コード例 #1
0
    def test_large_circle_50X50_no_noise_2(self):
        folder_script = os.path.dirname(__file__)
        filename_input = "NoisyCircle_x_6_y_-30_r_118.162.png"
        file_noisy_line = os.path.join(folder_script, "./data/",
                                       filename_input)
        np_image = skimage.io.imread(file_noisy_line, as_gray=True)
        lst_points = Util.create_points_from_numpyimage(np_image)

        helper = GradientDescentCircleFitting(None,
                                              lst_points,
                                              learningrate=0.4,
                                              iterations=5000)
        result: CircleModel = helper.FindBestFittingCircle()
        #
        #Superimpose the new line over the image
        #
        folder_results = os.path.join(folder_script, "../out/")
        count_of_files = len(os.listdir(folder_results))
        filename_results = ("%s.%d.png" % (__name__, count_of_files))
        file_result = os.path.join(folder_results, filename_results)
        new_points = CircleModel.generate_points_from_circle(result)
        np_superimposed = Util.superimpose_points_on_image(
            np_image, new_points, 100, 255, 100)
        skimage.io.imsave(file_result, np_superimposed)

        delta = 10
        self.assertAlmostEquals(result.R, +118.0, delta=delta)
        self.assertAlmostEquals(result.X, +06.0, delta=delta)
        self.assertAlmostEquals(result.Y, -30.0, delta=delta)
        pass
コード例 #2
0
    def test_large_circle_50X50_no_noise_1(self):
        folder_script=os.path.dirname(__file__)
        filename_input="NoisyCircle_x_-10_y_-14.png"
        file_noisy_line=os.path.join(folder_script,"./data/",filename_input)
        np_image=skimage.io.imread(file_noisy_line,as_gray=True)
        lst_points=Util.create_points_from_numpyimage(np_image)

        helper=BullockCircleFitting(lst_points)
        result:CircleModel =helper.FindBestFittingCircle()
        #
        #Superimpose the new line over the image
        #
        folder_results=os.path.join(folder_script,"../out/")
        count_of_files=len(os.listdir(folder_results))
        filename_results=("%s.%d.png" % (__name__,count_of_files) )
        file_result=os.path.join(folder_results,filename_results)
        new_points=CircleModel.generate_points_from_circle(result)
        np_superimposed=Util.superimpose_points_on_image(np_image,new_points,100,255,100)
        skimage.io.imsave(file_result,np_superimposed)

        delta=2
        self.assertAlmostEquals(result.R, 48.0, delta=delta);
        self.assertAlmostEquals(result.X, -10.0, delta=delta);
        self.assertAlmostEquals(result.Y, -14.0, delta=delta);
        pass
コード例 #3
0
def run_image2matplot(filename):
    folder_script = os.path.dirname(__file__)
    absolute_path = os.path.join(folder_script, "./input/", filename)
    try:
        np_image = skimage.io.imread(absolute_path, as_gray=True)
        lst_all_points = Util.create_points_from_numpyimage(np_image)
        plot_new_points_over_existing_points(lst_all_points, [], "Input data",
                                             "Original points", "")
        lrate = 0.3
        iterations = 5000
        helper = GradientDescentCircleFitting(None,
                                              points=lst_all_points,
                                              learningrate=lrate,
                                              iterations=iterations)
        start_time = time.time()
        model: CircleModel = helper.FindBestFittingCircle()
        new_points = CircleModel.generate_points_from_circle(model)

        plot_new_points_over_existing_points(
            lst_all_points, new_points, "Gradient descent circle fitting",
            "Original points", "Gradient descent")

    except Exception as e:
        tb = traceback.format_exc()
        print("Error:%s while doing RANSAC on the file: %s , stack=%s" %
              (str(e), filename, str(tb)))
        print("------------------------------------------------------------")
        pass
    pass
コード例 #4
0
ファイル: test_CircleModel.py プロジェクト: sdg002/RANSAC
 def test_generate_points_from_circle_model_center_at_0_0_radius_1(self):
     center_x = 0
     center_y = 0
     radius = 1.0
     model = CircleModel(center_x, center_y, radius)
     points = CircleModel.generate_points_from_circle(model)
     pt: Point
     for pt in points:
         distance_from_center = math.sqrt((pt.X - center_x)**2 +
                                          (pt.Y - center_y)**2)
         self.assertAlmostEqual(distance_from_center, radius, 2)
コード例 #5
0
ファイル: ExecRANSACCircle.py プロジェクト: sdg002/RANSAC
def run(filename, threshold, inlier, sampling_fraction=0.25, matplot=False):
    print("Going to process file:%s" % (filename))
    folder_script = os.path.dirname(__file__)
    file_noisy_circle = os.path.join(folder_script, "./input/", filename)
    try:
        np_image = skimage.io.imread(file_noisy_circle, as_gray=True)

