def generateCalibrationReport(config, night_dir_path, match_radius=2.0, platepar=None, show_graphs=False): """ Given the folder of the night, find the Calstars file, check the star fit and generate a report with the quality of the calibration. The report contains information about both the astrometry and the photometry calibration. Graphs will be saved in the given directory of the night. Arguments: config: [Config instance] night_dir_path: [str] Full path to the directory of the night. Keyword arguments: match_radius: [float] Match radius for star matching between image and catalog stars (px). platepar: [Platepar instance] Use this platepar instead of finding one in the folder. show_graphs: [bool] Show the graphs on the screen. False by default. Return: None """ # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(night_dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file star_list = readCALSTARS(night_dir_path, calstars_file) ### Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file: with open(os.path.join(night_dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print('Loaded recalibrated platepars JSON file for the calibration report...') ### ### ### Load the platepar file ### # Find the platepar file in the given directory if it was not given if platepar is None: # Find the platepar file platepar_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepar_name: platepar_file = file_name break if platepar_file is None: print('The platepar cannot be found in the night directory!') return None # Load the platepar file platepar = Platepar() platepar.read(os.path.join(night_dir_path, platepar_file), use_flat=config.use_flat) ### ### night_name = os.path.split(night_dir_path.strip(os.sep))[1] # Go one mag deeper than in the config lim_mag = config.catalog_mag_limit + 1 # Load catalog stars (load one magnitude deeper) catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\ config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \ mag_band_ratios=config.star_catalog_band_ratios) ### Take only those CALSTARS entires for which FF files exist in the folder ### # Get a list of FF files in the folder ff_list = [] for file_name in os.listdir(night_dir_path): if validFFName(file_name): ff_list.append(file_name) # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs star_dict = {} ff_dict = {} for entry in star_list: ff_name, star_data = entry # Check if the FF from CALSTARS exists in the folder if ff_name not in ff_list: continue dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Add the time and the stars to the dict star_dict[jd] = star_data ff_dict[jd] = ff_name ### ### # If there are no FF files in the directory, don't generate a report if len(star_dict) == 0: print('No FF files from the CALSTARS file in the directory!') return None # If the recalibrated platepars file exists, take the one with the most stars max_jd = 0 using_recalib_platepars = False if recalibrated_platepars is not None: max_stars = 0 for ff_name_temp in recalibrated_platepars: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Check that this file exists in CALSTARS and the list of FF files if (jd not in star_dict) or (jd not in ff_dict): continue # Make sure that the chosen file has been successfuly recalibrated if "auto_recalibrated" in recalibrated_platepars[ff_name_temp]: if not recalibrated_platepars[ff_name_temp]["auto_recalibrated"]: continue # Check if the number of stars on this FF file is larger than the before if len(star_dict[jd]) > max_stars: max_jd = jd max_stars = len(star_dict[jd]) # Set a flag to indicate if using recalibrated platepars has failed if max_jd == 0: using_recalib_platepars = False else: print('Using recalibrated platepars, file:', ff_dict[max_jd]) using_recalib_platepars = True # Select the platepar where the FF file has the most stars platepar_dict = recalibrated_platepars[ff_dict[max_jd]] platepar = Platepar() platepar.loadFromDict(platepar_dict, use_flat=config.use_flat) filtered_star_dict = {max_jd: star_dict[max_jd]} # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) max_matched_stars = n_matched # Otherwise take the optimal FF file for evaluation if (recalibrated_platepars is