コード例 #1
0
ファイル: FFTalign.py プロジェクト: CroatianMeteorNetwork/RMS
def alignPlatepar(config, platepar, calstars_time, calstars_coords, scale_update=False, show_plot=False):
    """ Align the platepar using FFT registration between catalog stars and the given list of image stars.

    Arguments:
        config:
        platepar: [Platepar instance] Initial platepar.
        calstars_time: [list] A list of (year, month, day, hour, minute, second, millisecond) of the middle of
            the FF file used for alignment.
        calstars_coords: [ndarray] A 2D numpy array of (x, y) coordinates of image stars.

    Keyword arguments:
        scale_update: [bool] Update the platepar scale. False by default.
        show_plot: [bool] Show the comparison between the reference and image synthetic images.

    Return:
        platepar_aligned: [Platepar instance] The aligned platepar.
    """


    # Try to optimize the catalog limiting magnitude until the number of image and catalog stars are matched
    maxiter = 10
    search_fainter = True
    mag_step = 0.2
    for inum in range(maxiter):

        # Load the catalog stars
        catalog_stars, _, _ = StarCatalog.readStarCatalog(config.star_catalog_path, config.star_catalog_file, \
            lim_mag=config.catalog_mag_limit, mag_band_ratios=config.star_catalog_band_ratios)

        # Get the RA/Dec of the image centre
        _, ra_centre, dec_centre, _ = ApplyAstrometry.xyToRaDecPP([calstars_time], [platepar.X_res/2], \
                [platepar.Y_res/2], [1], platepar)

        ra_centre = ra_centre[0]
        dec_centre = dec_centre[0]

        # Calculate the FOV radius in degrees
        fov_y, fov_x = ApplyAstrometry.computeFOVSize(platepar)
        fov_radius = np.sqrt(fov_x**2 + fov_y**2)

        # Take only those stars which are inside the FOV
        filtered_indices, _ = subsetCatalog(catalog_stars, ra_centre, dec_centre, \
            fov_radius, config.catalog_mag_limit)

        # Take those catalog stars which should be inside the FOV
        ra_catalog, dec_catalog, _ = catalog_stars[filtered_indices].T
        jd = date2JD(*calstars_time)
        catalog_xy = ApplyAstrometry.raDecToXYPP(ra_catalog, dec_catalog, jd, platepar)

        catalog_x, catalog_y = catalog_xy
        catalog_xy = np.c_[catalog_x, catalog_y]

        # Cut all stars that are outside image coordinates
        catalog_xy = catalog_xy[catalog_xy[:, 0] > 0]
        catalog_xy = catalog_xy[catalog_xy[:, 0] < config.width]
        catalog_xy = catalog_xy[catalog_xy[:, 1] > 0]
        catalog_xy = catalog_xy[catalog_xy[:, 1] < config.height]


        # If there are more catalog than image stars, this means that the limiting magnitude is too faint
        #   and that the search should go in the brighter direction
        if len(catalog_xy) > len(calstars_coords):
            search_fainter = False
        else:
            search_fainter = True

        # print('Catalog stars:', len(catalog_xy), 'Image stars:', len(calstars_coords), \
        #     'Limiting magnitude:', config.catalog_mag_limit)

        # Search in mag_step magnitude steps
        if search_fainter:
            config.catalog_mag_limit += mag_step
        else:
            config.catalog_mag_limit -= mag_step

    print('Final catalog limiting magnitude:', config.catalog_mag_limit)


    # Find the transform between the image coordinates and predicted platepar coordinates
    res = findStarsTransform(config, calstars_coords, catalog_xy, show_plot=show_plot)
    angle, scale, translation_x, translation_y = res


    ### Update the platepar ###

    platepar_aligned = copy.deepcopy(platepar)

    # Correct the rotation
    platepar_aligned.pos_angle_ref = (platepar_aligned.pos_angle_ref - angle)%360

    # Update the scale if needed
    if scale_update:
        platepar_aligned.F_scale *= scale

    # Compute the new reference RA and Dec
    # _, ra_centre_new, dec_centre_new, _ = ApplyAstrometry.xyToRaDecPP([jd2Date(platepar.JD)], \
    #     [platepar.X_res/2 - translation_x], [platepar.Y_res/2 - translation_y], [1], platepar)
    _, ra_centre_new, dec_centre_new, _ = ApplyAstrometry.xyToRaDecPP([jd2Date(platepar.JD)], \
        [platepar.X_res/2 - platepar.x_poly_fwd[0] - translation_x], \
        [platepar.Y_res/2 - platepar.y_poly_fwd[0] - translation_y], [1], platepar)

    # Correct RA/Dec
    platepar_aligned.RA_d = ra_centre_new[0]
    platepar_aligned.dec_d = dec_centre_new[0]

    # # Update the reference time and hour angle
    # platepar_aligned.JD = jd
    # platepar_aligned.Ho = JD2HourAngle(jd)

    # Recompute the FOV centre in Alt/Az and update the rotation
    platepar_aligned.az_centre, platepar_aligned.alt_centre = ApplyAstrometry.raDec2AltAz(platepar.JD, \
                platepar.lon, platepar.lat, platepar.RA_d, platepar.dec_d)
    platepar_aligned.rotation_from_horiz = ApplyAstrometry.rotationWrtHorizon(platepar_aligned)

    # Indicate that the platepar has been automatically updated
    platepar_aligned.auto_check_fit_refined = True

    ###

    return platepar_aligned
コード例 #2
0
def generateCalibrationReport(config,
                              night_dir_path,
                              match_radius=2.0,
                              platepar=None,
                              show_graphs=False):
    """ Given the folder of the night, find the Calstars file, check the star fit and generate a report
        with the quality of the calibration. The report contains information about both the astrometry and
        the photometry calibration. Graphs will be saved in the given directory of the night.
    
    Arguments:
        config: [Config instance]
        night_dir_path: [str] Full path to the directory of the night.

    Keyword arguments:
        match_radius: [float] Match radius for star matching between image and catalog stars (px).
        platepar: [Platepar instance] Use this platepar instead of finding one in the folder.
        show_graphs: [bool] Show the graphs on the screen. False by default.

    Return:
        None
    """

    # Find the CALSTARS file in the given folder
    calstars_file = None
    for calstars_file in os.listdir(night_dir_path):
        if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file):
            break

    if calstars_file is None:
        print('CALSTARS file could not be found in the given directory!')
        return None

    # Load the calstars file
    star_list = readCALSTARS(night_dir_path, calstars_file)

    ### Load recalibrated platepars, if they exist ###

    # Find recalibrated platepars file per FF file
    platepars_recalibrated_file = None
    for file_name in os.listdir(night_dir_path):
        if file_name == config.platepars_recalibrated_name:
            platepars_recalibrated_file = file_name
            break

    # Load all recalibrated platepars if the file is available
    recalibrated_platepars = None
    if platepars_recalibrated_file:
        with open(os.path.join(night_dir_path,
                               platepars_recalibrated_file)) as f:
            recalibrated_platepars = json.load(f)
            print(
                'Loaded recalibrated platepars JSON file for the calibration report...'
            )

    ### ###

    ### Load the platepar file ###

    # Find the platepar file in the given directory if it was not given
    if platepar is None:

        # Find the platepar file
        platepar_file = None
        for file_name in os.listdir(night_dir_path):
            if file_name == config.platepar_name:
                platepar_file = file_name
                break

        if platepar_file is None:
            print('The platepar cannot be found in the night directory!')
            return None

        # Load the platepar file
        platepar = Platepar()
        platepar.read(os.path.join(night_dir_path, platepar_file),
                      use_flat=config.use_flat)

