    logger.info("Best fit wavelength solution: L = %9.3f %+9.3f * x %+9.3e x^2 %+9.3e x^3" % (
        wls[0], wls[1], wls[2], wls[3]))

    
    # # # set the indices for bad matches to a valid value
    # # i[~good_matches] = 0

    # # matched = numpy.zeros((arc.shape[0], (arc.shape[1]+ref.shape[1])))
    # # matched[:,:arc.shape[1]] = arc
    # # matched[:,arc.shape[1]:] = ref[i]
    # # #print "XXXXXXXXXXXX\n"*3,ref.shape, ref[i].shape, i.shape, bad_matches.shape
    # # #print bad_matches
    # # numpy.savetxt("matched_raw", matched)
    # # numpy.savetxt("matched_bad", bad_matches)
    # # #sys.exit(0)

    # # #print "XXXX\n"*3
    # # matched = matched[~bad_matches]
    

    # return


    # i = numpy.array(i)
    # bad_matches = (i>=ref.shape[0])
    # i[bad_matches] = 0

        
    # return

    
    # reference_pixel_x = 0.5 * spec.shape[0]

    # # dispersion was calculated above
    # # central wavelength 
    # central_wavelength = kens_model.central_wavelength() #numpy.median(all_wavelength)  # 0.5 * (blue_edge + red_edge)
    # max_dispersion_error = 0.00 #10 # +/- 10% should be plenty
    # dispersion_search_steps = 0.01 # vary dispersion in 1% steps
    # n_dispersion_steps = (max_dispersion_error / dispersion_search_steps) * 2 + 1

    # #
    # # compute what dispersion factors we are trying 
    # #
    # trial_dispersions = numpy.linspace(1.0-max_dispersion_error, 
    #                                   1.0+max_dispersion_error,
    #                                   n_dispersion_steps) * dispersion 
    # n_matches = numpy.zeros((trial_dispersions.shape[0]))
    # matched_cats = [None] * trial_dispersions.shape[0]

    # #
    # # Now try each dispersion, one by one, and compute what wavelength offset 
    # # we would need to make the maximum number of lines match known lines from 
    # # the line catalog.
    # # 

    # #
    # # New: Assume we know line centers to within a pixel, then we can match 
    # # lines that lie within a 1-pixel radius
    # #
    # # Remember: units here are angstroem !!!
    # matching_radius = 2 * dispersion
    # logger.debug("Considering lines within %.1f A of a known ARC line as matched!" % (
    #         matching_radius))
    # # print "before loop:", lineinfo.shape

    # for idx, _dispersion in enumerate(trial_dispersions):

    #     # compute dispersion including the correction
    #     #_dispersion = dispersion * disp_factor

    #     # copy the original line info so we don't accidently overwrite important data
    #     _lineinfo = numpy.array(lineinfo)
        
    #     # find optimal line shifts and match lines 
    #     # consider lines within 5A of each other matches
    #     # --> this most likely will depend on spectral resolution and binning
    #     matched_cat = find_matching_lines(ref_lines, _lineinfo, 
    #                                       rss,
    #                                       _dispersion, central_wavelength,
    #                                       reference_pixel_x,
    #                                       matching_radius = matching_radius, 
    #     )

    #     # Save results for later picking of the best one
    #     n_matches[idx] = matched_cat.shape[0]
    #     matched_cats[idx] = matched_cat

    #     numpy.savetxt("dispersion_scale_%.3f" % (_dispersion), matched_cat)

    # #
    # # Find the solution with the most matched lines
    # #
    # n_max = numpy.argmax(n_matches)
    
    # #print

    # #print "most matched lines:", n_matches[n_max],
    # #print "best dispersion: %f" % (trial_dispersions[n_max])
    # logger.debug("Choosing best solution: %4d for dispersion %8.4f A/px" % (
    #         n_matches[n_max], trial_dispersions[n_max]))

    # numpy.savetxt("matchcount", numpy.append(trial_dispersions.reshape((-1,1)),
    #                                          n_matches.reshape((-1,1)),
    #                                          axis=1))