None) or (not using_recalib_platepars): # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on # the image if len(star_dict) > config.calstars_files_N: # Find JDs of FF files with most stars on them top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \ - 1] filtered_star_dict = {} for i in top_nstars_indices: filtered_star_dict[list(star_dict.keys())[i]] = list(star_dict.values())[i] star_dict = filtered_star_dict # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) # If no recalibrated platepars where found, find the image with the largest number of matched stars if (not using_recalib_platepars) or (max_jd == 0): max_jd = 0 max_matched_stars = 0 for jd in matched_stars: _, _, distances = matched_stars[jd] if len(distances) > max_matched_stars: max_jd = jd max_matched_stars = len(distances) # If there are no matched stars, use the image with the largest number of detected stars if max_matched_stars <= 2: max_jd = max(star_dict, key=lambda x: len(star_dict[x])) distances = [np.inf] # Take the FF file with the largest number of matched stars ff_name = ff_dict[max_jd] # Load the FF file ff = readFF(night_dir_path, ff_name) img_h, img_w = ff.avepixel.shape dpi = 200 plt.figure(figsize=(ff.avepixel.shape[1]/dpi, ff.avepixel.shape[0]/dpi), dpi=dpi) # Take the average pixel img = ff.avepixel # Slightly adjust the levels img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.3, np.percentile(img, 99.99)) plt.imshow(img, cmap='gray', interpolation='nearest') legend_handles = [] # Plot detected stars for img_star in star_dict[max_jd]: y, x = img_star[:2] rect_side = 5*match_radius square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \ fill=False, label='Image stars') plt.gca().add_artist(square_patch) legend_handles.append(square_patch) # If there are matched stars, plot them if max_matched_stars > 2: # Take the solution with the largest number of matched stars image_stars, matched_catalog_stars, distances = matched_stars[max_jd] # Plot matched stars for img_star in image_stars: x, y = img_star[:2] circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \ label='Matched stars') plt.gca().add_artist(circle_patch) legend_handles.append(circle_patch) ### Plot match residuals ### # Compute preducted positions of matched image stars from the catalog x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \ matched_catalog_stars[:, 1], max_jd, platepar) img_y = image_stars[:, 0] img_x = image_stars[:, 1] delta_x = x_predicted - img_x delta_y = y_predicted - img_y # Compute image residual and angle of the error res_angle = np.arctan2(delta_y, delta_x) res_distance = np.sqrt(delta_x**2 + delta_y**2) # Calculate coordinates of the beginning of the residual line res_x_beg = img_x + 3*match_radius*np.cos(res_angle) res_y_beg = img_y + 3*match_radius*np.sin(res_angle) # Calculate coordinates of the end of the residual line res_x_end = img_x + 100*np.cos(res_angle)*res_distance res_y_end = img_y + 100*np.sin(res_angle)*res_distance # Plot the 100x residuals for i in range(len(x_predicted)): res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \ lw=0.5, label='100x residuals') legend_handles.append(res_plot[0]) ### ### else: distances = [np.inf] # If there are no matched stars, plot large text in the middle of the screen plt.text(img_w/2, img_h/2, "NO MATCHED STARS!", color='r', alpha=0.5, fontsize=20, ha='center', va='center') ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ### # Find the faintest magnitude among matched stars if max_matched_stars > 2: faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1 else: # If there are no matched stars, use the limiting magnitude from config faintest_mag = config.catalog_mag_limit + 1 # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res/2], [platepar.Y_res/2], [1], platepar, extinction_correction=False) RA_c = RA_c[0] dec_c = dec_c[0] fov_radius = getFOVSelectionRadius(platepar) # Get stars from the catalog around the defined center in a given radius _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, max_jd, platepar.lat, platepar.lon, \ fov_radius, faintest_mag) ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T # Compute image positions of all