コード例 #1
0
ファイル: ExtremeEvent.py プロジェクト: kliegeois/Albany
def setInitialGuess(problem, p, n_params, params_in_vector=True):
    if params_in_vector:
        parameter_map = problem.getParameterMap(0)
        parameter = Tpetra.Vector(parameter_map, dtype="d")
        for j in range(0, n_params):
            parameter[j] = p[j]
        problem.setParameter(0, parameter)
    else:
        for j in range(0, n_params):
            parameter_map = problem.getParameterMap(j)
            parameter = Tpetra.Vector(parameter_map, dtype="d")
            parameter[0] = p[j]
            problem.setParameter(j, parameter)
コード例 #2
0
ファイル: ExtremeEvent.py プロジェクト: kliegeois/Albany
 def set_theta_star(self, theta_star):
     self.theta_star = theta_star
     if self.params_in_vector:
         parameter_map = self.problem.getParameterMap(0)
         parameter = Tpetra.Vector(parameter_map, dtype="d")
         for k in range(0, self.n_params):
             parameter[k] = theta_star[k]
         self.problem.setParameter(0, parameter)
     else:
         for k in range(0, self.n_params):
             parameter_map = self.problem.getParameterMap(k)
             parameter = Tpetra.Vector(parameter_map, dtype="d")
             parameter[0] = theta_star[k]
             self.problem.setParameter(k, parameter)
コード例 #3
0
ファイル: thermal_steady_2.py プロジェクト: kliegeois/Albany
def evaluate_responses(X, Y, problem, recompute=False):
    if not recompute and os.path.isfile('Z1_2.txt'):
        Z1 = np.loadtxt('Z1_2.txt')
        Z2 = np.loadtxt('Z2_2.txt')
    else:
        comm = MPI.COMM_WORLD
        myGlobalRank = comm.rank

        parameter_map = problem.getParameterMap(0)
        parameter = Tpetra.Vector(parameter_map, dtype="d")

        n_x = len(X)
        n_y = len(Y)
        Z1 = np.zeros((n_y, n_x))
        Z2 = np.zeros((n_y, n_x))

        for i in range(n_x):
            parameter[0] = X[i]
            for j in range(n_y):
                parameter[1] = Y[j]
                problem.setParameter(0, parameter)

                problem.performSolve()

                Z1[j, i] = problem.getCumulativeResponseContribution(0, 0)
                Z2[j, i] = problem.getCumulativeResponseContribution(0, 1)

        np.savetxt('Z1_2.txt', Z1)
        np.savetxt('Z2_2.txt', Z2)
    return Z1, Z2
コード例 #4
0
    def test_all(self):
        cls = self.__class__
        rank = cls.comm.getRank()

        file_dir = os.path.dirname(__file__)

        # Create an Albany problem:
        filename = "input_dirichlet_mixed_paramsT.yaml"
        parameter = Utils.createParameterList(file_dir + "/" + filename,
                                              cls.parallelEnv)

        parameter.sublist("Discretization").set("1D Elements", 10)
        parameter.sublist("Discretization").set("2D Elements", 10)

        problem = Utils.createAlbanyProblem(parameter, cls.parallelEnv)

        parameter_map_0 = problem.getParameterMap(0)
        para_0_new = Tpetra.Vector(parameter_map_0, dtype="d")

        parameter_map_1 = problem.getParameterMap(1)
        para_1_new = Tpetra.Vector(parameter_map_1, dtype="d")
        para_1_new[:] = 0.333333

        n_values = 5
        para_0_values = np.linspace(-1, 1, n_values)
        responses = np.zeros((n_values, ))

        responses_target = np.array(
            [0.69247527, 0.48990929, 0.35681844, 0.29320271, 0.2990621])
        tol = 1e-8

        for i in range(0, n_values):
            para_0_new[:] = para_0_values[i]
            problem.setParameter(0, para_0_new)

            problem.performSolve()

            response = problem.getResponse(0)
            responses[i] = response.getData()[0]

        print("p = " + str(para_0_values))
        print("QoI = " + str(responses))