    ### ###

    night_name = os.path.split(night_dir_path.strip(os.sep))[1]

    # Go one mag deeper than in the config
    lim_mag = config.catalog_mag_limit + 1

    # Load catalog stars (load one magnitude deeper)
    catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\
        config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \
        mag_band_ratios=config.star_catalog_band_ratios)

    ### Take only those CALSTARS entires for which FF files exist in the folder ###

    # Get a list of FF files in the folder
    ff_list = []
    for file_name in os.listdir(night_dir_path):
        if validFFName(file_name):
            ff_list.append(file_name)

    # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs
    star_dict = {}
    ff_dict = {}
    for entry in star_list:

        ff_name, star_data = entry

        # Check if the FF from CALSTARS exists in the folder
        if ff_name not in ff_list:
            continue

        dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)
        jd = date2JD(*dt)

        # Add the time and the stars to the dict
        star_dict[jd] = star_data
        ff_dict[jd] = ff_name

    ### ###

    # If there are no FF files in the directory, don't generate a report
    if len(star_dict) == 0:
        print('No FF files from the CALSTARS file in the directory!')
        return None

    # If the recalibrated platepars file exists, take the one with the most stars
    max_jd = 0
    using_recalib_platepars = False
    if recalibrated_platepars is not None:
        max_stars = 0
        for ff_name_temp in recalibrated_platepars:

            # Compute the Julian date of the FF middle
            dt = getMiddleTimeFF(ff_name_temp,
                                 config.fps,
                                 ret_milliseconds=True)
            jd = date2JD(*dt)

            # Check that this file exists in CALSTARS and the list of FF files
            if (jd not in star_dict) or (jd not in ff_dict):
                continue

            # Check if the number of stars on this FF file is larger than the before
            if len(star_dict[jd]) > max_stars:
                max_jd = jd
                max_stars = len(star_dict[jd])

        # Set a flag to indicate if using recalibrated platepars has failed
        if max_jd == 0:
            using_recalib_platepars = False
        else:

            print('Using recalibrated platepars, file:', ff_dict[max_jd])
            using_recalib_platepars = True

            # Select the platepar where the FF file has the most stars
            platepar_dict = recalibrated_platepars[ff_dict[max_jd]]
            platepar = Platepar()
            platepar.loadFromDict(platepar_dict, use_flat=config.use_flat)

            filtered_star_dict = {max_jd: star_dict[max_jd]}

            # Match stars on the image with the stars in the catalog
            n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \
                filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag)

            max_matched_stars = n_matched

    # Otherwise take the optimal FF file for evaluation
    if (recalibrated_platepars is None) or (not using_recalib_platepars):

        # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on
        #   the image
        if len(star_dict) > config.calstars_files_N:

            # Find JDs of FF files with most stars on them
            top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \
                - 1]

            filtered_star_dict = {}
            for i in top_nstars_indices:
                filtered_star_dict[list(star_dict.keys())[i]] = list(
                    star_dict.values())[i]

            star_dict = filtered_star_dict

        # Match stars on the image with the stars in the catalog
        n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \
            star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag)

    # If no recalibrated platepars where found, find the image with the largest number of matched stars
    if (not using_recalib_platepars) or (max_jd == 0):

        max_jd = 0
        max_matched_stars = 0
        for jd in matched_stars:
            _, _, distances = matched_stars[jd]
            if len(distances) > max_matched_stars:
                max_jd = jd
                max_matched_stars = len(distances)

        # If there are no matched stars, use the image with the largest number of detected stars
        if max_matched_stars <= 2:
            max_jd = max(star_dict, key=lambda x: len(star_dict[x]))
            distances = [np.inf]

    # Take the FF file with the largest number of matched stars
    ff_name = ff_dict[max_jd]

    # Load the FF file
    ff = readFF(night_dir_path, ff_name)
    img_h, img_w = ff.avepixel.shape

    dpi = 200
    plt.figure(figsize=(ff.avepixel.shape[1] / dpi,
                        ff.avepixel.shape[0] / dpi),
               dpi=dpi)

    # Take the average pixel
    img = ff.avepixel

    # Slightly adjust the levels
    img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.3,
                             np.percentile(img, 99.99))

    plt.imshow(img, cmap='gray', interpolation='nearest')

    legend_handles = []

    # Plot detected stars
    for img_star in star_dict[max_jd]:

        y, x, _, _ = img_star

        rect_side = 5 * match_radius
        square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \
            fill=False, label='Image stars')

        plt.gca().add_artist(square_patch)

    legend_handles.append(square_patch)

    # If there are matched stars, plot them
    if max_matched_stars > 2:

        # Take the solution with the largest number of matched stars
        image_stars, matched_catalog_stars, distances = matched_stars[max_jd]

        # Plot matched stars
        for img_star in image_stars:
            x, y, _, _ = img_star

            circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \
                label='Matched stars')

            plt.gca().add_artist(circle_patch)

        legend_handles.append(circle_patch)

        ### Plot match residuals ###

        # Compute preducted positions of matched image stars from the catalog
        x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \
            matched_catalog_stars[:, 1], max_jd, platepar)

        img_y, img_x, _, _ = image_stars.T

        delta_x = x_predicted - img_x
        delta_y = y_predicted - img_y

        # Compute image residual and angle of the error
        res_angle = np.arctan2(delta_y, delta_x)
        res_distance = np.sqrt(delta_x**2 + delta_y**2)

        # Calculate coordinates of the beginning of the residual line
        res_x_beg = img_x + 3 * match_radius * np.cos(res_angle)
        res_y_beg = img_y + 3 * match_radius * np.sin(res_angle)

        # Calculate coordinates of the end of the residual line
        res_x_end = img_x + 100 * np.cos(res_angle) * res_distance
        res_y_end = img_y + 100 * np.sin(res_angle) * res_distance

        # Plot the 100x residuals
        for i in range(len(x_predicted)):
            res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \
                lw=0.5, label='100x residuals')

        legend_handles.append(res_plot[0])

        ### ###

    else:

        distances = [np.inf]

        # If there are no matched stars, plot large text in the middle of the screen
        plt.text(img_w / 2,
                 img_h / 2,
                 "NO MATCHED STARS!",
                 color='r',
                 alpha=0.5,
                 fontsize=20,
                 ha='center',
                 va='center')

    ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ###

    # Find the faintest magnitude among matched stars
    if max_matched_stars > 2:
        faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1

    else:
        # If there are no matched stars, use the limiting magnitude from config
        faintest_mag = config.catalog_mag_limit + 1

    # Estimate RA,dec of the centre of the FOV
    _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res / 2],
                                    [platepar.Y_res / 2], [1], platepar)

    RA_c = RA_c[0]
    dec_c = dec_c[0]

    fov_radius = np.hypot(*computeFOVSize(platepar))

    # Get stars from the catalog around the defined center in a given radius
    _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c,
                                         fov_radius, faintest_mag)
    ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T

    # Compute image positions of all catalog stars that should be on the image
    x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd,
                                       platepar)

    # Filter all catalog stars outside the image
    temp_arr = np.c_[x_catalog, y_catalog, mag_catalog]
    temp_arr = temp_arr[temp_arr[:, 0] >= 0]
    temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]]
    temp_arr = temp_arr[temp_arr[:, 1] >= 0]
    temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]]
    x_catalog, y_catalog, mag_catalog = temp_arr.T

    # Plot catalog stars on the image
    cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \
        s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars')

    legend_handles.append(cat_stars_handle)

