コード例 #1
0
 def eval_loop(self):
   per_replica_eval_batch_size = self.eval_batch_size // self.num_replicas
   tf.get_variable_scope().reuse_variables()
   predictions = tf.zeros([self.eval_steps, per_replica_eval_batch_size, 2])
   _, predictions = training_loop.repeat(
       int(self.eval_steps), self.eval_step, [tf.constant(0), predictions])
   with tf.control_dependencies([tpu_ops.outfeed_enqueue_tuple([predictions])
                                ]):
     return tf.no_op()
コード例 #2
0
 def _DecodeStep():
   """Decode call to be compiled for TPU."""
   input_batch = self._model_task.input_generator.TpuDequeueBatch()
   metrics_dict = self._model_task.Decode(input_batch)
   self.metrics_nm = py_utils.NestedMap(metrics_dict)
   device = tpu.core(0) if self.spmd else ''
   with tf.device(device):
     outfeed_enqueue = tpu_ops.outfeed_enqueue_tuple(
         self.metrics_nm.Flatten())
     return [outfeed_enqueue]
コード例 #3
0
 def _DecodeStep():
   """Decode call to be compiled for TPU."""
   with py_utils.OpportunisticVariableReuseScope(True):
     with cluster_factory.SetEval(True):
       self._decode_model = self._decode_task_params.Instantiate()
       self._decode_model_task = self._decode_model.GetTask()
       self._decode_model_task.AddChild('input', self._decode_input)
       input_batch = self._decode_model_task.input_generator.TpuDequeueBatch(
       )
       metrics_dict = self._decode_model_task.Decode(input_batch)
       self.metrics_nm = py_utils.NestedMap(metrics_dict)
       device = tpu.core(0) if self.spmd else ''
       with tf.device(device):
         outfeed_enqueue = tpu_ops.outfeed_enqueue_tuple(
             self.metrics_nm.Flatten())
         return [outfeed_enqueue]
コード例 #4
0
        def tpu_eval_step():
            """Generate the TPU graph."""
            values = self.eval_infeed_queue[0].generate_dequeue_op(
                tpu_device=0)
            unflattened_inputs = data_nest.pack_sequence_as(
                self.eval_feature_structure, values)
            features = unflattened_inputs["features"]
            estimator_spec = model_fn(features, None,
                                      tf.estimator.ModeKeys.PREDICT, params)
            for k, v in six.iteritems(estimator_spec.predictions):
                self.outfeed_names.append(k)
                self.outfeed_tensors.append(v)

            with tf.device(
                    device_for_tpu_core(get_host(self.resolver,
                                                 self.hparams))):
                outfeed_enqueue_ops = tpu_ops.outfeed_enqueue_tuple(
                    self.outfeed_tensors)
            with tf.control_dependencies([outfeed_enqueue_ops]):
                return tf.no_op()
コード例 #5
0
 def eval_step(self):
     """One evaluation step."""
     inp = self.infeed_op[False].generate_dequeue_op()
     flatten_structure = tf.nest.flatten(self.feature_structure[False])
     inp = [
         tf.slice(i, [0] * i.shape.ndims, j.shape)
         for i, j in zip(inp, flatten_structure)
     ]
     if self.eval_has_labels:
         features, labels = tf.nest.pack_sequence_as(
             self.feature_structure[False], inp)
     else:
         features = tf.nest.pack_sequence_as(self.feature_structure[False],
                                             inp)
         labels = None
     self.maybe_add_embedding_features(features, False)
     _, self.predict_output = self.model_fn(features, labels, False)
     for _ in self.predict_output:
         self.dequeue_ops.append([])
     with tf.device(device_for_tpu_core(self.get_host(0))):
         return [
             tpu_ops.outfeed_enqueue_tuple(
                 tf.nest.flatten(self.predict_output))
         ]
コード例 #6
0
 def _OutfeedEnqueue(self, per_example_tensors):
   if not per_example_tensors:
     return tf.no_op()
   per_example_tensors = py_utils.NestedMap(per_example_tensors)
   return tpu_ops.outfeed_enqueue_tuple(per_example_tensors.Flatten())