        if rank == 0:
            self.assertTrue(
                np.abs(np.amax(responses - responses_target)) < tol)
コード例 #5
0
ファイル: ExtremeEvent.py プロジェクト: kliegeois/Albany
def importanceSamplingEstimator(theta_0,
                                C,
                                theta_star,
                                F_star,
                                P_star,
                                samples_0,
                                problem,
                                F_id=1,
                                params_in_vector=True):
    invC = np.linalg.inv(C)
    n_l = len(F_star)
    P = np.zeros((n_l, ))
    n_samples = np.shape(samples_0)[0]
    n_params = np.shape(samples_0)[1]
    # Loop over the lambdas
    for i in range(0, n_l):
        # Loop over the samples
        for j in range(0, n_samples):
            sample = samples_0[j, :] + theta_star[i, :] - theta_0

            if params_in_vector:
                parameter_map = problem.getParameterMap(0)
                parameter = Tpetra.Vector(parameter_map, dtype="d")
                for j in range(0, n_params):
                    parameter[j] = sample[j]
                problem.setParameter(0, parameter)
            else:
                for k in range(0, n_params):
                    parameter_map = problem.getParameterMap(k)
                    parameter = Tpetra.Vector(parameter_map, dtype="d")
                    parameter[0] = sample[k]
                    problem.setParameter(k, parameter)
            problem.performSolve()

            if problem.getCumulativeResponseContribution(0, F_id) > F_star[i]:
                P[i] += np.exp(-invC.dot(theta_star[i, :] -
                                         theta_0).dot(sample -
                                                      theta_star[i, :]))
        P[i] = P_star[i] * P[i] / n_samples
    return P
コード例 #6
0
def main(parallelEnv):
    comm = MPI.COMM_WORLD
    myGlobalRank = comm.rank

    # Create an Albany problem:
    filename = "input_dirichletT.yaml"
    parameter = Utils.createParameterList(
        filename, parallelEnv
    )

    problem = Utils.createAlbanyProblem(parameter, parallelEnv)

    parameter_map_0 = problem.getParameterMap(0)
    parameter_0 = Tpetra.Vector(parameter_map_0, dtype="d")

    N = 200
    p_min = -2.
    p_max = 2.

    # Generate N samples randomly chosen in [p_min, p_max]:
    p = np.random.uniform(p_min, p_max, N)
    QoI = np.zeros((N,))

    # Loop over the N samples and evaluate the quantity of interest:
    for i in range(0, N):
        parameter_0[0] = p[i]
        problem.setParameter(0, parameter_0)

        problem.performSolve()

        response = problem.getResponse(0)
        QoI[i] = response.getData()[0]

    if myGlobalRank == 0:
        if printPlot:
            f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,6))

            ax1.hist(p)
            ax1.set_ylabel('Counts')
            ax1.set_xlabel('Random parameter')

            ax2.scatter(p, QoI)
            ax2.set_ylabel('Quantity of interest')
            ax2.set_xlabel('Random parameter')

            ax3.hist(QoI)
            ax3.set_ylabel('Counts')
            ax3.set_xlabel('Quantity of interest')

            plt.savefig('UQ.jpeg', dpi=800)
            plt.close()
コード例 #7
0
ファイル: ExtremeEvent.py プロジェクト: kliegeois/Albany
def mixedImportanceSamplingEstimator(theta_0,
                                     C,
                                     theta_star,
                                     F_star,
                                     P_star,
                                     samples_0,
                                     problem,
                                     angle_1,
                                     angle_2,
                                     F_id=1,
                                     params_in_vector=True):
    invC = np.linalg.inv(C)
    n_l = len(F_star)
    P = np.zeros((n_l, ))
    n_samples = np.shape(samples_0)[0]
    n_params = np.shape(samples_0)[1]

    problem.updateCumulativeResponseContributionWeigth(0, 0, -1)
    problem.updateCumulativeResponseContributionWeigth(0, F_id, 0)
    # Loop over the lambdas
    for i in range(0, n_l):
        # Compute the normal of I - lambda F (= normal of F)
        n_theta_star = np.zeros((n_params, ))

        if params_in_vector:
            parameter_map = problem.getParameter(0)
            parameter = Tpetra.Vector(parameter_map, dtype="d")
            for j in range(0, n_params):
                parameter[j] = theta_star[i, j]
            problem.setParameter(0, parameter)
        else:
            for k in range(0, n_params):
                parameter_map = problem.getParameterMap(k)
                parameter = Tpetra.Vector(parameter_map, dtype="d")
                parameter[0] = theta_star[i, k]
                problem.setParameter(k, parameter)

        problem.performSolve()
        if params_in_vector:
            n_theta_star = -problem.getSensitivity(0, 0).getData(0)
        else:
            for k in range(0, n_params):
                n_theta_star[k] = -problem.getSensitivity(0, k).getData(0)[0]
        norm = np.linalg.norm(n_theta_star)
        n_theta_star /= norm