catalog stars that should be on the image x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd, platepar) # Filter all catalog stars outside the image temp_arr = np.c_[x_catalog, y_catalog, mag_catalog] temp_arr = temp_arr[temp_arr[:, 0] >= 0] temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]] temp_arr = temp_arr[temp_arr[:, 1] >= 0] temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]] x_catalog, y_catalog, mag_catalog = temp_arr.T # Plot catalog stars on the image cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \ s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars') legend_handles.append(cat_stars_handle) ### ### # Add info text in the corner info_text = ff_dict[max_jd] + '\n' \ + "Matched stars within {:.1f} px radius: {:d}/{:d} \n".format(match_radius, max_matched_stars, \ len(star_dict[max_jd])) \ + "Median distance = {:.2f} px\n".format(np.median(distances)) \ + "Catalog lim mag = {:.1f}".format(lim_mag) plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \ color='w', family='monospace') legend = plt.legend(handles=legend_handles, prop={'size': 4}, loc='upper right') legend.get_frame().set_facecolor('k') legend.get_frame().set_edgecolor('k') for txt in legend.get_texts(): txt.set_color('w') ### Add FOV info (centre, size) ### # Mark FOV centre plt.scatter(platepar.X_res/2, platepar.Y_res/2, marker='+', s=20, c='r', zorder=4) # Compute FOV centre alt/az azim_centre, alt_centre = raDec2AltAz(RA_c, dec_c, max_jd, platepar.lat, platepar.lon) # Compute FOV size fov_h, fov_v = computeFOVSize(platepar) # Compute the rotation wrt. horizon rot_horizon = rotationWrtHorizon(platepar) fov_centre_text = "Azim = {:6.2f}$\\degree$\n".format(azim_centre) \ + "Alt = {:6.2f}$\\degree$\n".format(alt_centre) \ + "Rot h = {:6.2f}$\\degree$\n".format(rot_horizon) \ + "FOV h = {:6.2f}$\\degree$\n".format(fov_h) \ + "FOV v = {:6.2f}$\\degree$".format(fov_v) \ plt.text(10, platepar.Y_res - 10, fov_centre_text, bbox=dict(facecolor='black', alpha=0.5), \ va='bottom', ha='left', fontsize=4, color='w', family='monospace') ### ### # Plot RA/Dec gridlines # addEquatorialGrid(plt, platepar, max_jd) plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, ff.avepixel.shape[1]]) plt.ylim([ff.avepixel.shape[0], 0]) # Remove the margins (top and right are set to 0.9999, as setting them to 1.0 makes the image blank in # some matplotlib versions) plt.subplots_adjust(left=0, bottom=0, right=0.9999, top=0.9999, wspace=0, hspace=0) plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \ bbox_inches='tight', pad_inches=0, dpi=dpi) if show_graphs: plt.show() else: plt.clf() plt.close() if max_matched_stars > 2: ### PHOTOMETRY FIT ### # If a flat is used, set the vignetting coeff to 0 if config.use_flat: platepar.vignetting_coeff = 0.0 # Extact intensities and mangitudes star_intensities = image_stars[:, 2] catalog_ra, catalog_dec, catalog_mags = matched_catalog_stars.T # Compute radius of every star from image centre radius_arr = np.hypot(image_stars[:, 0] - img_h/2, image_stars[:, 1] - img_w/2) # Compute apparent extinction corrected magnitudes catalog_mags = extinctionCorrectionTrueToApparent(catalog_mags, catalog_ra, catalog_dec, max_jd, \ platepar) # Fit the photometry on automated star intensities (use the fixed vignetting coeff, use robust fit) photom_params, fit_stddev, fit_resid, star_intensities, radius_arr, catalog_mags = \ photometryFitRobust(star_intensities, radius_arr, catalog_mags, \ fixed_vignetting=platepar.vignetting_coeff) photom_offset, _ = photom_params ### ### ### PLOT PHOTOMETRY ### # Note: An almost identical code exists in RMS.Astrometry.SkyFit in the PlateTool.photometry function dpi = 130 fig_p, (ax_p, ax_r) = plt.subplots(nrows=2, facecolor=None, figsize=(6.0, 7.0), dpi=dpi, \ gridspec_kw={'height_ratios':[2, 1]}) # Plot raw star intensities ax_p.scatter(-2.5*np.log10(star_intensities), catalog_mags, s=5, c='r', alpha=0.5, \ label="Raw (extinction corrected)") # If a flat is used, disregard the vignetting if not config.use_flat: # Plot intensities of image stars corrected for vignetting lsp_corr_arr = np.log10(correctVignetting(star_intensities, radius_arr, \ platepar.vignetting_coeff)) ax_p.scatter(-2.5*lsp_corr_arr, catalog_mags, s=5, c='b', alpha=0.5, \ label="Corrected for vignetting") # Plot photometric offset from the platepar x_min, x_max = ax_p.get_xlim() y_min, y_max = ax_p.get_ylim() x_min_w = x_min - 3 x_max_w = x_max + 3 y_min_w = y_min - 3 y_max_w = y_max + 3 photometry_info = "Platepar: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(platepar.mag_0, \ platepar.mag_lev, platepar.mag_lev_stddev) \ + "\nVignetting coeff = {:.5f}".format(platepar.vignetting_coeff) \ + "\nGamma = {:.2f}".format(platepar.gamma) # Plot the photometry calibration from the platepar logsum_arr = np.linspace(x_min_w, x_max_w, 10) ax_p.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \ color='k', alpha=0.5) # Plot the fitted photometry calibration fit_info = "Fit: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(-2.5, photom_offset, fit_stddev) ax_p.plot(logsum_arr, logsum_arr + photom_offset, label=fit_info, linestyle='--', color='b', alpha=0.75) ax_p.legend() ax_p.set_ylabel("Catalog magnitude ({:s})".format(mag_band_str)) ax_p.set_xlabel("Uncalibrated magnitude") # Set wider axis limits ax_p.set_xlim(x_min_w, x_max_w) ax_p.set_ylim(y_min_w, y_max_w) ax_p.invert_yaxis() ax_p.invert_xaxis() ax_p.grid() ### Plot photometry vs radius ### img_diagonal = np.hypot(img_h/2, img_w/2) # Plot photometry residuals (including vignetting) ax_r.scatter(radius_arr, fit_resid, c='b', alpha=0.75, s=5, zorder=3) # Plot a zero line ax_r.plot(np.linspace(0, img_diagonal, 10), np.zeros(10), linestyle='dashed', alpha=0.5, \ color='k') # Plot only when no flat is used if not config.use_flat: # Plot radius from centre vs. fit residual fit_resids_novignetting = catalog_mags - photomLine((np.array(star_intensities), \ np.array(radius_arr)), photom_offset, 0.0) ax_r.scatter(radius_arr, fit_resids_novignetting, s=5, c='r', alpha=0.5, zorder=3) px_sum_tmp = 1000 radius_arr_tmp = np.linspace(0, img_diagonal, 50) # Plot vignetting loss curve vignetting_loss = 2.5*np.log10(px_sum_tmp) \ - 2.5*np.log10(correctVignetting(px_sum_tmp, radius_arr_tmp, \ platepar.vignetting_coeff)) ax_r.plot(radius_arr_tmp, vignetting_loss, linestyle='dotted', alpha=0.5, color='k') ax_r.grid() ax_r.set_ylabel("Fit residuals (mag)") ax_r.set_xlabel("Radius from centre (px)") ax_r.set_xlim(0, img_diagonal) ### ### plt.tight_layout() plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_photometry.png'), dpi=150) if show_graphs: plt.show() else: plt.clf() plt.close()
def matchStarsResiduals(config, platepar, catalog_stars, star_dict, match_radius, ret_nmatch=False, \ sky_coords=False, lim_mag=None, verbose=False): """ Match the image and catalog stars with the given astrometry solution and estimate the residuals between them. Arguments: config: [Config structure] platepar: [Platepar structure] Astrometry parameters. catalog_stars: [ndarray] An array of catalog stars (ra, dec, mag). star_dict: [ndarray] A dictionary where the keys are JDs when the stars were recorded and values are 2D list of stars, each entry is (X, Y, bg_level, level, fwhm). match_radius: [float] Maximum radius for star matching (pixels). min_matched_stars: [int] Minimum number of matched stars on the image for the image to be accepted. Keyword arguments: ret_nmatch: [bool] If True, the function returns the number of matched stars and the average deviation. False by default. sky_coords: [bool] If True, sky coordinate residuals in RA, dec will be used to compute the cost, function, not image coordinates. lim_mag: [float] Override the limiting magnitude from config. None by default. verbose: [bool] Print results. True by default. Return: cost: [float] The cost function which weights the number of matched stars and the average deviation. """ if lim_mag is None: lim_mag = config.catalog_mag_limit # Estimate the FOV radius fov_radius = getFOVSelectionRadius(platepar) # Dictionary containing the matched stars, the keys are JDs of every image matched_stars = {} # Go through every FF image and its stars for jd in star_dict: # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(jd)], [platepar.X_res/2], [platepar.Y_res/2], [1], \ platepar, extinction_correction=False) RA_c = RA_c[0] dec_c = dec_c[0] # Get stars from the catalog around the defined center in a given radius _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, jd, platepar.lat, platepar.lon, \ fov_radius, lim_mag) ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T # Extract stars for the given Julian date stars_list = star_dict[jd] stars_list = np.array(stars_list) # Convert all catalog stars to image coordinates cat_x_array, cat_y_array = raDecToXYPP(ra_catalog, dec_catalog, jd, platepar) # Take only those stars which are within the FOV x_indices = np.argwhere((cat_x_array >= 0) & (cat_x_array < platepar.X_res)) y_indices = np.argwhere((cat_y_array >= 0) & (cat_y_array < platepar.Y_res)) cat_good_indices = np.intersect1d(x_indices, y_indices).astype(np.uint32) # cat_x_array = cat_x_array[good_indices] # cat_y_array = cat_y_array[good_indices] # # Plot image stars # im_y, im_x, _, _ = stars_list.T # plt.scatter(im_y, im_x, facecolors='none', edgecolor='g') # # Plot catalog stars # plt.scatter(cat_y_array[cat_good_indices], cat_x_array[cat_good_indices], c='r', s=20, marker='+') # plt.show() # Match image and catalog stars matched_indices = matchStars(stars_list, cat_x_array, cat_y_array, cat_good_indices, match_radius) # Skip this image is no stars were matched if len(matched_indices) < config.min_matched_stars: continue matched_indices = np.array(matched_indices) matched_img_inds, matched_cat_inds, dist_list = matched_indices.T # Extract data from matched stars matched_img_stars = stars_list[matched_img_inds.astype(np.int)] matched_cat_stars = extracted_catalog[matched_cat_inds.astype(np.int)] # Put the matched stars to a dictionary matched_stars[jd] = [matched_img_stars, matched_cat_stars, dist_list] # # Plot matched stars # im_y, im_x, _, _ = matched_img_stars.T # cat_y = cat_y_array[matched_cat_inds.astype(np.int)] # cat_x = cat_x_array[matched_cat_inds.astype(np.int)] # plt.scatter(im_x, im_y, c='r', s=5) # plt.scatter(cat_x, cat_y, facecolors='none', edgecolor='g') # plt.xlim([0, platepar.X_res]) # plt.ylim([platepar.Y_res, 0]) # plt.show() # If residuals on the image should be computed if not sky_coords: unit_label = 'px' # Extract all distances global_dist_list = [] # level_list = [] # mag_list = [] for jd in matched_stars: # matched_img_stars, matched_cat_stars, dist_list = matched_stars[jd] _, _, dist_list = matched_stars[jd] global_dist_list += dist_list.tolist() # # TEST # level_list += matched_img_stars[:, 3].tolist() # mag_list += matched_cat_stars[:, 2].tolist() # # Plot levels vs. magnitudes # plt.scatter(mag_list, np.log10(level_list)) # plt.xlabel('Magnitude') # plt.ylabel('Log10 level') # plt.show() # Compute the residuals on the sky else: unit_label = 'arcmin' global_dist_list = [] # Go through all matched stars for jd in matched_stars: matched_img_stars, matched_cat_stars, dist_list = matched_stars[jd] # Go through all stars on the image for img_star_entry, cat_star_entry in zip(matched_img_stars, matched_cat_stars): # Extract star coords star_y = img_star_entry[0] star_x = img_star_entry[1] cat_ra = cat_star_entry[0] cat_dec = cat_star_entry[1] # Convert image coordinates to RA/Dec _, star_ra, star_dec, _ = xyToRaDecPP([jd2Date(jd)], [star_x], [star_y], [1], \ platepar, extinction_correction=False) # Compute angular distance between the predicted and the catalog position ang_dist = np.degrees(angularSeparation(np.radians(cat_ra), np.radians(cat_dec), \ np.radians(star_ra[0]), np.radians(star_dec[0]))) # Store the angular separation in arc minutes global_dist_list.append(ang_dist * 60) # Number of matched stars n_matched = len(global_dist_list) if n_matched == 0: if verbose: print( 'No matched stars with radius {:.1f} px!'.format(match_radius)) if ret_nmatch: return 0, 9999.0, 9999.0, {} else: return 9999.0 # Calculate the average distance avg_dist = np.median(global_dist_list) cost = (avg_dist**2) * (1.0 / np.sqrt(n_matched + 1)) if verbose: print() print("Matched {:d} stars with radius of {:.1f} px".format( n_matched, match_radius)) print(" Average distance = {:.3f} {:s}".format( avg_dist, unit_label)) print(" Cost function = {:.5f}".format(cost)) if ret_nmatch: return n_matched, avg_dist, cost, matched_stars else: return cost