    ### ###

    # Add info text in the corner
    info_text = ff_dict[max_jd] + '\n' \
        + "Matched stars within {:.1f} px radius: {:d}/{:d} \n".format(match_radius, max_matched_stars, \
            len(star_dict[max_jd])) \
        + "Median distance = {:.2f} px\n".format(np.median(distances)) \
        + "Catalog lim mag = {:.1f}".format(lim_mag)

    plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \
        color='w', family='monospace')

    legend = plt.legend(handles=legend_handles,
                        prop={'size': 4},
                        loc='upper right')
    legend.get_frame().set_facecolor('k')
    legend.get_frame().set_edgecolor('k')
    for txt in legend.get_texts():
        txt.set_color('w')

    ### Add FOV info (centre, size) ###

    # Mark FOV centre
    plt.scatter(platepar.X_res / 2,
                platepar.Y_res / 2,
                marker='+',
                s=20,
                c='r',
                zorder=4)

    # Compute FOV centre alt/az
    azim_centre, alt_centre = raDec2AltAz(max_jd, platepar.lon, platepar.lat,
                                          RA_c, dec_c)

    # Compute FOV size
    fov_h, fov_v = computeFOVSize(platepar)

    # Compute the rotation wrt. horizon
    rot_horizon = rotationWrtHorizon(platepar)

    fov_centre_text = "Azim  = {:6.2f}$\\degree$\n".format(azim_centre) \
                    + "Alt   = {:6.2f}$\\degree$\n".format(alt_centre) \
                    + "Rot h = {:6.2f}$\\degree$\n".format(rot_horizon) \
                    + "FOV h = {:6.2f}$\\degree$\n".format(fov_h) \
                    + "FOV v = {:6.2f}$\\degree$".format(fov_v) \

    plt.text(10, platepar.Y_res - 10, fov_centre_text, bbox=dict(facecolor='black', alpha=0.5), \
        va='bottom', ha='left', fontsize=4, color='w', family='monospace')

    ### ###

    # Plot RA/Dec gridlines #
    addEquatorialGrid(plt, platepar, max_jd)

    plt.axis('off')
    plt.gca().get_xaxis().set_visible(False)
    plt.gca().get_yaxis().set_visible(False)

    plt.xlim([0, ff.avepixel.shape[1]])
    plt.ylim([ff.avepixel.shape[0], 0])

    # Remove the margins
    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)

    plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \
        bbox_inches='tight', pad_inches=0, dpi=dpi)

    if show_graphs:
        plt.show()

    else:
        plt.clf()
        plt.close()

    if max_matched_stars > 2:

        ### PHOTOMETRY FIT ###

        # If a flat is used, set the vignetting coeff to 0
        if config.use_flat:
            platepar.vignetting_coeff = 0.0

        # Extact intensities and mangitudes
        star_intensities = image_stars[:, 2]
        catalog_mags = matched_catalog_stars[:, 2]

        # Compute radius of every star from image centre
        radius_arr = np.hypot(image_stars[:, 0] - img_h / 2,
                              image_stars[:, 1] - img_w / 2)

        # Fit the photometry on automated star intensities (use the fixed vignetting coeff, use robust fit)
        photom_params, fit_stddev, fit_resid, star_intensities, radius_arr, catalog_mags = \
            photometryFitRobust(star_intensities, radius_arr, catalog_mags, \
            fixed_vignetting=platepar.vignetting_coeff)

        photom_offset, _ = photom_params

        ### ###

        ### PLOT PHOTOMETRY ###
        # Note: An almost identical code exists in RMS.Astrometry.SkyFit in the PlateTool.photometry function

        dpi = 130
        fig_p, (ax_p, ax_r) = plt.subplots(nrows=2, facecolor=None, figsize=(6.0, 7.0), dpi=dpi, \
            gridspec_kw={'height_ratios':[2, 1]})

        # Plot raw star intensities
        ax_p.scatter(-2.5 * np.log10(star_intensities),
                     catalog_mags,
                     s=5,
                     c='r',
                     alpha=0.5,
                     label="Raw")

        # If a flat is used, disregard the vignetting
        if not config.use_flat:

            # Plot intensities of image stars corrected for vignetting
            lsp_corr_arr = np.log10(correctVignetting(star_intensities, radius_arr, \
                platepar.vignetting_coeff))
            ax_p.scatter(-2.5*lsp_corr_arr, catalog_mags, s=5, c='b', alpha=0.5, \
                label="Corrected for vignetting")

        # Plot photometric offset from the platepar
        x_min, x_max = ax_p.get_xlim()
        y_min, y_max = ax_p.get_ylim()

        x_min_w = x_min - 3
        x_max_w = x_max + 3
        y_min_w = y_min - 3
        y_max_w = y_max + 3

        photometry_info = "Platepar: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(platepar.mag_0, \
            platepar.mag_lev, platepar.mag_lev_stddev) \
            + "\nVignetting coeff = {:.5f}".format(platepar.vignetting_coeff) \
            + "\nGamma = {:.2f}".format(platepar.gamma)

        # Plot the photometry calibration from the platepar
        logsum_arr = np.linspace(x_min_w, x_max_w, 10)
        ax_p.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \
            color='k', alpha=0.5)

        # Plot the fitted photometry calibration
        fit_info = "Fit: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(
            -2.5, photom_offset, fit_stddev)
        ax_p.plot(logsum_arr,
                  logsum_arr + photom_offset,
                  label=fit_info,
                  linestyle='--',
                  color='b',
                  alpha=0.75)

        ax_p.legend()

        ax_p.set_ylabel("Catalog magnitude ({:s})".format(mag_band_str))
        ax_p.set_xlabel("Uncalibrated magnitude")

        # Set wider axis limits
        ax_p.set_xlim(x_min_w, x_max_w)
        ax_p.set_ylim(y_min_w, y_max_w)

        ax_p.invert_yaxis()
        ax_p.invert_xaxis()

        ax_p.grid()

        ### Plot photometry vs radius ###

        img_diagonal = np.hypot(img_h / 2, img_w / 2)

        # Plot photometry residuals (including vignetting)
        ax_r.scatter(radius_arr, fit_resid, c='b', alpha=0.75, s=5, zorder=3)

        # Plot a zero line
        ax_r.plot(np.linspace(0, img_diagonal, 10), np.zeros(10), linestyle='dashed', alpha=0.5, \
            color='k')

        # Plot only when no flat is used
        if not config.use_flat:

            #  Plot radius from centre vs. fit residual
            fit_resids_novignetting = catalog_mags - photomLine((np.array(star_intensities), \
                np.array(radius_arr)), photom_offset, 0.0)
            ax_r.scatter(radius_arr,
                         fit_resids_novignetting,
                         s=5,
                         c='r',
                         alpha=0.5,
                         zorder=3)

            px_sum_tmp = 1000
            radius_arr_tmp = np.linspace(0, img_diagonal, 50)

            # Plot vignetting loss curve
            vignetting_loss = 2.5*np.log10(px_sum_tmp) \
                - 2.5*np.log10(correctVignetting(px_sum_tmp, radius_arr_tmp, \
                    platepar.vignetting_coeff))

            ax_r.plot(radius_arr_tmp,
                      vignetting_loss,
                      linestyle='dotted',
                      alpha=0.5,
                      color='k')

        ax_r.grid()

        ax_r.set_ylabel("Fit residuals (mag)")
        ax_r.set_xlabel("Radius from centre (px)")

        ax_r.set_xlim(0, img_diagonal)

