def makeFlat(dir_path, config): """ Makes a flat field from the files in the given folder. CALSTARS file is needed to estimate the quality of every image by counting the number of detected stars. Arguments: dir_path: [str] Path to the directory which contains the FF files and a CALSTARS file. config: [config object] Return: [2d ndarray] Flat field image as a numpy array. If the flat generation failed, None will be returned. """ # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file) # Convert the list to a dictionary calstars = {ff_file: star_data for ff_file, star_data in calstars_list} print('CALSTARS file: ' + calstars_file + ' loaded!') # A list of FF files which have any stars on them calstars_ff_files = [line[0] for line in calstars_list] ff_list = [] # Get a list of FF files in the folder for file_name in os.listdir(dir_path): if validFFName(file_name) and (file_name in calstars_ff_files): ff_list.append(file_name) # Check that there are any FF files in the folder if not ff_list: print('No FF files in the selected folder!') return None ff_list_good = [] ff_times = [] # Take only those FF files with enough stars on them for ff_name in ff_list: if not validFFName(ff_name): continue if ff_name in calstars: # Get the number of stars detected on the FF image ff_nstars = len(calstars[ff_name]) # Check if the number of stars on the image is over the detection threshold if ff_nstars > config.ff_min_stars: # Add the FF file to the list of FF files to be used to make a flat ff_list_good.append(ff_name) # Calculate the time of the FF files ff_time = date2JD(*getMiddleTimeFF( ff_name, config.fps, ret_milliseconds=True)) ff_times.append(ff_time) # Check that there are enough good FF files in the folder if len(ff_times) < config.flat_min_imgs: print('Not enough FF files have enough stars on them!') return None # Make sure the files cover at least 2 hours if not (max(ff_times) - min(ff_times)) * 24 > 2: print('Good FF files cover less than 2 hours!') return None # Sample FF files if there are more than 200 max_ff_flat = 200 if len(ff_list_good) > max_ff_flat: ff_list_good = sorted(random.sample(ff_list_good, max_ff_flat)) print('Using {:d} files for flat...'.format(len(ff_list_good))) c = 0 ff_avg_list = [] median_list = [] # Median combine all good FF files for i in range(len(ff_list_good)): # Load 10 files at the time and median combine them, which conserves memory if c < 10: ff = readFF(dir_path, ff_list_good[i]) ff_avg_list.append(ff.avepixel) c += 1 else: ff_avg_list = np.array(ff_avg_list) # Median combine the loaded 10 (or less) images ff_median = np.median(ff_avg_list, axis=0) median_list.append(ff_median) ff_avg_list = [] c = 0 # If there are more than 1 calculated median image, combine them if len(median_list) > 1: # Median combine all median images median_list = np.array(median_list) ff_median = np.median(median_list, axis=0) else: ff_median = median_list[0] # Stretch flat to 0-255 ff_median = ff_median / np.max(ff_median) * 255 # Convert the flat to 8 bits ff_median = ff_median.astype(np.uint8) return ff_median
def generateCalibrationReport(config, night_dir_path, match_radius=2.0, platepar=None, show_graphs=False): """ Given the folder of the night, find the Calstars file, check the star fit and generate a report with the quality of the calibration. The report contains information about both the astrometry and the photometry calibration. Graphs will be saved in the given directory of the night. Arguments: config: [Config instance] night_dir_path: [str] Full path to the directory of the night. Keyword arguments: match_radius: [float] Match radius for star matching between image and catalog stars (px). platepar: [Platepar instance] Use this platepar instead of finding one in the folder. show_graphs: [bool] Show the graphs on the screen. False by default. Return: None """ # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(night_dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file star_list = readCALSTARS(night_dir_path, calstars_file) ### Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file: with open(os.path.join(night_dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print( 'Loaded recalibrated platepars JSON file for the calibration report...' ) ### ### ### Load the platepar file ### # Find the platepar file in the given directory if it was not given if platepar is None: # Find the platepar file platepar_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepar_name: platepar_file = file_name break if platepar_file is None: print('The platepar cannot be found in the night directory!') return None # Load the platepar file platepar = Platepar() platepar.read(os.path.join(night_dir_path, platepar_file), use_flat=config.use_flat) ### ### night_name = os.path.split(night_dir_path.strip(os.sep))[1] # Go one mag deeper than in the config lim_mag = config.catalog_mag_limit + 1 # Load catalog stars (load one magnitude deeper) catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\ config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \ mag_band_ratios=config.star_catalog_band_ratios) ### Take only those CALSTARS entires for which FF files exist in the folder ### # Get a list of FF files in the folder ff_list = [] for file_name in os.listdir(night_dir_path): if validFFName(file_name): ff_list.append(file_name) # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs star_dict = {} ff_dict = {} for entry in star_list: ff_name, star_data = entry # Check if the FF from CALSTARS exists in the folder if ff_name not in ff_list: continue dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Add the time and the stars to the dict star_dict[jd] = star_data ff_dict[jd] = ff_name ### ### # If there are no FF files in the directory, don't generate a report if len(star_dict) == 0: print('No FF files from the CALSTARS file in the directory!') return None # If the recalibrated platepars file exists, take the one with the most stars max_jd = 0 using_recalib_platepars = False if recalibrated_platepars is not None: max_stars = 0 for ff_name_temp in recalibrated_platepars: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Check that this file exists in CALSTARS and the list of FF files if (jd not in star_dict) or (jd