        #
        #Iterate over all cells of the NUMPY array and convert to array of Point classes
        #
        lst_all_points = Util.create_points_from_numpyimage(np_image)
        #
        #begin RANSAC
        #
        helper = RansacCircleHelper()
        helper.threshold_error = threshold
        helper.threshold_inlier_count = inlier
        helper.add_points(lst_all_points)
        helper.sampling_fraction = sampling_fraction
        best_model = helper.run()
        print("RANSAC-complete")
        if (best_model == None):
            print(
                "ERROR! Could not find a suitable model. Try altering ransac-threshold and min inliner count"
            )
            return
        #
        #Generate an output image with the model circle overlayed on top of original image
        #
        now = datetime.datetime.now()
        filename_result = ("%s-%s.png" %
                           (filename, now.strftime("%Y-%m-%d-%H-%M-%S")))
        file_result = os.path.join(folder_script, "./out/", filename_result)
        #Load input image into array
        np_image_result = skimage.io.imread(file_noisy_circle, as_gray=True)
        new_points = CircleModel.generate_points_from_circle(best_model)
        np_superimposed = Util.superimpose_points_on_image(
            np_image_result, new_points, 100, 255, 100)
        #Save new image
        skimage.io.imsave(file_result, np_superimposed)
        print("Results saved to file:%s" % (file_result))
        print("------------------------------------------------------------")
        if (matplot == True):
            plot_new_points_over_existing_points(
                lst_all_points, new_points, "Outcome of RANSAC algorithm",
                "Original points", "RANSAC")

    except Exception as e:
        tb = traceback.format_exc()
        print("Error:%s while doing RANSAC on the file: %s , stack=%s" %
              (str(e), filename, str(tb)))
        print("------------------------------------------------------------")
        pass
コード例 #6
0
    def superimpose_circle_over_original_image(self, original_image_file,
                                               circle):
        np_image = skimage.io.imread(original_image_file, as_gray=True)

        folder_script = os.path.dirname(__file__)
        folder_results = os.path.join(folder_script, "../out/")
        count_of_files = len(os.listdir(folder_results))
        filename_results = ("%s.%d.png" % (__name__, count_of_files))
        file_result = os.path.join(folder_results, filename_results)

        new_points = CircleModel.generate_points_from_circle(circle,
                                                             distance=2)
        np_superimposed = Util.superimpose_points_on_image(
            np_image, new_points, 255, 255, 0)
        skimage.io.imsave(file_result, np_superimposed)
コード例 #7
0
ファイル: test_CircleModel.py プロジェクト: sdg002/RANSAC
    def test_generate_points_from_circle_model_center_at_0_0_radius_10(self):
        center_x = 0
        center_y = 0
        radius = 100.0
        distance = 5
        model = CircleModel(center_x, center_y, radius)
        points = CircleModel.generate_points_from_circle(model,
                                                         distance=distance)
        pt: Point
        for pt in points:
            distance_from_center = math.sqrt((pt.X - center_x)**2 +
                                             (pt.Y - center_y)**2)
            self.assertAlmostEqual(distance_from_center, radius, 2)

        #compare distance
        for index in range(1, len(points)):
            point1 = points[index]
            point2 = points[index - 1]
            actual_distance = Point.euclidean_distance(point1, point2)
            self.assertAlmostEqual(distance, actual_distance, delta=2)
コード例 #8
0
def run_image2image(filename):
    print("Going to fit circle in the file:%s" % (filename))
    folder_script = os.path.dirname(__file__)
    absolute_path = os.path.join(folder_script, "./input/", filename)
    try:
        np_image = skimage.io.imread(absolute_path, as_gray=True)
        lst_all_points = Util.create_points_from_numpyimage(np_image)
        lrate = 0.3
        iterations = 5000
        helper = GradientDescentCircleFitting(None,
                                              points=lst_all_points,
                                              learningrate=lrate,
                                              iterations=iterations)
        start_time = time.time()
        model: CircleModel = helper.FindBestFittingCircle()
        print("--- %s seconds for gradient descent algo ---" %
              (time.time() - start_time))
        #
        #Generate an output image with the model circle overlayed on top of original image
        #
        now = datetime.datetime.now()
        filename_result = ("gradient-descent-%s.png" % (filename))
        file_result = os.path.join(folder_script, "./out/", filename_result)
        #Load input image into array
        np_image_result = skimage.io.imread(absolute_path, as_gray=True)
        new_points = CircleModel.generate_points_from_circle(model)
        np_superimposed = Util.superimpose_points_on_image(
            np_image_result, new_points, 100, 255, 100)
        #Save new image
        skimage.io.imsave(file_result, np_superimposed)
        print("Results saved to file:%s" % (file_result))
        print("------------------------------------------------------------")

    except Exception as e:
        tb = traceback.format_exc()
        print("Error:%s while doing RANSAC on the file: %s , stack=%s" %
              (str(e), filename, str(tb)))
        print("------------------------------------------------------------")
        pass

    pass