        ### ###

        plt.tight_layout()

        plt.savefig(os.path.join(night_dir_path,
                                 night_name + '_calib_report_photometry.png'),
                    dpi=150)

        if show_graphs:
            plt.show()

        else:
            plt.clf()
            plt.close()
コード例 #3
0
ファイル: FFTalign.py プロジェクト: GoodStuff11/RMS
def alignPlatepar(config,
                  platepar,
                  calstars_time,
                  calstars_coords,
                  scale_update=False,
                  show_plot=False):
    """ Align the platepar using FFT registration between catalog stars and the given list of image stars.
    Arguments:
        config:
        platepar: [Platepar instance] Initial platepar.
        calstars_time: [list] A list of (year, month, day, hour, minute, second, millisecond) of the middle of
            the FF file used for alignment.
        calstars_coords: [ndarray] A 2D numpy array of (x, y) coordinates of image stars.
    Keyword arguments:
        scale_update: [bool] Update the platepar scale. False by default.
        show_plot: [bool] Show the comparison between the reference and image synthetic images.
    Return:
        platepar_aligned: [Platepar instance] The aligned platepar.
    """

    # Create a copy of the config not to mess with the original config parameters
    config = copy.deepcopy(config)

    # Try to optimize the catalog limiting magnitude until the number of image and catalog stars are matched
    maxiter = 10
    search_fainter = True
    mag_step = 0.2
    for inum in range(maxiter):

        # Load the catalog stars
        catalog_stars, _, _ = StarCatalog.readStarCatalog(config.star_catalog_path, config.star_catalog_file, \
            lim_mag=config.catalog_mag_limit, mag_band_ratios=config.star_catalog_band_ratios)

        # Get the RA/Dec of the image centre
        _, ra_centre, dec_centre, _ = ApplyAstrometry.xyToRaDecPP([calstars_time], [platepar.X_res/2], \
                [platepar.Y_res/2], [1], platepar, extinction_correction=False)

        ra_centre = ra_centre[0]
        dec_centre = dec_centre[0]

        # Compute Julian date
        jd = date2JD(*calstars_time)

        # Calculate the FOV radius in degrees
        fov_y, fov_x = ApplyAstrometry.computeFOVSize(platepar)
        fov_radius = np.sqrt(fov_x**2 + fov_y**2)

        # Take only those stars which are inside the FOV
        filtered_indices, _ = subsetCatalog(catalog_stars, ra_centre, dec_centre, jd, platepar.lat, \
            platepar.lon, fov_radius, config.catalog_mag_limit)

        # Take those catalog stars which should be inside the FOV
        ra_catalog, dec_catalog, _ = catalog_stars[filtered_indices].T
        catalog_xy = ApplyAstrometry.raDecToXYPP(ra_catalog, dec_catalog, jd,
                                                 platepar)

        catalog_x, catalog_y = catalog_xy
        catalog_xy = np.c_[catalog_x, catalog_y]

        # Cut all stars that are outside image coordinates
        catalog_xy = catalog_xy[catalog_xy[:, 0] > 0]
        catalog_xy = catalog_xy[catalog_xy[:, 0] < config.width]
        catalog_xy = catalog_xy[catalog_xy[:, 1] > 0]
        catalog_xy = catalog_xy[catalog_xy[:, 1] < config.height]

        # If there are more catalog than image stars, this means that the limiting magnitude is too faint
        #   and that the search should go in the brighter direction
        if len(catalog_xy) > len(calstars_coords):
            search_fainter = False
        else:
            search_fainter = True

        # print('Catalog stars:', len(catalog_xy), 'Image stars:', len(calstars_coords), \
        #     'Limiting magnitude:', config.catalog_mag_limit)

        # Search in mag_step magnitude steps
        if search_fainter:
            config.catalog_mag_limit += mag_step
        else:
            config.catalog_mag_limit -= mag_step

    print('Final catalog limiting magnitude:', config.catalog_mag_limit)

    # Find the transform between the image coordinates and predicted platepar coordinates
    res = findStarsTransform(config,
                             calstars_coords,
                             catalog_xy,
                             show_plot=show_plot)
    angle, scale, translation_x, translation_y = res

    ### Update the platepar ###

    platepar_aligned = copy.deepcopy(platepar)

    # Correct the rotation
    platepar_aligned.pos_angle_ref = (platepar_aligned.pos_angle_ref -
                                      angle) % 360

    # Update the scale if needed
    if scale_update:
        platepar_aligned.F_scale *= scale

    # Compute the new reference RA and Dec
    _, ra_centre_new, dec_centre_new, _ = ApplyAstrometry.xyToRaDecPP([jd2Date(platepar.JD)], \
        [platepar.X_res/2 - platepar.x_poly_fwd[0] - translation_x], \
        [platepar.Y_res/2 - platepar.y_poly_fwd[0] - translation_y], [1], platepar, \
        extinction_correction=False)

    # Correct RA/Dec
    platepar_aligned.RA_d = ra_centre_new[0]
    platepar_aligned.dec_d = dec_centre_new[0]

    # # Update the reference time and hour angle
    # platepar_aligned.JD = jd
    # platepar_aligned.Ho = JD2HourAngle(jd)

    # Recompute the FOV centre in Alt/Az and update the rotation
    platepar_aligned.az_centre, platepar_aligned.alt_centre = raDec2AltAz(platepar.RA_d, \
        platepar.dec_d, platepar.JD, platepar.lat, platepar.lon)
    platepar_aligned.rotation_from_horiz = ApplyAstrometry.rotationWrtHorizon(
        platepar_aligned)

    ###

    return platepar_aligned
コード例 #4
0
def matchStarsResiduals(config, platepar, catalog_stars, star_dict, match_radius, ret_nmatch=False, \
    sky_coords=False, lim_mag=None, verbose=False):
    """ Match the image and catalog stars with the given astrometry solution and estimate the residuals
        between them.

    Arguments:
        config: [Config structure]
        platepar: [Platepar structure] Astrometry parameters.
        catalog_stars: [ndarray] An array of catalog stars (ra, dec, mag).
        star_dict: [ndarray] A dictionary where the keys are JDs when the stars were recorded and values are
            2D list of stars, each entry is (X, Y, bg_level, level, fwhm).
        match_radius: [float] Maximum radius for star matching (pixels).
        min_matched_stars: [int] Minimum number of matched stars on the image for the image to be accepted.
    Keyword arguments:
        ret_nmatch: [bool] If True, the function returns the number of matched stars and the average
            deviation. False by default.
        sky_coords: [bool] If True, sky coordinate residuals in RA, dec will be used to compute the cost,
            function, not image coordinates.
        lim_mag: [float] Override the limiting magnitude from config. None by default.
        verbose: [bool] Print results. True by default.
    Return:
        cost: [float] The cost function which weights the number of matched stars and the average deviation.
    """

    if lim_mag is None:
        lim_mag = config.catalog_mag_limit

    # Estimate the FOV radius
    fov_radius = getFOVSelectionRadius(platepar)

    # Dictionary containing the matched stars, the keys are JDs of every image
    matched_stars = {}

    # Go through every FF image and its stars
    for jd in star_dict:

        # Estimate RA,dec of the centre of the FOV
        _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(jd)], [platepar.X_res/2], [platepar.Y_res/2], [1], \
            platepar, extinction_correction=False)

        RA_c = RA_c[0]
        dec_c = dec_c[0]

        # Get stars from the catalog around the defined center in a given radius
        _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, jd, platepar.lat, platepar.lon, \
            fov_radius, lim_mag)
        ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T

        # Extract stars for the given Julian date
        stars_list = star_dict[jd]
        stars_list = np.array(stars_list)

        # Convert all catalog stars to image coordinates
        cat_x_array, cat_y_array = raDecToXYPP(ra_catalog, dec_catalog, jd,
                                               platepar)