def updateRaDecGrid(grid, platepar): """ Updates the values of grid to form a right ascension and declination grid on a pyqtgraph plot. Arguments: grid: [pg.PlotCurveItem] platepar: [Platepar object] """ ### COMPUTE FOV CENTRE ### # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(platepar.JD)], [platepar.X_res/2], [platepar.Y_res/2], [1], \ platepar, extinction_correction=False) # Compute alt/az of FOV centre azim_centre, alt_centre = trueRaDec2ApparentAltAz(RA_c[0], dec_c[0], platepar.JD, platepar.lat, \ platepar.lon) ### ### # Compute FOV size fov_radius = getFOVSelectionRadius(platepar) # Determine gridline frequency (double the gridlines if the number is < 4eN) grid_freq = 10**np.floor(np.log10(2 * fov_radius)) if 10**(np.log10(2 * fov_radius) - np.floor(np.log10(2 * fov_radius))) < 4: grid_freq /= 2 # Set a maximum grid frequency of 15 deg if grid_freq > 15: grid_freq = 15 # Grid plot density plot_dens = grid_freq / 100 # Make an array of RA and Dec ra_grid_arr = np.arange(0, 360, grid_freq) dec_grid_arr = np.arange(-90, 90, grid_freq) x = [] y = [] cuts = [] # Generate points for the celestial parallels grid for dec_grid in dec_grid_arr: # Keep the declination fixed and evaluate all right ascensions ra_grid_plot = np.arange(0, 360, plot_dens) dec_grid_plot = np.zeros_like(ra_grid_plot) + dec_grid # Compute alt/az az_grid_plot, alt_grid_plot = trueRaDec2ApparentAltAz(ra_grid_plot, dec_grid_plot, platepar.JD, \ platepar.lat, platepar.lon, platepar.refraction) # Filter out points below the horizon and outside the FOV filter_arr = (alt_grid_plot >= 0) & (np.degrees(angularSeparation(np.radians(azim_centre), \ np.radians(alt_centre), np.radians(az_grid_plot), np.radians(alt_grid_plot))) <= fov_radius) ra_grid_plot = ra_grid_plot[filter_arr] dec_grid_plot = dec_grid_plot[filter_arr] # Compute image coordinates for every grid celestial parallel x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD, platepar) # Filter out all points outside the image filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & ( y_grid >= 0) & (y_grid <= platepar.Y_res) x_grid = x_grid[filter_arr] y_grid = y_grid[filter_arr] # Add points to the list x.extend(x_grid) y.extend(y_grid) cuts.append(len(x) - 1) # Generate points for the celestial meridian grid for ra_grid in ra_grid_arr: # Keep the RA fixed and evaluate all declinations dec_grid_plot = np.arange(-90, 90 + plot_dens, plot_dens) ra_grid_plot = np.zeros_like(dec_grid_plot) + ra_grid # Compute alt/az az_grid_plot, alt_grid_plot = trueRaDec2ApparentAltAz(ra_grid_plot, dec_grid_plot, platepar.JD, \ platepar.lat, platepar.lon, platepar.refraction) # Filter out points below the horizon filter_arr = (alt_grid_plot >= 0) & (np.degrees(angularSeparation(np.radians(azim_centre), \ np.radians(alt_centre), np.radians(az_grid_plot), np.radians(alt_grid_plot))) <= fov_radius) ra_grid_plot = ra_grid_plot[filter_arr] dec_grid_plot = dec_grid_plot[filter_arr] # Compute image coordinates for every grid celestial parallel x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD, platepar) # Filter out points outside the image filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & ( y_grid >= 0) & (y_grid <= platepar.Y_res) x_grid = x_grid[filter_arr] y_grid = y_grid[filter_arr] x.extend(x_grid) y.extend(y_grid) cuts.append(len(x) - 1) # Generate points for the horizon az_horiz_arr = np.arange(0, 360, plot_dens) alt_horiz_arr = np.zeros_like(az_horiz_arr) ra_horiz_plot, dec_horiz_plot = apparentAltAz2TrueRADec(az_horiz_arr, alt_horiz_arr, platepar.JD, \ platepar.lat, platepar.lon, platepar.refraction) # Filter out all horizon points outside the FOV filter_arr = np.degrees(angularSeparation(np.radians(alt_centre), np.radians(azim_centre), \ np.radians(alt_horiz_arr), np.radians(az_horiz_arr))) <= fov_radius ra_horiz_plot = ra_horiz_plot[filter_arr] dec_horiz_plot = dec_horiz_plot[filter_arr] # Compute image coordinates of the horizon x_horiz, y_horiz = raDecToXYPP(ra_horiz_plot, dec_horiz_plot, platepar.JD, platepar) # Filter out all horizon points outside the image filter_arr = (x_horiz >= 0) & (x_horiz <= platepar.X_res) & ( y_horiz >= 0) & (y_horiz <= platepar.Y_res) x_horiz = x_horiz[filter_arr] y_horiz = y_horiz[filter_arr] x.extend(x_horiz) y.extend(y_horiz) cuts.append(len(x) - 1) r = 15 # adjust this parameter if you see extraneous lines # disconnect lines that are distant (unfinished circles had straight lines completing them) for i in range(len(x) - 1): if (x[i] - x[i + 1])**2 + (y[i] - y[i + 1])**2 > r**2: cuts.append(i) # convert cuts into connect connect = np.full(len(x), 1) if len(connect) > 0: for i in cuts: connect[i] = 0 grid.setData(x=x, y=y, connect=connect)