    # matched = matched_cats[n_max]
    # numpy.savetxt("matched.lines.best", matched)
    
    # # print "***************************\n"*5
    # # print lineinfo.shape

    # logger.info("Computing an analytical wavelength calibration...")
    # wls = compute_wavelength_solution(matched, max_order=3)

    # spec_x = numpy.polynomial.polynomial.polyval(
    #     numpy.arange(spec.shape[0]), wls).reshape((-1,1))
    # spec_combined = numpy.append(spec_x, spec.reshape((-1,1)), axis=1)
    # numpy.savetxt("spec.calib.start", spec_combined)

    # #
    # # Now we have a best-match solution
    # # Match lines again to see what the RMS is - use a small matching radius now
    # #

    # ############################################################################
    # #
    # # Since the original matching was done using a simple polynomial form, 
    # # let's now iterate the rough solution using higher order polynomials to 
    # # (hopefully) match a larger number of lines
    # #
    # # Add here: 
    # # - Keep an eye on r.m.s. of the fit, and the number of matched lines
    # # - with every step, reduce the matching radius to make sure we are matching
    # #   only with the most likely counterpart in case of close line (blends)
    # #
    # ############################################################################
    # #prev_wls = wls
    # matching_radius = 2*dispersion
    # logger.debug("Refining WLS using all %d lines" % (lineinfo.shape[0]))
    # for iteration in range(3):

    #     #sys.stdout.write("\n\n\n"); sys.stdout.flush()

    #     _linelist = numpy.array(lineinfo)

    #     # Now compute the new wavelength for each line
    #     _linelist[:,lineinfo_colidx['WAVELENGTH']] = numpy.polynomial.polynomial.polyval(
    #         _linelist[:,lineinfo_colidx['PIXELPOS']], wls)

    #     numpy.savetxt("lineinfo.iteration=%d" % (iteration+1), _linelist, "%10.4f")

    #     # compute wl with polyval
    #     # _wl = lineinfo[:,0]
    #     # numpy.savetxt("final.1", _wl)

    #     # numpy.savetxt("final.2", numpy.polynomial.polynomial.polyval(_wl, wls))
    #     # numpy.savetxt("final.3", _wl*wls[1]+wls[0])

    #     # With the refined wavelength solution, match lines between the 
    #     # ARC spectrum and the reference line catalog
    #     new_matches = match_line_catalogs(_linelist, ref_lines, 
    #                                       matching_radius=1.7, #matching_radius, # wsa 50 XXX
    #                                       verbose=False,
    #                                       col_arc=lineinfo_colidx['WAVELENGTH'], 
    #                                       col_ref=0,
    #                                       dumpfile="finalmatch.%d" % (iteration+1))

    #     logger.debug("WLS Refinement step %3d: now %3d matches!" % (
    #             iteration+1, new_matches.shape[0]))

    #     # -- for debugging --
    #     numpy.savetxt("matched.cat.iter%d" % (iteration+1), new_matches)

    #     #
    #     # Before fitting, iteratively reject obvious outliers most likely caused
    #     # by matching wrong lines
    #     #
    #     likely_outlier = numpy.isnan(new_matches[:,lineinfo_colidx['WAVELENGTH']])
    #     for reject in range(3):
    #         diff_angstroem = new_matches[:,lineinfo_colidx['WAVELENGTH']] - \
    #             new_matches[:,len(lineinfo_colidx)]
    #         med = numpy.median(diff_angstroem[~likely_outlier])
    #         stdx = numpy.std(diff_angstroem[~likely_outlier])
    #         sigma = scipy.stats.scoreatpercentile(diff_angstroem[~likely_outlier], [16,84])
    #         std = 0.5*(sigma[1]-sigma[0])
    #         likely_outlier = (diff_angstroem > med+2*std) | (diff_angstroem < med-2*std)
    #         logger.debug("Med/Std/StdX= %f / %f / %f" % (med, std, stdx))