        # Take only those stars which are within the FOV
        x_indices = np.argwhere((cat_x_array >= 0)
                                & (cat_x_array < platepar.X_res))
        y_indices = np.argwhere((cat_y_array >= 0)
                                & (cat_y_array < platepar.Y_res))
        cat_good_indices = np.intersect1d(x_indices,
                                          y_indices).astype(np.uint32)

        # cat_x_array = cat_x_array[good_indices]
        # cat_y_array = cat_y_array[good_indices]

        # # Plot image stars
        # im_y, im_x, _, _ = stars_list.T
        # plt.scatter(im_y, im_x, facecolors='none', edgecolor='g')

        # # Plot catalog stars
        # plt.scatter(cat_y_array[cat_good_indices], cat_x_array[cat_good_indices], c='r', s=20, marker='+')

        # plt.show()

        # Match image and catalog stars
        matched_indices = matchStars(stars_list, cat_x_array, cat_y_array,
                                     cat_good_indices, match_radius)

        # Skip this image is no stars were matched
        if len(matched_indices) < config.min_matched_stars:
            continue

        matched_indices = np.array(matched_indices)
        matched_img_inds, matched_cat_inds, dist_list = matched_indices.T

        # Extract data from matched stars
        matched_img_stars = stars_list[matched_img_inds.astype(np.int)]
        matched_cat_stars = extracted_catalog[matched_cat_inds.astype(np.int)]

        # Put the matched stars to a dictionary
        matched_stars[jd] = [matched_img_stars, matched_cat_stars, dist_list]

        # # Plot matched stars
        # im_y, im_x, _, _ = matched_img_stars.T
        # cat_y = cat_y_array[matched_cat_inds.astype(np.int)]
        # cat_x = cat_x_array[matched_cat_inds.astype(np.int)]

        # plt.scatter(im_x, im_y, c='r', s=5)
        # plt.scatter(cat_x, cat_y, facecolors='none', edgecolor='g')

        # plt.xlim([0, platepar.X_res])
        # plt.ylim([platepar.Y_res, 0])

        # plt.show()

    # If residuals on the image should be computed
    if not sky_coords:

        unit_label = 'px'

        # Extract all distances
        global_dist_list = []
        # level_list = []
        # mag_list = []
        for jd in matched_stars:
            # matched_img_stars, matched_cat_stars, dist_list = matched_stars[jd]

            _, _, dist_list = matched_stars[jd]

            global_dist_list += dist_list.tolist()

            # # TEST
            # level_list += matched_img_stars[:, 3].tolist()
            # mag_list += matched_cat_stars[:, 2].tolist()

        # # Plot levels vs. magnitudes
        # plt.scatter(mag_list, np.log10(level_list))
        # plt.xlabel('Magnitude')
        # plt.ylabel('Log10 level')
        # plt.show()

    # Compute the residuals on the sky
    else:

        unit_label = 'arcmin'

        global_dist_list = []

        # Go through all matched stars
        for jd in matched_stars:

            matched_img_stars, matched_cat_stars, dist_list = matched_stars[jd]

            # Go through all stars on the image
            for img_star_entry, cat_star_entry in zip(matched_img_stars,
                                                      matched_cat_stars):

                # Extract star coords
                star_y = img_star_entry[0]
                star_x = img_star_entry[1]
                cat_ra = cat_star_entry[0]
                cat_dec = cat_star_entry[1]

                # Convert image coordinates to RA/Dec
                _, star_ra, star_dec, _ = xyToRaDecPP([jd2Date(jd)], [star_x], [star_y], [1], \
                    platepar, extinction_correction=False)

                # Compute angular distance between the predicted and the catalog position
                ang_dist = np.degrees(angularSeparation(np.radians(cat_ra), np.radians(cat_dec), \
                    np.radians(star_ra[0]), np.radians(star_dec[0])))

                # Store the angular separation in arc minutes
                global_dist_list.append(ang_dist * 60)

    # Number of matched stars
    n_matched = len(global_dist_list)

    if n_matched == 0:

        if verbose:
            print(
                'No matched stars with radius {:.1f} px!'.format(match_radius))

        if ret_nmatch:
            return 0, 9999.0, 9999.0, {}

        else:
            return 9999.0

    # Calculate the average distance
    avg_dist = np.median(global_dist_list)

    cost = (avg_dist**2) * (1.0 / np.sqrt(n_matched + 1))

    if verbose:

        print()
        print("Matched {:d} stars with radius of {:.1f} px".format(
            n_matched, match_radius))
        print("    Average distance = {:.3f} {:s}".format(
            avg_dist, unit_label))
        print("    Cost function    = {:.5f}".format(cost))

    if ret_nmatch:
        return n_matched, avg_dist, cost, matched_stars

    else:
        return cost
コード例 #5
0
ファイル: CheckFit.py プロジェクト: CroatianMeteorNetwork/RMS
def matchStarsResiduals(config, platepar, catalog_stars, star_dict, match_radius, ret_nmatch=False, \
    sky_coords=False, lim_mag=None, verbose=False):
    """ Match the image and catalog stars with the given astrometry solution and estimate the residuals 
        between them.
    
    Arguments:
        config: [Config structure]
        platepar: [Platepar structure] Astrometry parameters.
        catalog_stars: [ndarray] An array of catalog stars (ra, dec, mag).
        star_dict: [ndarray] A dictionary where the keys are JDs when the stars were recorded and values are
            2D list of stars, each entry is (X, Y, bg_level, level).
        match_radius: [float] Maximum radius for star matching (pixels).
        min_matched_stars: [int] Minimum number of matched stars on the image for the image to be accepted.

    Keyword arguments:
        ret_nmatch: [bool] If True, the function returns the number of matched stars and the average 
            deviation. False by default.
        sky_coords: [bool] If True, sky coordinate residuals in RA, dec will be used to compute the cost,
            function, not image coordinates.
        lim_mag: [float] Override the limiting magnitude from config. None by default.
        verbose: [bool] Print results. True by default.

    Return:
        cost: [float] The cost function which weights the number of matched stars and the average deviation.

    """


    if lim_mag is None:
        lim_mag = config.catalog_mag_limit


    # Estimate the FOV radius
    fov_w = platepar.X_res/platepar.F_scale
    fov_h = platepar.Y_res/platepar.F_scale

    fov_radius = np.sqrt((fov_w/2)**2 + (fov_h/2)**2)

    # print('fscale', platepar.F_scale)
    # print('FOV w:', fov_w)
    # print('FOV h:', fov_h)
    # print('FOV radius:', fov_radius)


    # Dictionary containing the matched stars, the keys are JDs of every image
    matched_stars = {}


    # Go through every FF image and its stars
    for jd in star_dict:

        # Estimate RA,dec of the centre of the FOV
        _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(jd)], [platepar.X_res/2], [platepar.Y_res/2], [1], 
            platepar)

        RA_c = RA_c[0]
        dec_c = dec_c[0]

        # Get stars from the catalog around the defined center in a given radius
        _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, fov_radius, lim_mag)
        ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T


        # Extract stars for the given Julian date
        stars_list = star_dict[jd]
        stars_list = np.array(stars_list)

        # Convert all catalog stars to image coordinates
        cat_x_array, cat_y_array = raDecToXYPP(ra_catalog, dec_catalog, jd, platepar)

        # Take only those stars which are within the FOV
        x_indices = np.argwhere((cat_x_array >= 0) & (cat_x_array < platepar.X_res))
        y_indices = np.argwhere((cat_y_array >= 0) & (cat_y_array < platepar.Y_res))
        cat_good_indices = np.intersect1d(x_indices, y_indices).astype(np.uint32)