def updateAzAltGrid(grid, platepar): """ Updates the values of grid to form an azimuth and altitude grid on a pyqtgraph plot. Arguments: grid: [pg.PlotCurveItem] platepar: [Platepar object] """ ### COMPUTE FOV CENTRE ### # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(platepar.JD)], [platepar.X_res/2], [platepar.Y_res/2], [1], \ platepar, extinction_correction=False) # Compute alt/az of FOV centre azim_centre, alt_centre = trueRaDec2ApparentAltAz(RA_c[0], dec_c[0], platepar.JD, platepar.lat, \ platepar.lon) ### ### # Compute FOV size fov_radius = getFOVSelectionRadius(platepar) # Determine gridline frequency (double the gridlines if the number is < 4eN) grid_freq = 10**np.floor(np.log10(2 * fov_radius)) if 10**(np.log10(2 * fov_radius) - np.floor(np.log10(2 * fov_radius))) < 4: grid_freq /= 2 # Set a maximum grid frequency of 15 deg if grid_freq > 15: grid_freq = 15 # Grid plot density plot_dens = grid_freq / 100 # Generate a grid of all azimuths and altitudes alt_grid_arr = np.arange(0, 90, grid_freq) az_grid_arr = np.arange(0, 360, grid_freq) x = [] y = [] cuts = [] # Altitude lines for alt_grid in alt_grid_arr: # Keep the altitude fixed and plot all azimuth lines az_grid_plot = np.arange(0, 360, plot_dens) alt_grid_plot = np.zeros_like(az_grid_plot) + alt_grid # Filter out all lines outside the FOV filter_arr = np.degrees(angularSeparation(np.radians(azim_centre), np.radians(alt_centre), \ np.radians(az_grid_plot), np.radians(alt_grid_plot))) <= fov_radius az_grid_plot = az_grid_plot[filter_arr] alt_grid_plot = alt_grid_plot[filter_arr] # Compute image coordinates ra_grid_plot, dec_grid_plot = apparentAltAz2TrueRADec(az_grid_plot, alt_grid_plot, platepar.JD, \ platepar.lat, platepar.lon, platepar.refraction) x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD, platepar) # Filter out all points outside the image filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & ( y_grid >= 0) & (y_grid <= platepar.Y_res) x_grid = x_grid[filter_arr] y_grid = y_grid[filter_arr] x.extend(x_grid) y.extend(y_grid) cuts.append(len(x) - 1) # Azimuth lines for az_grid in az_grid_arr: # Keep the azimuth fixed and plot all altitude lines alt_grid_plot = np.arange(0, 90 + plot_dens, plot_dens) az_grid_plot = np.zeros_like(alt_grid_plot) + az_grid # Filter out all lines outside the FOV filter_arr = np.degrees(angularSeparation(np.radians(azim_centre), np.radians(alt_centre), \ np.radians(az_grid_plot), np.radians(alt_grid_plot))) <= fov_radius az_grid_plot = az_grid_plot[filter_arr] alt_grid_plot = alt_grid_plot[filter_arr] # Compute image coordinates ra_grid_plot, dec_grid_plot = apparentAltAz2TrueRADec(az_grid_plot, alt_grid_plot, platepar.JD, \ platepar.lat, platepar.lon, platepar.refraction) x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, platepar.JD, platepar) # Filter out all points outside the image filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & ( y_grid >= 0) & (y_grid <= platepar.Y_res) x_grid = x_grid[filter_arr] y_grid = y_grid[filter_arr] x.extend(x_grid) y.extend(y_grid) cuts.append(len(x) - 1) r = 15 # adjust this parameter if you see extraneous lines # disconnect lines that are distant (unfinished circles had straight lines completing them) for i in range(len(x) - 1): if (x[i] - x[i + 1])**2 + (y[i] - y[i + 1])**2 > r**2: cuts.append(i) connect = np.full(len(x), 1) for i in cuts[:-1]: connect[i] = 0 grid.setData(x=x, y=y, connect=connect)