not in ff_dict): continue # Check if the number of stars on this FF file is larger than the before if len(star_dict[jd]) > max_stars: max_jd = jd max_stars = len(star_dict[jd]) # Set a flag to indicate if using recalibrated platepars has failed if max_jd == 0: using_recalib_platepars = False else: print('Using recalibrated platepars, file:', ff_dict[max_jd]) using_recalib_platepars = True # Select the platepar where the FF file has the most stars platepar_dict = recalibrated_platepars[ff_dict[max_jd]] platepar = Platepar() platepar.loadFromDict(platepar_dict, use_flat=config.use_flat) filtered_star_dict = {max_jd: star_dict[max_jd]} # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) max_matched_stars = n_matched # Otherwise take the optimal FF file for evaluation if (recalibrated_platepars is None) or (not using_recalib_platepars): # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on # the image if len(star_dict) > config.calstars_files_N: # Find JDs of FF files with most stars on them top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \ - 1] filtered_star_dict = {} for i in top_nstars_indices: filtered_star_dict[list(star_dict.keys())[i]] = list( star_dict.values())[i] star_dict = filtered_star_dict # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) # If no recalibrated platepars where found, find the image with the largest number of matched stars if (not using_recalib_platepars) or (max_jd == 0): max_jd = 0 max_matched_stars = 0 for jd in matched_stars: _, _, distances = matched_stars[jd] if len(distances) > max_matched_stars: max_jd = jd max_matched_stars = len(distances) # If there are no matched stars, use the image with the largest number of detected stars if max_matched_stars <= 2: max_jd = max(star_dict, key=lambda x: len(star_dict[x])) distances = [np.inf] # Take the FF file with the largest number of matched stars ff_name = ff_dict[max_jd] # Load the FF file ff = readFF(night_dir_path, ff_name) img_h, img_w = ff.avepixel.shape dpi = 200 plt.figure(figsize=(ff.avepixel.shape[1] / dpi, ff.avepixel.shape[0] / dpi), dpi=dpi) # Take the average pixel img = ff.avepixel # Slightly adjust the levels img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.3, np.percentile(img, 99.99)) plt.imshow(img, cmap='gray', interpolation='nearest') legend_handles = [] # Plot detected stars for img_star in star_dict[max_jd]: y, x, _, _ = img_star rect_side = 5 * match_radius square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \ fill=False, label='Image stars') plt.gca().add_artist(square_patch) legend_handles.append(square_patch) # If there are matched stars, plot them if max_matched_stars > 2: # Take the solution with the largest number of matched stars image_stars, matched_catalog_stars, distances = matched_stars[max_jd] # Plot matched stars for img_star in image_stars: x, y, _, _ = img_star circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \ label='Matched stars') plt.gca().add_artist(circle_patch) legend_handles.append(circle_patch) ### Plot match residuals ### # Compute preducted positions of matched image stars from the catalog x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \ matched_catalog_stars[:, 1], max_jd, platepar) img_y, img_x, _, _ = image_stars.T delta_x = x_predicted - img_x delta_y = y_predicted - img_y # Compute image residual and angle of the error res_angle = np.arctan2(delta_y, delta_x) res_distance = np.sqrt(delta_x**2 + delta_y**2) # Calculate coordinates of the beginning of the residual line res_x_beg = img_x + 3 * match_radius * np.cos(res_angle) res_y_beg = img_y + 3 * match_radius * np.sin(res_angle) # Calculate coordinates of the end of the residual line res_x_end = img_x + 100 * np.cos(res_angle) * res_distance res_y_end = img_y + 100 * np.sin(res_angle) * res_distance # Plot the 100x residuals for i in range(len(x_predicted)): res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \ lw=0.5, label='100x residuals') legend_handles.append(res_plot[0]) ### ### else: distances = [np.inf] # If there are no matched stars, plot large text in the middle of the screen plt.text(img_w / 2, img_h / 2, "NO MATCHED STARS!", color='r', alpha=0.5, fontsize=20, ha='center', va='center') ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ### # Find the faintest magnitude among matched stars if max_matched_stars > 2: faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1 else: # If there are no matched stars, use the limiting magnitude from config faintest_mag = config.catalog_mag_limit + 1 # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res / 2], [platepar.Y_res / 2], [1], platepar) RA_c = RA_c[0] dec_c = dec_c[0] fov_radius = np.hypot(*computeFOVSize(platepar)) # Get stars from the catalog around the defined center in a given radius _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, fov_radius, faintest_mag) ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T # Compute image positions of all catalog stars that should be on the image x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd, platepar) # Filter all catalog stars outside the image temp_arr = np.c_[x_catalog, y_catalog, mag_catalog] temp_arr = temp_arr[temp_arr[:, 0] >= 0] temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]] temp_arr = temp_arr[temp_arr[:, 1] >= 0] temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]] x_catalog, y_catalog, mag_catalog = temp_arr.T # Plot catalog stars on the image cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \ s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars') legend_handles.append(cat_stars_handle) ### ### # Add info text in the corner info_text = ff_dict[max_jd] + '\n' \ + "Matched stars within {:.1f} px radius: {:d}/{:d} \n".format(match_radius, max_matched_stars, \ len(star_dict[max_jd])) \ + "Median distance = {:.2f} px\n".format(np.median(distances)) \ + "Catalog lim mag = {:.1f}".format(lim_mag) plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \ color='w', family='monospace') legend = plt.legend(handles=legend_handles, prop={'size': 4}, loc='upper right') legend.get_frame().set_facecolor('k') legend.get_frame().set_edgecolor('k') for txt in legend.get_texts(): txt.set_color('w') ### Add FOV info (centre, size) ### # Mark FOV