    #     # Now we have a better idea on outliers, so reject them and work with 
    #     # what's left
    #     new_matches = new_matches[~likely_outlier]
    #     logger.debug("WLS Refinement step %3d: %3d matches left after outliers!" % (
    #             iteration+1, new_matches.shape[0]))

    #     # And with the matched line list, compute a new wavelength solution
    #     wls = compute_wavelength_solution(new_matches, max_order=4)#+iteration)

    #     # -- for debugging --
    #     numpy.savetxt("matched.outlierreject.iter%d" % (iteration+1), new_matches)
    #     #
    #     spec_x = numpy.polynomial.polynomial.polyval(
    #         numpy.arange(spec.shape[0])+1., wls).reshape((-1,1))
    #     spec_combined = numpy.append(spec_x, spec.reshape((-1,1)), axis=1)
    #     numpy.savetxt("spec.calib.iteration_%d" % (iteration+1), spec_combined)

    #     #prev_wls = wls

    # #return
    # final_match = matched


    # numpy.savetxt("matched.cat.final", final_match)


    # Also save the original spectrum as text file
    spec_x = numpy.polynomial.polynomial.polyval(numpy.arange(spec.shape[0]), wls).reshape((-1,1))
    spec_combined = numpy.append(spec_x, spec.reshape((-1,1)), axis=1)
    numpy.savetxt("spec.calib", spec_combined)
    

    # print lines
    # print _linelist
    # print spec.shape
    # print spec_combined.shape
    # print line
    # print wls

    return {
        'spec': spec,
        'spec_combined': spec_combined,
        'linelist_ref': lines,
        # 'linelist_arc': _linelist,
        'linelist_arc': lineinfo,
        'line': line,
        'wl_fit_coeffs': wls,
        }
コード例 #13
0
def test_ModelSolution():

    hdu = pyfits.open(inimage)

    # create the data arra
    data = hdu[1].data

    # create the header information
    instrume = hdu[1].header['INSTRUME'].strip()
    grating = hdu[1].header['GRATING'].strip()
    grang = hdu[1].header['GR-ANGLE']
    arang = hdu[1].header['AR-ANGLE']
    filter = hdu[1].header['FILTER'].strip()
    slit = float(hdu[1].header['MASKID'])
    xbin, ybin = hdu[1].header['CCDSUM'].strip().split()

    # print instrume, grating, grang, arang, filter
    # print xbin, ybin
    # print len(data), len(data[0])

    # create the RSS Model
    rssmodel = RSSModel.RSSModel(grating_name=grating,
                                 gratang=grang,
                                 camang=arang,
                                 slit=slit,
                                 xbin=int(xbin),
                                 ybin=int(ybin))

    xarr = np.arange(len(data[0]), dtype='int64')
    rss = rssmodel.rss
    alpha = rss.gratang
    beta = rss.gratang - rss.camang
    d = rss.detector.xbin * rss.detector.pix_size * (xarr - 0.5 * len(xarr))
    dbeta = np.degrees(np.arctan(d / rss.camera.focallength))
    y = 1e7 * rss.calc_wavelength(alpha, beta - dbeta)

    #ws=WS.WavelengthSolution(xp, wp, function='model', sgraph=rssmodel.rss, xlen=len(data[0]), order=4, cfit='all')
    ws = WS.WavelengthSolution(xarr,
                               y,
                               function='model',
                               sgraph=rssmodel.rss,
                               xlen=len(data[0]),
                               order=4,
                               cfit='ndcoef')

    #ws=WS.WavelengthSolution(xarr, y, function='poly', order=3)
    #ws=WS.WavelengthSolution(xp, wp, function='poly', order=3)

    ws.fit()
    print ws.coef
    print ws.func.result
    for c in ws.func.spcoef:
        print c()
    for c in ws.func.ndcoef:
        print c()
    print ws.value(2000)
    print ws.sigma(xp, wp)
    print ws.chisq(xp, wp, ep)

    pl.figure()
    # pl.plot(xarr,y)
    #pl.plot(xarr, ws.value(xarr))
    #pl.plot(xp, wp-ws.value(xp), ls='', marker='o')
    pl.plot(xarr, y - ws.value(xarr))
    #pl.plot(ls.x, ls.y-ls(ls.x), ls='', marker='o')
    pl.show()
コード例 #14
0
def arclisfromhdr(hdr, slitwidth=1.50, xbin=2, ybin=2, lamp='Ar.txt'):