def addEquatorialGrid(plt_handle, platepar, jd): """ Given the plot handle containing the image, the function plots an equatorial grid. Arguments: plt_handle: [pyplot instance] platepar: [Platepar object] jd: [float] Julian date of the image. Return: plt_handle: [pyplot instance] Pyplot instance with the added grid. """ # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(jd)], [platepar.X_res / 2], [platepar.Y_res / 2], [1], platepar, extinction_correction=False) RA_c = RA_c[0] dec_c = dec_c[0] # Compute FOV centre alt/az azim_centre, alt_centre = trueRaDec2ApparentAltAz(RA_c, dec_c, jd, platepar.lat, platepar.lon) # Compute FOV size fov_radius = getFOVSelectionRadius(platepar) # Determine gridline frequency (double the gridlines if the number is < 4eN) grid_freq = 10**np.floor(np.log10(2 * fov_radius)) if 10**(np.log10(2 * fov_radius) - np.floor(np.log10(2 * fov_radius))) < 4: grid_freq /= 2 # Set a maximum grid frequency of 15 deg if grid_freq > 15: grid_freq = 15 # Grid plot density plot_dens = grid_freq / 100 # Compute the range of declinations to consider dec_min = platepar.dec_d - fov_radius if dec_min < -90: dec_min = -90 dec_max = platepar.dec_d + fov_radius if dec_max > 90: dec_max = 90 ra_grid_arr = np.arange(0, 360, grid_freq) dec_grid_arr = np.arange(-90, 90, grid_freq) # Filter out the dec grid for min/max declination dec_grid_arr = dec_grid_arr[(dec_grid_arr >= dec_min) & (dec_grid_arr <= dec_max)] # Plot the celestial parallel grid for dec_grid in dec_grid_arr: ra_grid_plot = np.arange(0, 360, plot_dens) dec_grid_plot = np.zeros_like(ra_grid_plot) + dec_grid # Compute alt/az az_grid_plot, alt_grid_plot = trueRaDec2ApparentAltAz(ra_grid_plot, dec_grid_plot, jd, platepar.lat, \ platepar.lon) # Filter out points below the horizon and outside the FOV filter_arr = (alt_grid_plot > 0) & (np.degrees(angularSeparation(np.radians(azim_centre), \ np.radians(alt_centre), np.radians(az_grid_plot), np.radians(alt_grid_plot))) <= fov_radius) ra_grid_plot = ra_grid_plot[filter_arr] dec_grid_plot = dec_grid_plot[filter_arr] # Find gaps in continuity and break up plotting individual lines gap_indices = np.argwhere( np.abs(ra_grid_plot[1:] - ra_grid_plot[:-1]) > fov_radius) if len(gap_indices): ra_grid_plot_list = [] dec_grid_plot_list = [] # Separate gridlines with large gaps prev_gap_indx = 0 for entry in gap_indices: gap_indx = entry[0] ra_grid_plot_list.append(ra_grid_plot[prev_gap_indx:gap_indx + 1]) dec_grid_plot_list.append( dec_grid_plot[prev_gap_indx:gap_indx + 1]) prev_gap_indx = gap_indx # Add the last segment ra_grid_plot_list.append(ra_grid_plot[prev_gap_indx + 1:-1]) dec_grid_plot_list.append(dec_grid_plot[prev_gap_indx + 1:-1]) else: ra_grid_plot_list = [ra_grid_plot] dec_grid_plot_list = [dec_grid_plot] # Plot all grid segments for ra_grid_plot, dec_grid_plot in zip(ra_grid_plot_list, dec_grid_plot_list): # Compute image coordinates for every grid celestial parallel x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, jd, platepar) # Plot the grid plt_handle.plot(x_grid, y_grid, color='w', alpha=0.2, zorder=2, linewidth=0.5, linestyle='dotted') # Plot the celestial meridian grid for ra_grid in ra_grid_arr: dec_grid_plot = np.arange(-90, 90, plot_dens) ra_grid_plot = np.zeros_like(dec_grid_plot) + ra_grid # Filter out the dec grid filter_arr = (dec_grid_plot >= dec_min) & (dec_grid_plot <= dec_max) ra_grid_plot = ra_grid_plot[filter_arr] dec_grid_plot = dec_grid_plot[filter_arr] # Compute alt/az az_grid_plot, alt_grid_plot = trueRaDec2ApparentAltAz(ra_grid_plot, dec_grid_plot, jd, platepar.lat, \ platepar.lon) # Filter out points below the horizon filter_arr = (alt_grid_plot > 0) & (np.degrees(angularSeparation(np.radians(azim_centre), \ np.radians(alt_centre), np.radians(az_grid_plot), np.radians(alt_grid_plot))) <= fov_radius) ra_grid_plot = ra_grid_plot[filter_arr] dec_grid_plot = dec_grid_plot[filter_arr] # Compute image coordinates for every grid celestial parallel x_grid, y_grid = raDecToXYPP(ra_grid_plot, dec_grid_plot, jd, platepar) # # Filter out everything outside the FOV # filter_arr = (x_grid >= 0) & (x_grid <= platepar.X_res) & (y_grid >= 0) & (y_grid <= platepar.Y_res) # x_grid = x_grid[filter_arr] # y_grid = y_grid[filter_arr] # Plot the grid plt_handle.plot(x_grid, y_grid, color='w', alpha=0.2, zorder=2, linewidth=0.5, linestyle='dotted') return plt_handle