centre plt.scatter(platepar.X_res / 2, platepar.Y_res / 2, marker='+', s=20, c='r', zorder=4) # Compute FOV centre alt/az azim_centre, alt_centre = raDec2AltAz(max_jd, platepar.lon, platepar.lat, RA_c, dec_c) # Compute FOV size fov_h, fov_v = computeFOVSize(platepar) # Compute the rotation wrt. horizon rot_horizon = rotationWrtHorizon(platepar) fov_centre_text = "Azim = {:6.2f}$\\degree$\n".format(azim_centre) \ + "Alt = {:6.2f}$\\degree$\n".format(alt_centre) \ + "Rot h = {:6.2f}$\\degree$\n".format(rot_horizon) \ + "FOV h = {:6.2f}$\\degree$\n".format(fov_h) \ + "FOV v = {:6.2f}$\\degree$".format(fov_v) \ plt.text(10, platepar.Y_res - 10, fov_centre_text, bbox=dict(facecolor='black', alpha=0.5), \ va='bottom', ha='left', fontsize=4, color='w', family='monospace') ### ### # Plot RA/Dec gridlines # addEquatorialGrid(plt, platepar, max_jd) plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, ff.avepixel.shape[1]]) plt.ylim([ff.avepixel.shape[0], 0]) # Remove the margins plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \ bbox_inches='tight', pad_inches=0, dpi=dpi) if show_graphs: plt.show() else: plt.clf() plt.close() if max_matched_stars > 2: ### PHOTOMETRY FIT ### # If a flat is used, set the vignetting coeff to 0 if config.use_flat: platepar.vignetting_coeff = 0.0 # Extact intensities and mangitudes star_intensities = image_stars[:, 2] catalog_mags = matched_catalog_stars[:, 2] # Compute radius of every star from image centre radius_arr = np.hypot(image_stars[:, 0] - img_h / 2, image_stars[:, 1] - img_w / 2) # Fit the photometry on automated star intensities (use the fixed vignetting coeff, use robust fit) photom_params, fit_stddev, fit_resid, star_intensities, radius_arr, catalog_mags = \ photometryFitRobust(star_intensities, radius_arr, catalog_mags, \ fixed_vignetting=platepar.vignetting_coeff) photom_offset, _ = photom_params ### ### ### PLOT PHOTOMETRY ### # Note: An almost identical code exists in RMS.Astrometry.SkyFit in the PlateTool.photometry function dpi = 130 fig_p, (ax_p, ax_r) = plt.subplots(nrows=2, facecolor=None, figsize=(6.0, 7.0), dpi=dpi, \ gridspec_kw={'height_ratios':[2, 1]}) # Plot raw star intensities ax_p.scatter(-2.5 * np.log10(star_intensities), catalog_mags, s=5, c='r', alpha=0.5, label="Raw") # If a flat is used, disregard the vignetting if not config.use_flat: # Plot intensities of image stars corrected for vignetting lsp_corr_arr = np.log10(correctVignetting(star_intensities, radius_arr, \ platepar.vignetting_coeff)) ax_p.scatter(-2.5*lsp_corr_arr, catalog_mags, s=5, c='b', alpha=0.5, \ label="Corrected for vignetting") # Plot photometric offset from the platepar x_min, x_max = ax_p.get_xlim() y_min, y_max = ax_p.get_ylim() x_min_w = x_min - 3 x_max_w = x_max + 3 y_min_w = y_min - 3 y_max_w = y_max + 3 photometry_info = "Platepar: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(platepar.mag_0, \ platepar.mag_lev, platepar.mag_lev_stddev) \ + "\nVignetting coeff = {:.5f}".format(platepar.vignetting_coeff) \ + "\nGamma = {:.2f}".format(platepar.gamma) # Plot the photometry calibration from the platepar logsum_arr = np.linspace(x_min_w, x_max_w, 10) ax_p.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \ color='k', alpha=0.5) # Plot the fitted photometry calibration fit_info = "Fit: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format( -2.5, photom_offset, fit_stddev) ax_p.plot(logsum_arr, logsum_arr + photom_offset, label=fit_info, linestyle='--', color='b', alpha=0.75) ax_p.legend() ax_p.set_ylabel("Catalog magnitude ({:s})".format(mag_band_str)) ax_p.set_xlabel("Uncalibrated magnitude") # Set wider axis limits ax_p.set_xlim(x_min_w, x_max_w) ax_p.set_ylim(y_min_w, y_max_w) ax_p.invert_yaxis() ax_p.invert_xaxis() ax_p.grid() ### Plot photometry vs radius ### img_diagonal = np.hypot(img_h / 2, img_w / 2) # Plot photometry residuals (including vignetting) ax_r.scatter(radius_arr, fit_resid, c='b', alpha=0.75, s=5, zorder=3) # Plot a zero line ax_r.plot(np.linspace(0, img_diagonal, 10), np.zeros(10), linestyle='dashed', alpha=0.5, \ color='k') # Plot only when no flat is used if not config.use_flat: # Plot radius from centre vs. fit residual fit_resids_novignetting = catalog_mags - photomLine((np.array(star_intensities), \ np.array(radius_arr)), photom_offset, 0.0) ax_r.scatter(radius_arr, fit_resids_novignetting, s=5, c='r', alpha=0.5, zorder=3) px_sum_tmp = 1000 radius_arr_tmp = np.linspace(0, img_diagonal, 50) # Plot vignetting loss curve vignetting_loss = 2.5*np.log10(px_sum_tmp) \ - 2.5*np.log10(correctVignetting(px_sum_tmp, radius_arr_tmp, \ platepar.vignetting_coeff)) ax_r.plot(radius_arr_tmp, vignetting_loss, linestyle='dotted', alpha=0.5, color='k') ax_r.grid() ax_r.set_ylabel("Fit residuals (mag)") ax_r.set_xlabel("Radius from centre (px)") ax_r.set_xlim(0, img_diagonal) ### ### plt.tight_layout() plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_photometry.png'), dpi=150) if show_graphs: plt.show() else: plt.clf() plt.close()
def makeFlat(dir_path, config, nostars=False, use_images=False): """ Makes a flat field from the files in the given folder. CALSTARS file is needed to estimate the quality of every image by counting the number of detected stars. Arguments: dir_path: [str] Path to the directory which contains the FF files and a CALSTARS file. config: [config object] Keyword arguments: nostars: [bool] If True, all files will be taken regardless of if they have stars on them or not. use_images: [bool] Use image files instead of FF files. False by default. Return: [2d ndarray] Flat field image as a numpy array. If the flat generation failed, None will be returned. """ # If only images are used, then don't look for a CALSTARS file if use_images: nostars = True # Load the calstars file if it should be used if not nostars: # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file) # Convert the list to a dictionary calstars = {ff_file: star_data for ff_file, star_data in calstars_list} print('CALSTARS file: ' + calstars_file + ' loaded!') # A list of FF files which have any stars on them calstars_ff_files = [line[0] for line in calstars_list] else: calstars = {} # Use image files if use_images: # Find the file type with the highest file frequency in the given folder file_extensions = [] for file_name in os.listdir(dir_path): file_ext = file_name.split('.')