        # cat_x_array = cat_x_array[good_indices]
        # cat_y_array = cat_y_array[good_indices]


        # # Plot image stars
        # im_y, im_x, _, _ = stars_list.T
        # plt.scatter(im_y, im_x, facecolors='none', edgecolor='g')

        # # Plot catalog stars
        # plt.scatter(cat_y_array[cat_good_indices], cat_x_array[cat_good_indices], c='r', s=20, marker='+')

        # plt.show()


        # Match image and catalog stars
        matched_indices = matchStars(stars_list, cat_x_array, cat_y_array, cat_good_indices, match_radius)

        # Skip this image is no stars were matched
        if len(matched_indices) < config.min_matched_stars:
            continue

        matched_indices = np.array(matched_indices)
        matched_img_inds, matched_cat_inds, dist_list = matched_indices.T

        # Extract data from matched stars
        matched_img_stars = stars_list[matched_img_inds.astype(np.int)]
        matched_cat_stars = extracted_catalog[matched_cat_inds.astype(np.int)]

        # Put the matched stars to a dictionary
        matched_stars[jd] = [matched_img_stars, matched_cat_stars, dist_list]


        # # Plot matched stars
        # im_y, im_x, _, _ = matched_img_stars.T
        # cat_y = cat_y_array[matched_cat_inds.astype(np.int)]
        # cat_x = cat_x_array[matched_cat_inds.astype(np.int)]

        # plt.scatter(im_x, im_y, c='r', s=5)
        # plt.scatter(cat_x, cat_y, facecolors='none', edgecolor='g')

        # plt.xlim([0, platepar.X_res])
        # plt.ylim([platepar.Y_res, 0])

        # plt.show()



    # If residuals on the image should be computed
    if not sky_coords:

        unit_label = 'px'

        # Extract all distances
        global_dist_list = []
        # level_list = []
        # mag_list = []
        for jd in matched_stars:
            # matched_img_stars, matched_cat_stars, dist_list = matched_stars[jd]

            _, _, dist_list = matched_stars[jd]
            
            global_dist_list += dist_list.tolist()

            # # TEST
            # level_list += matched_img_stars[:, 3].tolist()
            # mag_list += matched_cat_stars[:, 2].tolist()



        # # Plot levels vs. magnitudes
        # plt.scatter(mag_list, np.log10(level_list))
        # plt.xlabel('Magnitude')
        # plt.ylabel('Log10 level')
        # plt.show()

    # Compute the residuals on the sky
    else:

        unit_label = 'arcmin'

        global_dist_list = []

        # Go through all matched stars
        for jd in matched_stars:

            matched_img_stars, matched_cat_stars, dist_list = matched_stars[jd]

            # Go through all stars on the image
            for img_star_entry, cat_star_entry in zip(matched_img_stars, matched_cat_stars):

                # Extract star coords
                star_y = img_star_entry[0]
                star_x = img_star_entry[1]
                cat_ra = cat_star_entry[0]
                cat_dec = cat_star_entry[1]

                # Convert image coordinates to RA/Dec
                _, star_ra, star_dec, _ = xyToRaDecPP([jd2Date(jd)], [star_x], [star_y], [1], \
                    platepar)

                # Compute angular distance between the predicted and the catalog position
                ang_dist = np.degrees(angularSeparation(np.radians(cat_ra), np.radians(cat_dec), \
                    np.radians(star_ra[0]), np.radians(star_dec[0])))

                # Store the angular separation in arc minutes
                global_dist_list.append(ang_dist*60)



    # Number of matched stars
    n_matched = len(global_dist_list)

    if n_matched == 0:

        if verbose:
            print('No matched stars with radius {:.2f} px!'.format(match_radius))
        
        if ret_nmatch:
            return 0, 9999.0, 9999.0, {}

        else:
            return 9999.0

    # Calculate the average distance
    avg_dist = np.mean(global_dist_list)

    cost = (avg_dist**2)*(1.0/np.sqrt(n_matched + 1))

    if verbose:

        print('Matched {:d} stars with radius of {:.2f} px'.format(n_matched, match_radius))
        print('Avg dist', avg_dist, unit_label)
        print('Cost:', cost)
        print('-----')


    if ret_nmatch:
        return n_matched, avg_dist, cost, matched_stars

    else:
        return cost
コード例 #6
0
ファイル: CheckFit.py プロジェクト: ytchenak/RMS
def matchStarsResiduals(config,
                        platepar,
                        catalog_stars,
                        star_dict,
                        match_radius,
                        ret_nmatch=False):
    """ Match the image and catalog stars with the given astrometry solution and estimate the residuals 
        between them.
    
    Arguments:
        config: [Config structure]
        platepar: [Platepar structure] Astrometry parameters.
        catalog_stars: [ndarray] An array of catalog stars (ra, dec, mag).
        star_dict: [ndarray] A dictionary where the keys are JDs when the stars were recorded and values are
            2D list of stars, each entry is (X, Y, bg_level, level).
        match_radius: [float] Maximum radius for star matching (pixels).
        min_matched_stars: [int] Minimum number of matched stars on the image for the image to be accepted.

    Keyword arguments:
        ret_nmatch: [bool] If True, the function returns the number of matched stars and the average 
            deviation. False by defualt.

    Return:
        cost: [float] The cost function which weights the number of matched stars and the average deviation.

    """

    # Estimate the FOV radius
    fov_w = platepar.X_res / platepar.F_scale
    fov_h = platepar.Y_res / platepar.F_scale

    fov_radius = np.sqrt((fov_w / 2)**2 + (fov_h / 2)**2)

    # print('fscale', platepar.F_scale)
    # print('FOV w:', fov_w)
    # print('FOV h:', fov_h)
    # print('FOV radius:', fov_radius)

    # Dictionary containing the matched stars, the keys are JDs of every image
    matched_stars = {}

    # Go through every FF image and its stars
    for jd in star_dict:

        # Estimate RA,dec of the centre of the FOV
        _, RA_c, dec_c, _ = XY2CorrectedRADecPP([jd2Date(jd)],
                                                [platepar.X_res / 2],
                                                [platepar.Y_res / 2], [0],
                                                platepar)

        RA_c = RA_c[0]
        dec_c = dec_c[0]

        # Get stars from the catalog around the defined center in a given radius
        _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c,
                                             fov_radius,
                                             config.catalog_mag_limit)
        ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T

        # Extract stars for the given Julian date
        stars_list = star_dict[jd]
        stars_list = np.array(stars_list)

        # Convert all catalog stars to image coordinates
        cat_x_array, cat_y_array = raDecToCorrectedXYPP(
            ra_catalog, dec_catalog, jd, platepar)

        # Take only those stars which are within the FOV
        x_indices = np.argwhere((cat_x_array >= 0)
                                & (cat_x_array < platepar.X_res))
        y_indices = np.argwhere((cat_y_array >= 0)
                                & (cat_y_array < platepar.Y_res))
        cat_good_indices = np.intersect1d(x_indices,
                                          y_indices).astype(np.uint32)

        # cat_x_array = cat_x_array[good_indices]
        # cat_y_array = cat_y_array[good_indices]

        # # Plot image stars
        # im_y, im_x, _, _ = stars_list.T
        # plt.scatter(im_y, im_x, facecolors='none', edgecolor='g')

        # # Plot catalog stars
        # plt.scatter(cat_y_array[cat_good_indices], cat_x_array[cat_good_indices], c='r', s=20, marker='+')

        # plt.show()

        # Match image and catalog stars
        matched_indices = matchStars(stars_list, cat_x_array, cat_y_array,
                                     cat_good_indices, match_radius)