        # Loop over the samples
        for j in range(0, n_samples):

            vector_2 = samples_0[j, :] - theta_0
            unit_vector_2 = vector_2 / np.linalg.norm(vector_2)
            dot_product = np.dot(n_theta_star, unit_vector_2)
            shifted_sample_angles = np.arccos(dot_product)

            sample = samples_0[j, :] + theta_star[i, :] - theta_0

            if shifted_sample_angles < angle_1:
                current_F_above = True
            elif shifted_sample_angles > angle_2:
                current_F_above = False
            else:

                if params_in_vector:
                    parameter_map = problem.getParameter(0)
                    parameter = Tpetra.Vector(parameter_map, dtype="d")
                    for j in range(0, n_params):
                        parameter[j] = sample[j]
                    problem.setParameter(0, parameter)
                else:
                    for k in range(0, n_params):
                        parameter_map = problem.getParameterMap(k)
                        parameter = Tpetra.Vector(parameter_map, dtype="d")
                        parameter[0] = sample[k]
                        problem.setParameter(k, parameter)
                problem.performSolve()
                current_F_above = problem.getCumulativeResponseContribution(
                    0, F_id) > F_star[i]
            if current_F_above:
                P[i] += np.exp(-invC.dot(theta_star[i, :] -
                                         theta_0).dot(sample -
                                                      theta_star[i, :]))
        P[i] = P_star[i] * P[i] / n_samples
    return P
コード例 #8
0
    def test_all(self):
        cls = self.__class__
        rank = cls.comm.getRank()

        file_dir = os.path.dirname(__file__)

        # Create an Albany problem:
        filename = "input_dirichlet_mixed_paramsT.yaml"
        parameter = Utils.createParameterList(
            file_dir + "/" + filename, cls.parallelEnv
        )

        parameter.sublist("Discretization").set("1D Elements", 10)
        parameter.sublist("Discretization").set("2D Elements", 10)

        problem = Utils.createAlbanyProblem(parameter, cls.parallelEnv)

        g_target_before = 0.35681844
        g_target_after = 0.17388298
        g_target_2 = 0.19570272
        p_0_target = 0.39886689
        p_1_norm_target = 5.37319376038225
        tol = 1e-8

        problem.performSolve()

        response_before_analysis = problem.getResponse(0)

        problem.performAnalysis()

        para_0 = problem.getParameter(0)
        para_1 = problem.getParameter(1)

        print(para_0.getData())
        print(para_1.getData())

        para_1_norm = Utils.norm(para_1.getData(), cls.comm)
        print(para_1_norm)

        if rank == 0:
            self.assertTrue(np.abs(para_0[0] - p_0_target) < tol)
            self.assertTrue(np.abs(para_1_norm - p_1_norm_target) < tol)

        problem.performSolve()

        response_after_analysis = problem.getResponse(0)

        print("Response before analysis " + str(response_before_analysis.getData()))
        print("Response after analysis " + str(response_after_analysis.getData()))
        if rank == 0:
            self.assertTrue(np.abs(response_before_analysis[0] - g_target_before) < tol)
            self.assertTrue(np.abs(response_after_analysis[0] - g_target_after) < tol)

        parameter_map_0 = problem.getParameterMap(0)
        para_0_new = Tpetra.Vector(parameter_map_0, dtype="d")
        para_0_new[:] = 0.0
        problem.setParameter(0, para_0_new)

        problem.performSolve()

        response = problem.getResponse(0)
        print("Response after setParameter " + str(response.getData()))
        if rank == 0:
            self.assertTrue(np.abs(response[0] - g_target_2) < tol)