[-1] if file_ext.lower() in ['jpg', 'png', 'bmp']: file_extensions.append(file_ext) # Get only the most frequent file type file_freqs = np.unique(file_extensions, return_counts=True) most_freq_type = file_freqs[0][0] print('Using image type:', most_freq_type) # Take only files of that file type ff_list = [file_name for file_name in sorted(os.listdir(dir_path)) \ if file_name.lower().endswith(most_freq_type)] # Use FF files else: ff_list = [] # Get a list of FF files in the folder for file_name in os.listdir(dir_path): if validFFName(file_name) and ((file_name in calstars_ff_files) or nostars): ff_list.append(file_name) # Check that there are any FF files in the folder if not ff_list: print('No valid FF files in the selected folder!') return None ff_list_good = [] ff_times = [] # Take only those FF files with enough stars on them for ff_name in ff_list: if (ff_name in calstars) or nostars: # Disable requiring minimum number of stars if specified if not nostars: # Get the number of stars detected on the FF image ff_nstars = len(calstars[ff_name]) else: ff_nstars = 0 # Check if the number of stars on the image is over the detection threshold if (ff_nstars > config.ff_min_stars) or nostars: # Add the FF file to the list of FF files to be used to make a flat ff_list_good.append(ff_name) # If images are used, don't compute the time if use_images: ff_time = 0 else: # Calculate the time of the FF files ff_time = date2JD(*getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)) ff_times.append(ff_time) # Check that there are enough good FF files in the folder if (len(ff_times) < config.flat_min_imgs) and (not nostars): print('Not enough FF files have enough stars on them!') return None # Make sure the files cover at least 2 hours if (not (max(ff_times) - min(ff_times))*24 > 2) and (not nostars): print('Good FF files cover less than 2 hours!') return None # Sample FF files if there are more than 200 max_ff_flat = 200 if len(ff_list_good) > max_ff_flat: ff_list_good = sorted(random.sample(ff_list_good, max_ff_flat)) print('Using {:d} files for flat...'.format(len(ff_list_good))) c = 0 img_list = [] median_list = [] # Median combine all good FF files for i in range(len(ff_list_good)): # Load 10 files at the time and median combine them, which conserves memory if c < 10: # Use images if use_images: img = scipy.ndimage.imread(os.path.join(dir_path, ff_list_good[i]), -1) # Use FF files else: ff = readFF(dir_path, ff_list_good[i]) # Skip the file if it is corruped if ff is None: continue img = ff.avepixel img_list.append(img) c += 1 else: img_list = np.array(img_list) # Median combine the loaded 10 (or less) images ff_median = np.median(img_list, axis=0) median_list.append(ff_median) img_list = [] c = 0 # If there are more than 1 calculated median image, combine them if len(median_list) > 1: # Median combine all median images median_list = np.array(median_list) ff_median = np.median(median_list, axis=0) else: if len(median_list) > 0: ff_median = median_list[0] else: ff_median = np.median(np.array(img_list), axis=0) # Stretch flat to 0-255 ff_median = ff_median/np.max(ff_median)*255 # Convert the flat to 8 bits ff_median = ff_median.astype(np.uint8) return ff_median
# Load the calstars file calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file) calstars_dict = {ff_file: star_data for ff_file, star_data in calstars_list} print('CALSTARS file: ' + calstars_file + ' loaded!') # Extract star list from CALSTARS file from FF file with most stars max_len_ff = max(calstars_dict, key=lambda k: len(calstars_dict[k])) # Take only X, Y (change order so X is first) calstars_coords = np.array(calstars_dict[max_len_ff])[:, :2] calstars_coords[:, [0, 1]] = calstars_coords[:, [1, 0]] # Get the time of the FF file calstars_time = getMiddleTimeFF(max_len_ff, config.fps, ret_milliseconds=True) # Align the platepar with stars in CALSTARS platepar_aligned = alignPlatepar(config, platepar, calstars_time, calstars_coords, show_plot=False) # Backup the old platepar shutil.copy(platepar_path, platepar_path + '.bak') # Save the updated platepar platepar_aligned.write(platepar_path) ### Testing sys.exit()
ff_file: star_data for ff_file, star_data in calstars_list } print('CALSTARS file: ' + calstars_file + ' loaded!') # Extract star list from CALSTARS file from FF file with most stars max_len_ff = max(calstars_dict, key=lambda k: len(calstars_dict[k])) # Take only X, Y (change order so X is first) calstars_coords = np.array(calstars_dict[max_len_ff])[:, :2] calstars_coords[:, [0, 1]] = calstars_coords[:, [1, 0]] # Get the time of the FF file calstars_time = getMiddleTimeFF(max_len_ff, config.fps, ret_milliseconds=True) # Align the platepar with stars in CALSTARS platepar_aligned = alignPlatepar(config, platepar, calstars_time, calstars_coords, show_plot=False) # Backup the old platepar shutil.copy(platepar_path, platepar_path + '.bak') # Save the updated platepar platepar_aligned.write(platepar_path)
def makeFlat(dir_path, config, nostars=False, use_images=False): """ Makes a flat field from the files in the given folder. CALSTARS file is needed to estimate the quality of every image by counting the number of detected stars. Arguments: dir_path: [str] Path to the directory which contains the FF files and a CALSTARS file. config: [config object] Keyword arguments: nostars: [bool] If True, all files will be taken regardless of if they have stars on them or not. use_images: [bool] Use image files instead of FF files. False by default. Return: [2d ndarray] Flat field image as a numpy array. If the flat generation failed, None will be returned. """ # If only images are used, then don't look for a CALSTARS file if use_images: nostars = True # Load the calstars file if it should be used if not nostars: # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file) # Convert the list to a dictionary calstars = {ff_file: star_data for ff_file, star_data in calstars_list} print('CALSTARS file: ' + calstars_file + ' loaded!') # A list of FF files which have any stars on them calstars_ff_files = [line[0] for line in calstars_list] else: calstars = {} calstars_ff_files = [] # Use image files if use_images: # Find the file type with the highest file frequency in the given folder file_extensions = [] for file_name in os.listdir(dir_path): file_ext = file_name.split('.')