    # ** some numbers below hardwired for 2x2 binning (~3170 pix) **
    grname = hdr['grating']
    camang = hdr['camang']
    gratang = hdr['gr-angle']

    rss = RSSModel.RSSModel(grating_name=grname,
                            gratang=gratang,
                            camang=camang,
                            slit=slitwidth,
                            xbin=xbin,
                            ybin=ybin)

    # set up the detector
    ycen = rss.detector.get_ypixcenter()
    d_arr = rss.detector.make_detector()[ycen, :]
    xarr = np.arange(len(d_arr))
    w = 1e7 * rss.get_wavelength(xarr)

    #set up the artificial spectrum
    res = 1e7 * rss.calc_resolelement(rss.alpha(), -rss.beta())

    sw, sf = pl.loadtxt(lamp, usecols=(0, 1), unpack=True)
    wrange = [1e7 * rss.calc_bluewavelength(), 1e7 * rss.calc_redwavelength()]
    spec = Spectrum.Spectrum(sw,
                             sf,
                             wrange=wrange,
                             dw=res / 10,
                             stype='line',
                             sigma=res)

    #interpolate it over the same range as the detector
    spec.interp(w)

    if (0):
        #plot it
        pl.figure()
        pl.plot(spec.wavelength, d_arr * ((spec.flux) / spec.flux.max()))
        pl.plot(spec.wavelength, d_arr * 0.1)
        #yy=np.median(data[1000:1050,3:3173],0)
        #pl.plot(spec.wavelength,yy/yy.max())

        ymod = d_arr * ((spec.flux) / spec.flux.max())
        ydata = yy / yy.max()

        off, rval = xcor2(ydata, ymod, 100.)

        yyy = np.roll(yy, -int(off)) / yy.max()
        pl.plot(spec.wavelength, yyy)
        pl.show()
        stop()

    # We need to return
    # - a matched list of wavelength(of each pixel),flux for the arc
    # - a list of the arc lines
    modarclam = spec.wavelength
    modarcspec = d_arr * ((spec.flux) / spec.flux.max())

    # extract pixel positions for lines of wavelength sw:
    xpix = np.arange(np.size(modarclam))
    ixp = np.interp(sw, modarclam, xpix, left=0, right=0)

    ok = np.reshape(((ixp > 0.) & (ixp < 3170)).nonzero(), -1)

    np.savetxt('_tmparc.lis', np.transpose((ixp[ok], sw[ok], sw[ok])))

    return modarclam, modarcspec
コード例 #15
0
def specidentify(images,
                 linelist,
                 outfile,
                 guesstype='rss',
                 guessfile='',
                 automethod='Matchlines',
                 function='poly',
                 order=3,
                 rstep=100,
                 rstart='middlerow',
                 mdiff=5,
                 thresh=3,
                 niter=5,
                 smooth=0,
                 subback=0,
                 inter=True,
                 startext=0,
                 clobber=False,
                 textcolor='black',
                 preprocess=False,
                 logfile='salt.log',
                 verbose=True):

    with logging(logfile, debug) as log:

        # set up the variables
        infiles = []
        outfiles = []

        # Check the input images
        infiles = saltio.argunpack('Input', images)

        # create list of output files
        outfiles = saltio.argunpack('Output', outfile)

        # open the line lists
        slines, sfluxes = st.readlinelist(linelist)

        # Identify the lines in each file
        for img, ofile in zip(infiles, outfiles):

            # open the image
            hdu = saltio.openfits(img)

            # get the basic information about the spectrograph
            dateobs = saltkey.get('DATE-OBS', hdu[0])
            try:
                utctime = saltkey.get('UTC-OBS', hdu[0])
            except SaltError:
                utctime = saltkey.get('TIME-OBS', hdu[0])