        # Skip this image is no stars were matched
        if len(matched_indices) < config.min_matched_stars:
            continue

        matched_indices = np.array(matched_indices)
        matched_img_inds, matched_cat_inds, dist_list = matched_indices.T

        # Extract data from matched stars
        matched_img_stars = stars_list[matched_img_inds.astype(np.int)]
        matched_cat_stars = extracted_catalog[matched_cat_inds.astype(np.int)]

        # Put the matched stars to a dictionary
        matched_stars[jd] = [matched_img_stars, matched_cat_stars, dist_list]

        # # Plot matched stars
        # im_y, im_x, _, _ = matched_img_stars.T
        # cat_y = cat_y_array[matched_cat_inds.astype(np.int)]
        # cat_x = cat_x_array[matched_cat_inds.astype(np.int)]

        # plt.scatter(im_x, im_y, c='r', s=5)
        # plt.scatter(cat_x, cat_y, facecolors='none', edgecolor='g')

        # plt.xlim([0, platepar.X_res])
        # plt.ylim([platepar.Y_res, 0])

        # plt.show()

    # Extract all distances
    global_dist_list = []
    # level_list = []
    # mag_list = []
    for jd in matched_stars:
        # matched_img_stars, matched_cat_stars, dist_list = matched_stars[jd]

        _, _, dist_list = matched_stars[jd]

        global_dist_list += dist_list.tolist()

        # # TEST
        # level_list += matched_img_stars[:, 3].tolist()
        # mag_list += matched_cat_stars[:, 2].tolist()

    # # Plot levels vs. magnitudes
    # plt.scatter(mag_list, np.log10(level_list))
    # plt.xlabel('Magnitude')
    # plt.ylabel('Log10 level')
    # plt.show()

    # Number of matched stars
    n_matched = len(global_dist_list)

    if n_matched == 0:

        if ret_nmatch:
            return 0, 9999.0, 9999.0, {}

        else:
            return 9999.0

    # Calculate the average distance
    avg_dist = np.mean(global_dist_list)

    cost = (avg_dist**2) * (1.0 / np.sqrt(n_matched + 1))

    print('Matched {:d} stars with radius of {:.2f} px'.format(
        n_matched, match_radius))
    print('Avg dist', avg_dist)
    print('Cost:', cost)
    print('-----')

    if ret_nmatch:
        return n_matched, avg_dist, cost, matched_stars

    else:
        return cost
コード例 #7
0
def generateCalibrationReport(config, night_dir_path, match_radius=2.0, platepar=None, show_graphs=False):
    """ Given the folder of the night, find the Calstars file, check the star fit and generate a report
        with the quality of the calibration. The report contains information about both the astrometry and
        the photometry calibration. Graphs will be saved in the given directory of the night.
    
    Arguments:
        config: [Config instance]
        night_dir_path: [str] Full path to the directory of the night.

    Keyword arguments:
        match_radius: [float] Match radius for star matching between image and catalog stars (px).
        platepar: [Platepar instance] Use this platepar instead of finding one in the folder.
        show_graphs: [bool] Show the graphs on the screen. False by default.

    Return:
        None
    """

    # Find the CALSTARS file in the given folder
    calstars_file = None
    for calstars_file in os.listdir(night_dir_path):
        if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file):
            break

    if calstars_file is None:
        print('CALSTARS file could not be found in the given directory!')
        return None


    # Load the calstars file
    star_list = readCALSTARS(night_dir_path, calstars_file)



    ### Load recalibrated platepars, if they exist ###

    # Find recalibrated platepars file per FF file
    platepars_recalibrated_file = None
    for file_name in os.listdir(night_dir_path):
        if file_name == config.platepars_recalibrated_name:
            platepars_recalibrated_file = file_name
            break


    # Load all recalibrated platepars if the file is available
    recalibrated_platepars = None
    if platepars_recalibrated_file:
        with open(os.path.join(night_dir_path, platepars_recalibrated_file)) as f:
            recalibrated_platepars = json.load(f)
            print('Loaded recalibrated platepars JSON file for the calibration report...')

    ### ###


    ### Load the platepar file ###

    # Find the platepar file in the given directory if it was not given
    if platepar is None:

        # Find the platepar file
        platepar_file = None
        for file_name in os.listdir(night_dir_path):
            if file_name == config.platepar_name:
                platepar_file = file_name
                break

        if platepar_file is None:
            print('The platepar cannot be found in the night directory!')
            return None

        # Load the platepar file
        platepar = Platepar()
        platepar.read(os.path.join(night_dir_path, platepar_file))


    ### ###


    night_name = os.path.split(night_dir_path.strip(os.sep))[1]


    # Go one mag deeper than in the config
    lim_mag = config.catalog_mag_limit + 1

    # Load catalog stars (load one magnitude deeper)
    catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\
        config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \
        mag_band_ratios=config.star_catalog_band_ratios)

    
    ### Take only those CALSTARS entires for which FF files exist in the folder ###

    # Get a list of FF files in the folder\
    ff_list = []
    for file_name in os.listdir(night_dir_path):
        if validFFName(file_name):
            ff_list.append(file_name)


    # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs
    star_dict = {}
    ff_dict = {}
    for entry in star_list:

        ff_name, star_data = entry

        # Check if the FF from CALSTARS exists in the folder
        if ff_name not in ff_list:
            continue


        dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)
        jd = date2JD(*dt)

        # Add the time and the stars to the dict
        star_dict[jd] = star_data
        ff_dict[jd] = ff_name

    ### ###

    # If there are no FF files in the directory, don't generate a report
    if len(star_dict) == 0:
        print('No FF files from the CALSTARS file in the directory!')
        return None


    # If the recalibrated platepars file exists, take the one with the most stars
    max_jd = 0
    if recalibrated_platepars is not None:
        max_stars = 0
        for ff_name_temp in recalibrated_platepars:

            # Compute the Julian date of the FF middle
            dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True)
            jd = date2JD(*dt)

            # Check that this file exists in CALSTARS and the list of FF files
            if (jd not in star_dict) or (jd not in ff_dict):
                continue

            # Check if the number of stars on this FF file is larger than the before
            if len(star_dict[jd]) > max_stars:
                max_jd = jd
                max_stars = len(star_dict[jd])


        # Set a flag to indicate if using recalibrated platepars has failed
        if max_jd == 0:
            using_recalib_platepars = False
        else:

            print('Using recalibrated platepars, file:', ff_dict[max_jd])
            using_recalib_platepars = True

            # Select the platepar where the FF file has the most stars
            platepar_dict = recalibrated_platepars[ff_dict[max_jd]]
            platepar = Platepar()
            platepar.loadFromDict(platepar_dict)

            filtered_star_dict = {max_jd: star_dict[max_jd]}

            # Match stars on the image with the stars in the catalog
            n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \
                filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag)

            max_matched_stars = n_matched


    # Otherwise take the optimal FF file for evaluation
    if (recalibrated_platepars is None) or (not using_recalib_platepars):

        # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on
        #   the image
        if len(star_dict) > config.calstars_files_N:

            # Find JDs of FF files with most stars on them
            top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \
                - 1]

            filtered_star_dict = {}
            for i in top_nstars_indices:
                filtered_star_dict[list(star_dict.keys())[i]] = list(star_dict.values())[i]

            star_dict = filtered_star_dict


        # Match stars on the image with the stars in the catalog
        n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \
            star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag)



    # If no recalibrated platepars where found, find the image with the largest number of matched stars
    if (not using_recalib_platepars) or (max_jd == 0):

        max_jd = 0
        max_matched_stars = 0
        for jd in matched_stars:
            _, _, distances = matched_stars[jd]
            if len(distances) > max_matched_stars:
                max_jd = jd
                max_matched_stars = len(distances)