[-1] if file_ext.lower() in ['jpg', 'png', 'bmp']: file_extensions.append(file_ext) # Get only the most frequent file type file_freqs = np.unique(file_extensions, return_counts=True) most_freq_type = file_freqs[0][0] print('Using image type:', most_freq_type) # Take only files of that file type ff_list = [file_name for file_name in sorted(os.listdir(dir_path)) \ if file_name.lower().endswith(most_freq_type)] # Use FF files else: ff_list = [] # Get a list of FF files in the folder for file_name in os.listdir(dir_path): if validFFName(file_name) and ((file_name in calstars_ff_files) or nostars): ff_list.append(file_name) # Check that there are any FF files in the folder if not ff_list: print('No valid FF files in the selected folder!') return None ff_list_good = [] ff_times = [] # Take only those FF files with enough stars on them for ff_name in ff_list: if (ff_name in calstars) or nostars: # Disable requiring minimum number of stars if specified if not nostars: # Get the number of stars detected on the FF image ff_nstars = len(calstars[ff_name]) else: ff_nstars = 0 # Check if the number of stars on the image is over the detection threshold if (ff_nstars > config.ff_min_stars) or nostars: # Add the FF file to the list of FF files to be used to make a flat ff_list_good.append(ff_name) # If images are used, don't compute the time if use_images: ff_time = 0 else: # Calculate the time of the FF files ff_time = date2JD(*getMiddleTimeFF( ff_name, config.fps, ret_milliseconds=True)) ff_times.append(ff_time) # Check that there are enough good FF files in the folder if (len(ff_times) < config.flat_min_imgs) and (not nostars): print('Not enough FF files have enough stars on them!') return None # Make sure the files cover at least 2 hours if (not (max(ff_times) - min(ff_times)) * 24 > 2) and (not nostars): print('Good FF files cover less than 2 hours!') return None # Sample FF files if there are more than 200 max_ff_flat = 200 if len(ff_list_good) > max_ff_flat: ff_list_good = sorted(random.sample(ff_list_good, max_ff_flat)) print('Using {:d} files for flat...'.format(len(ff_list_good))) c = 0 img_list = [] median_list = [] # Median combine all good FF files for i in range(len(ff_list_good)): # Load 10 files at the time and median combine them, which conserves memory if c < 10: # Use images if use_images: img = loadImage(os.path.join(dir_path, ff_list_good[i]), -1) # Use FF files else: ff = readFF(dir_path, ff_list_good[i]) # Skip the file if it is corruped if ff is None: continue img = ff.avepixel img_list.append(img) c += 1 else: img_list = np.array(img_list) # Median combine the loaded 10 (or less) images ff_median = np.median(img_list, axis=0) median_list.append(ff_median) img_list = [] c = 0 # If there are more than 1 calculated median image, combine them if len(median_list) > 1: # Median combine all median images median_list = np.array(median_list) ff_median = np.median(median_list, axis=0) else: if len(median_list) > 0: ff_median = median_list[0] else: ff_median = np.median(np.array(img_list), axis=0) # Stretch flat to 0-255 ff_median = ff_median / np.max(ff_median) * 255 # Convert the flat to 8 bits ff_median = ff_median.astype(np.uint8) return ff_median
def generateCalibrationReport(config, night_dir_path, match_radius=2.0, platepar=None, show_graphs=False): """ Given the folder of the night, find the Calstars file, check the star fit and generate a report with the quality of the calibration. The report contains information about both the astrometry and the photometry calibration. Graphs will be saved in the given directory of the night. Arguments: config: [Config instance] night_dir_path: [str] Full path to the directory of the night. Keyword arguments: match_radius: [float] Match radius for star matching between image and catalog stars (px). platepar: [Platepar instance] Use this platepar instead of finding one in the folder. show_graphs: [bool] Show the graphs on the screen. False by default. Return: None """ # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(night_dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file star_list = readCALSTARS(night_dir_path, calstars_file) ### Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file: with open(os.path.join(night_dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print('Loaded recalibrated platepars JSON file for the calibration report...') ### ### ### Load the platepar file ### # Find the platepar file in the given directory if it was not given if platepar is None: # Find the platepar file platepar_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepar_name: platepar_file = file_name break if platepar_file is None: print('The platepar cannot be found in the night directory!') return None # Load the platepar file platepar = Platepar() platepar.read(os.path.join(night_dir_path, platepar_file)) ### ### night_name = os.path.split(night_dir_path.strip(os.sep))[1] # Go one mag deeper than in the config lim_mag = config.catalog_mag_limit + 1 # Load catalog stars (load one magnitude deeper) catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\ config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \ mag_band_ratios=config.star_catalog_band_ratios) ### Take only those CALSTARS entires for which FF files exist in the folder ### # Get a list of FF files in the folder\ ff_list = [] for file_name in os.listdir(night_dir_path): if validFFName(file_name): ff_list.append(file_name) # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs star_dict = {} ff_dict = {} for entry in star_list: ff_name, star_data = entry # Check if the FF from CALSTARS exists in the folder if ff_name not in ff_list: continue dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Add the time and the stars to the dict star_dict[jd] = star_data ff_dict[jd] = ff_name ### ### # If there are no FF files in the directory, don't generate a report if len(star_dict) == 0: print('No FF files from the CALSTARS file in the directory!') return None # If the recalibrated platepars file exists, take the one with