            instrume = saltkey.get('INSTRUME', hdu[0]).strip()
            grating = saltkey.get('GRATING', hdu[0]).strip()
            grang = saltkey.get('GR-ANGLE', hdu[0])
            grasteps = saltkey.get('GRTILT', hdu[0])
            arang = saltkey.get('AR-ANGLE', hdu[0])
            arsteps = saltkey.get('CAMANG', hdu[0])
            rssfilter = saltkey.get('FILTER', hdu[0])
            specmode = saltkey.get('OBSMODE', hdu[0])
            masktype = saltkey.get('MASKTYP', hdu[0]).strip().upper()
            slitname = saltkey.get('MASKID', hdu[0])
            xbin, ybin = saltkey.ccdbin(hdu[0], img)

            for i in range(startext, len(hdu)):
                if hdu[i].name == 'SCI':
                    log.message('Proccessing extension %i in  %s' % (i, img))
                    # things that will change for each slit

                    if masktype == 'LONGSLIT':
                        slit = st.getslitsize(slitname)
                        xpos = -0.2666
                        ypos = 0.0117
                        objid = None
                    elif masktype == 'MOS':
                        slit = 1.
                        #slit=saltkey.get('SLIT', hdu[i])

                        # set up the x and y positions
                        miny = hdu[i].header['MINY']
                        maxy = hdu[i].header['MAXY']
                        ras = hdu[i].header['SLIT_RA']
                        des = hdu[i].header['SLIT_DEC']
                        objid = hdu[i].header['SLITNAME']

                        # TODO: Check the perfomance of masks at different PA
                        rac = hdu[0].header['MASK_RA']
                        dec = hdu[0].header['MASK_DEC']
                        pac = hdu[0].header['PA']

                        # these are hard wired at the moment
                        xpixscale = 0.1267 * xbin
                        ypixscale = 0.1267 * ybin
                        cx = int(3162 / xbin)
                        cy = int(2050 / ybin)

                        x, y = mt.convert_fromsky(ras,
                                                  des,
                                                  rac,
                                                  dec,
                                                  xpixscale=xpixscale,
                                                  ypixscale=ypixscale,
                                                  position_angle=-pac,
                                                  ccd_cx=cx,
                                                  ccd_cy=cy)
                        xpos = 0.015 * 2 * (cx - x[0])
                        ypos = 0.0117
                    else:
                        msg = '%s is not a currently supported masktype' % masktype
                        raise SALTSpecError(msg)

                    if instrume not in ['PFIS', 'RSS']:
                        msg = '%s is not a currently supported instrument' % instrume
                        raise SALTSpecError(msg)

                    # create RSS Model
                    rss = RSSModel.RSSModel(grating_name=grating.strip(),
                                            gratang=grang,
                                            camang=arang,
                                            slit=slit,
                                            xbin=xbin,
                                            ybin=ybin,
                                            xpos=xpos,
                                            ypos=ypos)
                    res = 1e7 * rss.calc_resolelement(rss.alpha(), -rss.beta())
                    dres = res / 10.0
                    wcen = 1e7 * rss.calc_centralwavelength()
                    R = rss.calc_resolution(wcen / 1e7, rss.alpha(),
                                            -rss.beta())
                    logmsg = '\nGrating\tGR-ANGLE\tAR-ANGLE\tSlit\tWCEN\tR\n'
                    logmsg += '%s\t%8.3f\t%8.3f\t%4.2f\t%6.2f\t%4f\n' % (
                        grating, grang, arang, slit, wcen, R)
                    if log:
                        log.message(logmsg, with_header=False)

                    # set up the data for the source
                    try:
                        data = hdu[i].data
                    except Exception, e:
                        message = 'Unable to read in data array in %s because %s' % (
                            img, e)
                        raise SALTSpecError(message)

                    # set up the center row
                    if rstart == 'middlerow':
                        ystart = int(0.5 * len(data))
                    else:
                        ystart = int(rstart)

                    rss.gamma = 0.0
                    if masktype == 'MOS':
                        rss.gamma = 180.0 / math.pi * math.atan(
                            (y * rss.detector.pix_size * rss.detector.ybin -
                             0.5 * rss.detector.find_height()) /
                            rss.camera.focallength)