        
        # If there are no matched stars, use the image with the largest number of detected stars
        if max_matched_stars <= 2:
            max_jd = max(star_dict, key=lambda x: len(star_dict[x]))
            distances = [np.inf]



    # Take the FF file with the largest number of matched stars
    ff_name = ff_dict[max_jd]

    # Load the FF file
    ff = readFF(night_dir_path, ff_name)
    img_h, img_w = ff.avepixel.shape

    dpi = 200
    plt.figure(figsize=(ff.avepixel.shape[1]/dpi, ff.avepixel.shape[0]/dpi), dpi=dpi)

    # Take the average pixel
    img = ff.avepixel

    # Slightly adjust the levels
    img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.2, np.percentile(img, 99.99))

    plt.imshow(img, cmap='gray', interpolation='nearest')

    legend_handles = []


    # Plot detected stars
    for img_star in star_dict[max_jd]:

        y, x, _, _ = img_star

        rect_side = 5*match_radius
        square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \
            fill=False, label='Image stars')

        plt.gca().add_artist(square_patch)

    legend_handles.append(square_patch)



    # If there are matched stars, plot them
    if max_matched_stars > 2:

        # Take the solution with the largest number of matched stars
        image_stars, matched_catalog_stars, distances = matched_stars[max_jd]

        # Plot matched stars
        for img_star in image_stars:
            x, y, _, _ = img_star

            circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \
                label='Matched stars')

            plt.gca().add_artist(circle_patch)

        legend_handles.append(circle_patch)


        ### Plot match residuals ###

        # Compute preducted positions of matched image stars from the catalog
        x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \
            matched_catalog_stars[:, 1], max_jd, platepar)

        img_y, img_x, _, _ = image_stars.T

        delta_x = x_predicted - img_x
        delta_y = y_predicted - img_y

        # Compute image residual and angle of the error
        res_angle = np.arctan2(delta_y, delta_x)
        res_distance = np.sqrt(delta_x**2 + delta_y**2)


        # Calculate coordinates of the beginning of the residual line
        res_x_beg = img_x + 3*match_radius*np.cos(res_angle)
        res_y_beg = img_y + 3*match_radius*np.sin(res_angle)

        # Calculate coordinates of the end of the residual line
        res_x_end = img_x + 100*np.cos(res_angle)*res_distance
        res_y_end = img_y + 100*np.sin(res_angle)*res_distance

        # Plot the 100x residuals
        for i in range(len(x_predicted)):
            res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \
                lw=0.5, label='100x residuals')

        legend_handles.append(res_plot[0])

        ### ###

    else:

        distances = [np.inf]
        
        # If there are no matched stars, plot large text in the middle of the screen
        plt.text(img_w/2, img_h/2, "NO MATCHED STARS!", color='r', alpha=0.5, fontsize=20, ha='center',
            va='center')


    ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ###

    # Find the faintest magnitude among matched stars
    if max_matched_stars > 2:
        faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1

    else:
        # If there are no matched stars, use the limiting magnitude from config
        faintest_mag = config.catalog_mag_limit + 1


    # Estimate RA,dec of the centre of the FOV
    _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res/2], [platepar.Y_res/2], [1], 
        platepar)

    RA_c = RA_c[0]
    dec_c = dec_c[0]

    fov_radius = np.hypot(*computeFOVSize(platepar))

    # Get stars from the catalog around the defined center in a given radius
    _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, fov_radius, faintest_mag)
    ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T

    # Compute image positions of all catalog stars that should be on the image
    x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd, platepar)

    # Filter all catalog stars outside the image
    temp_arr = np.c_[x_catalog, y_catalog, mag_catalog]
    temp_arr = temp_arr[temp_arr[:, 0] >= 0]
    temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]]
    temp_arr = temp_arr[temp_arr[:, 1] >= 0]
    temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]]
    x_catalog, y_catalog, mag_catalog = temp_arr.T

    # Plot catalog stars on the image
    cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \
        s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars')

    legend_handles.append(cat_stars_handle)

    ### ###


    # Add info text
    info_text = ff_dict[max_jd] + '\n' \
        + "Matched stars: {:d}/{:d}\n".format(max_matched_stars, len(star_dict[max_jd])) \
        + "Median distance: {:.2f} px\n".format(np.median(distances)) \
        + "Catalog limiting magnitude: {:.1f}".format(lim_mag)

    plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \
        color='w')

    legend = plt.legend(handles=legend_handles, prop={'size': 4}, loc='upper right')
    legend.get_frame().set_facecolor('k')
    legend.get_frame().set_edgecolor('k')
    for txt in legend.get_texts():
        txt.set_color('w')


    plt.axis('off')
    plt.gca().get_xaxis().set_visible(False)
    plt.gca().get_yaxis().set_visible(False)

    plt.xlim([0, ff.avepixel.shape[1]])
    plt.ylim([ff.avepixel.shape[0], 0])

    # Remove the margins
    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)

    plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \
        bbox_inches='tight', pad_inches=0, dpi=dpi)


    if show_graphs:
        plt.show()

    else:
        plt.clf()
        plt.close()



    if max_matched_stars > 2:

        ### Plot the photometry ###

        plt.figure(dpi=dpi)

        # Take only those stars which are inside the 3/4 of the shorter image axis from the center
        photom_selection_radius = np.min([img_h, img_w])/3
        filter_indices = ((image_stars[:, 0] - img_h/2)**2 + (image_stars[:, 1] \
            - img_w/2)**2) <= photom_selection_radius**2
        star_intensities = image_stars[filter_indices, 2]
        catalog_mags = matched_catalog_stars[filter_indices, 2]

        # Plot intensities of image stars
        #star_intensities = image_stars[:, 2]
        plt.scatter(-2.5*np.log10(star_intensities), catalog_mags, s=5, c='r')

        # Fit the photometry on automated star intensities
        photom_offset, fit_stddev, _ = photometryFit(np.log10(star_intensities), catalog_mags)


        # Plot photometric offset from the platepar
        x_min, x_max = plt.gca().get_xlim()
        y_min, y_max = plt.gca().get_ylim()

        x_min_w = x_min - 3
        x_max_w = x_max + 3
        y_min_w = y_min - 3
        y_max_w = y_max + 3

        photometry_info = 'Platepar: {:+.2f}LSP {:+.2f} +/- {:.2f} \nGamma = {:.2f}'.format(platepar.mag_0, \
            platepar.mag_lev, platepar.mag_lev_stddev, platepar.gamma)

        # Plot the photometry calibration from the platepar
        logsum_arr = np.linspace(x_min_w, x_max_w, 10)
        plt.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \
            color='k', alpha=0.5)

        # Plot the fitted photometry calibration
        fit_info = "Fit: {:+.2f}LSP {:+.2f} +/- {:.2f}".format(-2.5, photom_offset, fit_stddev)
        plt.plot(logsum_arr, logsum_arr + photom_offset, label=fit_info, linestyle='--', color='red', 
            alpha=0.5)

        plt.legend()

        plt.ylabel("Catalog magnitude ({:s})".format(mag_band_str))
        plt.xlabel("Uncalibrated magnitude")

        # Set wider axis limits
        plt.xlim(x_min_w, x_max_w)
        plt.ylim(y_min_w, y_max_w)

        plt.gca().invert_yaxis()
        plt.gca().invert_xaxis()

        plt.grid()

        plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_photometry.png'), dpi=150)


        if show_graphs:
            plt.show()

        else:
            plt.clf()
            plt.close()