the most stars max_jd = 0 if recalibrated_platepars is not None: max_stars = 0 for ff_name_temp in recalibrated_platepars: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Check that this file exists in CALSTARS and the list of FF files if (jd not in star_dict) or (jd not in ff_dict): continue # Check if the number of stars on this FF file is larger than the before if len(star_dict[jd]) > max_stars: max_jd = jd max_stars = len(star_dict[jd]) # Set a flag to indicate if using recalibrated platepars has failed if max_jd == 0: using_recalib_platepars = False else: print('Using recalibrated platepars, file:', ff_dict[max_jd]) using_recalib_platepars = True # Select the platepar where the FF file has the most stars platepar_dict = recalibrated_platepars[ff_dict[max_jd]] platepar = Platepar() platepar.loadFromDict(platepar_dict) filtered_star_dict = {max_jd: star_dict[max_jd]} # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) max_matched_stars = n_matched # Otherwise take the optimal FF file for evaluation if (recalibrated_platepars is None) or (not using_recalib_platepars): # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on # the image if len(star_dict) > config.calstars_files_N: # Find JDs of FF files with most stars on them top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \ - 1] filtered_star_dict = {} for i in top_nstars_indices: filtered_star_dict[list(star_dict.keys())[i]] = list(star_dict.values())[i] star_dict = filtered_star_dict # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) # If no recalibrated platepars where found, find the image with the largest number of matched stars if (not using_recalib_platepars) or (max_jd == 0): max_jd = 0 max_matched_stars = 0 for jd in matched_stars: _, _, distances = matched_stars[jd] if len(distances) > max_matched_stars: max_jd = jd max_matched_stars = len(distances) # If there are no matched stars, use the image with the largest number of detected stars if max_matched_stars <= 2: max_jd = max(star_dict, key=lambda x: len(star_dict[x])) distances = [np.inf] # Take the FF file with the largest number of matched stars ff_name = ff_dict[max_jd] # Load the FF file ff = readFF(night_dir_path, ff_name) img_h, img_w = ff.avepixel.shape dpi = 200 plt.figure(figsize=(ff.avepixel.shape[1]/dpi, ff.avepixel.shape[0]/dpi), dpi=dpi) # Take the average pixel img = ff.avepixel # Slightly adjust the levels img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.2, np.percentile(img, 99.99)) plt.imshow(img, cmap='gray', interpolation='nearest') legend_handles = [] # Plot detected stars for img_star in star_dict[max_jd]: y, x, _, _ = img_star rect_side = 5*match_radius square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \ fill=False, label='Image stars') plt.gca().add_artist(square_patch) legend_handles.append(square_patch) # If there are matched stars, plot them if max_matched_stars > 2: # Take the solution with the largest number of matched stars image_stars, matched_catalog_stars, distances = matched_stars[max_jd] # Plot matched stars for img_star in image_stars: x, y, _, _ = img_star circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \ label='Matched stars') plt.gca().add_artist(circle_patch) legend_handles.append(circle_patch) ### Plot match residuals ### # Compute preducted positions of matched image stars from the catalog x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \ matched_catalog_stars[:, 1], max_jd, platepar) img_y, img_x, _, _ = image_stars.T delta_x = x_predicted - img_x delta_y = y_predicted - img_y # Compute image residual and angle of the error res_angle = np.arctan2(delta_y, delta_x) res_distance = np.sqrt(delta_x**2 + delta_y**2) # Calculate coordinates of the beginning of the residual line res_x_beg = img_x + 3*match_radius*np.cos(res_angle) res_y_beg = img_y + 3*match_radius*np.sin(res_angle) # Calculate coordinates of the end of the residual line res_x_end = img_x + 100*np.cos(res_angle)*res_distance res_y_end = img_y + 100*np.sin(res_angle)*res_distance # Plot the 100x residuals for i in range(len(x_predicted)): res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \ lw=0.5, label='100x residuals') legend_handles.append(res_plot[0]) ### ### else: distances = [np.inf] # If there are no matched stars, plot large text in the middle of the screen plt.text(img_w/2, img_h/2, "NO MATCHED STARS!", color='r', alpha=0.5, fontsize=20, ha='center', va='center') ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ### # Find the faintest magnitude among matched stars if max_matched_stars > 2: faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1 else: # If there are no matched stars, use the limiting magnitude from config faintest_mag = config.catalog_mag_limit + 1 # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res/2], [platepar.Y_res/2], [1], platepar) RA_c = RA_c[0] dec_c = dec_c[0] fov_radius = np.hypot(*computeFOVSize(platepar)) # Get stars from the catalog around the defined center in a given radius _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, fov_radius, faintest_mag) ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T # Compute image positions of all catalog stars that should be on the image x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd, platepar) # Filter all catalog stars outside the image temp_arr = np.c_[x_catalog, y_catalog, mag_catalog] temp_arr = temp_arr[temp_arr[:, 0] >= 0] temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]] temp_arr = temp_arr[temp_arr[:, 1] >= 0] temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]] x_catalog, y_catalog, mag_catalog = temp_arr.T # Plot catalog stars on the image cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \ s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars') legend_handles.append(cat_stars_handle) ### ### # Add info text info_text = ff_dict[max_jd] + '\n' \ + "Matched stars: {:d}/{:d}\n".format(max_matched_stars, len(star_dict[max_jd])) \ + "Median distance: {:.2f} px\n".format(np.median(distances)) \ + "Catalog limiting magnitude: {:.1f}".format(lim_mag) plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \ color='w') legend = plt.legend(handles=legend_handles, prop={'size': 4}, loc='upper