                    # set up the xarr array based on the image
                    xarr = np.arange(len(data[ystart]), dtype='int64')

                    # get the guess for the wavelength solution
                    if guesstype == 'rss':
                        # set up the rss model
                        ws = st.useRSSModel(xarr,
                                            rss,
                                            function=function,
                                            order=order,
                                            gamma=rss.gamma)
                        if function in ['legendre', 'chebyshev']:
                            ws.func.func.domain = [xarr.min(), xarr.max()]
                    elif guesstype == 'file':
                        soldict = {}
                        soldict = readsolascii(guessfile, soldict)
                        timeobs = enterdatetime('%s %s' % (dateobs, utctime))
                        exptime = saltkey.get('EXPTIME', hdu[0])
                        filtername = saltkey.get('FILTER', hdu[0]).strip()
                        try:
                            slitid = saltkey.get('SLITNAME', hdu[i])
                        except:
                            slitid = None

                        function, order, coef, domain = findlinesol(soldict,
                                                                    ystart,
                                                                    True,
                                                                    timeobs,
                                                                    exptime,
                                                                    instrume,
                                                                    grating,
                                                                    grang,
                                                                    arang,
                                                                    filtername,
                                                                    slitid,
                                                                    xarr=xarr)
                        ws = WavelengthSolution.WavelengthSolution(
                            xarr, xarr, function=function, order=order)
                        ws.func.func.domain = domain
                        ws.set_coef(coef)
                    else:
                        raise SALTSpecError(
                            'This guesstype is not currently supported')

                    # identify the spectral lines
                    ImageSolution = identify(data,
                                             slines,
                                             sfluxes,
                                             xarr,
                                             ystart,
                                             ws=ws,
                                             function=function,
                                             order=order,
                                             rstep=rstep,
                                             mdiff=mdiff,
                                             thresh=thresh,
                                             niter=niter,
                                             method=automethod,
                                             res=res,
                                             dres=dres,
                                             smooth=smooth,
                                             inter=inter,
                                             filename=img,
                                             subback=0,
                                             textcolor=textcolor,
                                             preprocess=preprocess,
                                             log=log,
                                             verbose=verbose)

                    if outfile and len(ImageSolution):
                        writeIS(ImageSolution,
                                outfile,
                                dateobs=dateobs,
                                utctime=utctime,
                                instrume=instrume,
                                grating=grating,
                                grang=grang,
                                grasteps=grasteps,
                                arsteps=arsteps,
                                arang=arang,
                                rfilter=rssfilter,
                                slit=slit,
                                xbin=xbin,
                                ybin=ybin,
                                objid=objid,
                                filename=img,
                                log=log,
                                verbose=verbose)
コード例 #16
0
import pylab as pl
import numpy as np

import PySpectrograph
from PySpectrograph.Models import RSSModel
from PySpectrograph.Spectra import Spectrum

# create the spectrograph model
rss = RSSModel.RSSModel(grating_name="PG0900",
                        gratang=15.875,
                        camang=31.76496,
                        slit=1.50,
                        xbin=2,
                        ybin=2)

# print out some basic statistics
print 1e7 * rss.calc_bluewavelength(), 1e7 * rss.calc_centralwavelength(
), 1e7 * rss.calc_redwavelength()
R = rss.calc_resolution(rss.calc_centralwavelength(), rss.alpha(), -rss.beta())
res = 1e7 * rss.calc_resolelement(rss.alpha(), -rss.beta())
print R, res

# set up the detector
ycen = rss.detector.get_ypixcenter()
d_arr = rss.detector.make_detector()[ycen, :]
w = 1e7 * rss.get_wavelength(xarr)

# set up the artificial spectrum
sw, sf = pl.loadtxt('Ne.txt', usecols=(0, 1), unpack=True)
wrange = [1e7 * rss.calc_bluewavelength(), 1e7 * rss.calc_redwavelength()]
spec = Spectrum.Spectrum(sw,