plt.title(title) plt.colorbar() tick_marks = np.arange(len(CM_LABELS)) plt.xticks(tick_marks, CM_LABELS, rotation=45) plt.yticks(tick_marks, CM_LABELS) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') NUM_PER_CATEGORY = 5500 print('loading data....') print(str(NUM_PER_CATEGORY) + ' examples per category') start_time = time.time() # images, labels = prep.get_crowdflower(NUM_PER_CATEGORY) images, labels = prep.get_data(NUM_PER_CATEGORY) images = images.astype('float32') train_x, test_x, train_y, test_y = train_test_split( images, labels, train_size=.7, random_state=20160319) print('Total data load time:') print('---------------------') print(time.time() - start_time) os.system('say "data is loaded"') # Consider trying different values for output_layers print('\nstarting nn on twitter with logit @ -2....') tf = OverfeatTransformer(output_layers=[-2]) clf = LogisticRegression() # clf = SVC()
plt.title(title) plt.colorbar() tick_marks = np.arange(len(CM_LABELS)) plt.xticks(tick_marks, CM_LABELS, rotation=45) plt.yticks(tick_marks, CM_LABELS) plt.tight_layout() plt.ylabel("True label") plt.xlabel("Predicted label") NUM_PER_CATEGORY = 1000 print("loading data....") print(str(NUM_PER_CATEGORY) + " examples per category") start_time = time.time() train_x, train_y = prep.get_data(NUM_PER_CATEGORY) train_x = train_x.astype("float32") test_x, test_y = prep.get_crowdflower(NUM_PER_CATEGORY) test_x = test_x.astype("float32") print("Total data load time:") print("---------------------") print(time.time() - start_time) os.system('say "data is loaded"') # Consider trying different values for output_layers print("\nstarting nn trained on twitter with logit @ -2....") tf = OverfeatTransformer(output_layers=[-2]) clf = LogisticRegression() # clf = SVC()