right') legend.get_frame().set_facecolor('k') legend.get_frame().set_edgecolor('k') for txt in legend.get_texts(): txt.set_color('w') plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, ff.avepixel.shape[1]]) plt.ylim([ff.avepixel.shape[0], 0]) # Remove the margins plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \ bbox_inches='tight', pad_inches=0, dpi=dpi) if show_graphs: plt.show() else: plt.clf() plt.close() if max_matched_stars > 2: ### Plot the photometry ### plt.figure(dpi=dpi) # Take only those stars which are inside the 3/4 of the shorter image axis from the center photom_selection_radius = np.min([img_h, img_w])/3 filter_indices = ((image_stars[:, 0] - img_h/2)**2 + (image_stars[:, 1] \ - img_w/2)**2) <= photom_selection_radius**2 star_intensities = image_stars[filter_indices, 2] catalog_mags = matched_catalog_stars[filter_indices, 2] # Plot intensities of image stars #star_intensities = image_stars[:, 2] plt.scatter(-2.5*np.log10(star_intensities), catalog_mags, s=5, c='r') # Fit the photometry on automated star intensities photom_offset, fit_stddev, _ = photometryFit(np.log10(star_intensities), catalog_mags) # Plot photometric offset from the platepar x_min, x_max = plt.gca().get_xlim() y_min, y_max = plt.gca().get_ylim() x_min_w = x_min - 3 x_max_w = x_max + 3 y_min_w = y_min - 3 y_max_w = y_max + 3 photometry_info = 'Platepar: {:+.2f}LSP {:+.2f} +/- {:.2f} \nGamma = {:.2f}'.format(platepar.mag_0, \ platepar.mag_lev, platepar.mag_lev_stddev, platepar.gamma) # Plot the photometry calibration from the platepar logsum_arr = np.linspace(x_min_w, x_max_w, 10) plt.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \ color='k', alpha=0.5) # Plot the fitted photometry calibration fit_info = "Fit: {:+.2f}LSP {:+.2f} +/- {:.2f}".format(-2.5, photom_offset, fit_stddev) plt.plot(logsum_arr, logsum_arr + photom_offset, label=fit_info, linestyle='--', color='red', alpha=0.5) plt.legend() plt.ylabel("Catalog magnitude ({:s})".format(mag_band_str)) plt.xlabel("Uncalibrated magnitude") # Set wider axis limits plt.xlim(x_min_w, x_max_w) plt.ylim(y_min_w, y_max_w) plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.grid() plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_photometry.png'), dpi=150) if show_graphs: plt.show() else: plt.clf() plt.close()
def trackStack(dir_path, config, border=5, background_compensation=True, hide_plot=False): """ Generate a stack with aligned stars, so the sky appears static. The folder should have a platepars_all_recalibrated.json file. Arguments: dir_path: [str] Path to the directory with image files. config: [Config instance] Keyword arguments: border: [int] Border around the image to exclude (px). background_compensation: [bool] Normalize the background by applying a median filter to avepixel and use it as a flat field. Slows down the procedure and may sometimes introduce artifacts. True by default. """ # Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file is not None: with open(os.path.join(dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print( 'Loaded recalibrated platepars JSON file for the calibration report...' ) # ### # If the recalib platepars is not found, stop if recalibrated_platepars is None: print("The {:s} file was not found!".format( config.platepars_recalibrated_name)) return False # Get a list of FF files in the folder ff_list = [] for file_name in os.listdir(dir_path): if validFFName(file_name): ff_list.append(file_name) # Take the platepar with the middle time as the reference one ff_found_list = [] jd_list = [] for ff_name_temp in recalibrated_platepars: if ff_name_temp in ff_list: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) jd_list.append(jd) ff_found_list.append(ff_name_temp) if len(jd_list) < 2: print("Not more than 1 FF image!") return False # Take the FF file with the middle JD jd_list = np.array(jd_list) jd_middle = np.mean(jd_list) jd_mean_index = np.argmin(np.abs(jd_list - jd_middle)) ff_mid = ff_found_list[jd_mean_index] # Load the middle platepar as the reference one pp_ref = Platepar() pp_ref.loadFromDict(recalibrated_platepars[ff_mid], use_flat=config.use_flat) # Try loading the mask mask_path = None if os.path.exists(os.path.join(dir_path, config.mask_file)): mask_path = os.path.join(dir_path, config.mask_file) # Try loading the default mask elif os.path.exists(config.mask_file): mask_path = os.path.abspath(config.mask_file) # Load the mask if given mask = None if mask_path is not None: mask = loadMask(mask_path) print("Loaded mask:", mask_path) # If the shape of the mask doesn't fit, init an empty mask if mask is not None: if (mask.img.shape[0] != pp_ref.Y_res) or (mask.img.shape[1] != pp_ref.X_res): print("Mask is of wrong shape!") mask = None if mask is None: mask = MaskStructure(255 + np.zeros( (pp_ref.Y_res, pp_ref.X_res), dtype=np.uint8)) # Compute the middle RA/Dec of the reference platepar _, ra_temp, dec_temp, _ = xyToRaDecPP([jd2Date(jd_middle)], [pp_ref.X_res / 2], [pp_ref.Y_res / 2], [1], pp_ref, extinction_correction=False) ra_mid, dec_mid = ra_temp[0], dec_temp[0] # Go through all FF files and find RA/Dec of image corners to find the size of the stack image ### # List of corners x_corns = [0, pp_ref.X_res, 0, pp_ref.X_res] y_corns = [0, 0, pp_ref.Y_res, pp_ref.Y_res] ra_list = [] dec_list = [] for ff_temp in ff_found_list: # Load the recalibrated platepar pp_temp = Platepar() pp_temp.loadFromDict(recalibrated_platepars[ff_temp], use_flat=config.use_flat) for x_c, y_c in zip(x_corns, y_corns): _, ra_temp, dec_temp, _ = xyToRaDecPP( [getMiddleTimeFF(ff_temp, config.fps, ret_milliseconds=True)], [x_c], [y_c], [1], pp_ref, extinction_correction=False) ra_c, dec_c = ra_temp[0], dec_temp[0] ra_list.append(ra_c) dec_list.append(dec_c) # Compute the angular separation from the middle equatorial coordinates of the reference image to all # RA/Dec corner coordinates ang_sep_list = [] for ra_c, dec_c in zip(ra_list, dec_list): ang_sep = np.degrees( angularSeparation(np.radians(ra_mid), np.radians(dec_mid), np.radians(ra_c), np.radians(dec_c))) ang_sep_list.append(ang_sep) # Find the maximum angular separation and compute the image size using the plate scale # The image size will be resampled to 1/2 of the original size to avoid interpolation scale = 0.5 ang_sep_max = np.max(ang_sep_list) img_size = int(scale * 2 * ang_sep_max * pp_ref.F_scale) # # Create the stack platepar with no distortion and a large image size pp_stack = copy.deepcopy(pp_ref) pp_stack.resetDistortionParameters() pp_stack.X_res = img_size pp_stack.Y_res = img_size pp_stack.F_scale *= scale pp_stack.refraction = False # Init the image avg_stack_sum = np.zeros((img_size, img_size), dtype=float) avg_stack_count = np.zeros((img_size, img_size), dtype=int) max_deaveraged = np.zeros((img_size, img_size), dtype=np.uint8) # Load individual FFs and map them to the stack for i, ff_name in enumerate(ff_found_list): print("Stacking {:s}, {:.1f}% done".format( ff_name, 100 * i / len(ff_found_list))) # Read the FF file ff = readFF(dir_path, ff_name) # Load the recalibrated platepar pp_temp = Platepar() pp_temp.loadFromDict(recalibrated_platepars[ff_name], use_flat=config.use_flat) # Make a list of X and Y image coordinates x_coords, y_coords = np.meshgrid( np.arange(border, pp_ref.X_res - border), np.arange(border, pp_ref.Y_res - border)) x_coords = x_coords.ravel() y_coords = y_coords.ravel() # Map image pixels to sky jd_arr, ra_coords, dec_coords, _ = xyToRaDecPP( len(x_coords) * [getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)], x_coords, y_coords, len(x_coords) * [1], pp_temp, extinction_correction=False) # Map sky coordinates to stack image coordinates stack_x, stack_y = raDecToXYPP(ra_coords, dec_coords, jd_middle, pp_stack) # Round pixel coordinates stack_x = np.round(stack_x, decimals=0).astype(int) stack_y = np.round(stack_y, decimals=0).astype(int) # Cut the image to limits filter_arr = (stack_x > 0) & (stack_x < img_size) & (stack_y > 0) & ( stack_y < img_size) x_coords = x_coords[filter_arr].astype(int) y_coords = y_coords[filter_arr].astype(int) stack_x = stack_x[filter_arr] stack_y = stack_y[filter_arr] # Apply the mask to maxpixel and avepixel maxpixel = copy.deepcopy(ff.maxpixel) maxpixel[mask.img == 0] = 0 avepixel = copy.deepcopy(ff.avepixel) avepixel[mask.img == 0] = 0 # Compute deaveraged maxpixel max_deavg = maxpixel - avepixel # Normalize the backgroud brightness by applying a large-kernel median filter to avepixel if background_compensation: # # Apply a median filter to the avepixel to get an estimate of the background brightness # avepixel_median = scipy.ndimage.median_filter(ff.avepixel, size=101) avepixel_median = cv2.medianBlur(ff.avepixel, 301) # Make sure to avoid zero division avepixel_median[avepixel_median < 1] = 1 # Normalize the avepixel by subtracting out the background brightness avepixel = avepixel.astype(float) avepixel /= avepixel_median avepixel *= 50 # Normalize to a good background value, which is usually 50 avepixel = np.clip(avepixel, 0, 255) avepixel = avepixel.astype(np.uint8) # plt.imshow(avepixel, cmap='gray', vmin=0, vmax=255) # plt.show() # Add the average pixel to the sum avg_stack_sum[stack_y, stack_x] += avepixel[y_coords, x_coords] # Increment the counter image where the avepixel is not zero ones_img = np.ones_like(avepixel) ones_img[avepixel == 0] = 0 avg_stack_count[stack_y, stack_x] += ones_img[y_coords, x_coords] # Set pixel values to the stack, only take the max values max_deaveraged[stack_y, stack_x] = np.max(np.dstack( [max_deaveraged[stack_y, stack_x], max_deavg[y_coords, x_coords]]), axis=2) # Compute the blended avepixel background stack_img = avg_stack_sum stack_img[avg_stack_count > 0] /= avg_stack_count[avg_stack_count > 0] stack_img += max_deaveraged stack_img = np.clip(stack_img, 0, 255) stack_img = stack_img.astype(np.uint8) # Crop image non_empty_columns = np.where(stack_img.max(axis=0) > 0)[0] non_empty_rows = np.where(stack_img.max(axis=1) > 0)[0] crop_box = (np.min(non_empty_rows), np.max(non_empty_rows), np.min(non_empty_columns), np.max(non_empty_columns)) stack_img = stack_img[crop_box[0]:crop_box[1] + 1, crop_box[2]:crop_box[3] + 1] # Plot and save the stack ### dpi = 200 plt.figure(figsize=(stack_img.shape[1] / dpi, stack_img.shape[0] / dpi), dpi=dpi) plt.imshow(stack_img, cmap='gray', vmin=0, vmax=256, interpolation='nearest') plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, stack_img.shape[1]]) plt.ylim([stack_img.shape[0], 0]) # Remove the margins (top and right are set to 0.9999, as setting them to 1.0 makes the image blank in # some matplotlib versions) plt.subplots_adjust(left=0, bottom=0, right=0.9999, top=0.9999, wspace=0, hspace=0) filenam = os.path.join(dir_path, os.path.basename(dir_path) + "_track_stack.jpg") plt.savefig(filenam, bbox_inches='tight', pad_inches=0, dpi=dpi) # if hide_plot is False: plt.show()
def add_fffits_metadata(ff_filename, config, platepars_recalibrated, fallback_platepar): """ Add FITS metadata and WCS to FF files generated by RMS Args: ff_filename (str): full or relative path to FF file config (RMS.Config): config instance platepars_recalibrated (dict): dictionary with recalibrated platepars fallback_platepar (RMS.Platepar): platepar with fitted stars Returns: None """ ff_basename = os.path.basename(ff_filename) platepar_recalibrated = Platepar() try: platepar_data = platepars_recalibrated[ff_basename] with open("platepar_tmp.cal", "w") as f: json.dump(platepar_data, f) platepar_recalibrated.read("platepar_tmp.cal") except (FileNotFoundError, KeyError): platepar_recalibrated = fallback_platepar logger.warning(f"Using non-recalibrated platepar for {ff_basename}") fftime = getMiddleTimeFF(ff_basename, config.fps) fit_xy = np.array(fallback_platepar.star_list)[:, 1:3] _, fit_ra, fit_dec, _ = xyToRaDecPP([fftime] * len(fit_xy), fit_xy[:, 0], fit_xy[:, 1], [1] * len(fit_xy), platepar_recalibrated, extinction_correction=False) x0 = platepar_recalibrated.X_res / 2 y0 = platepar_recalibrated.Y_res / 2 _, ra0, dec0, _ = xyToRaDecPP([fftime], [x0], [y0], [1], platepar_recalibrated, extinction_correction=False) w = fit_wcs(fit_xy[:, 0], fit_xy[:, 1], fit_ra, fit_dec, x0, y0, ra0[0], dec0[0], 5, projection="ZEA") hdu_list = fits.open(ff_filename, scale_back=True) obstime = Time(filenameToDatetime(ff_basename)) header_meta = {} header_meta["OBSERVER"] = config.stationID.strip() header_meta["INSTRUME"] = "Global Meteor Network" header_meta["MJD-OBS"] = obstime.mjd header_meta["DATE-OBS"] = obstime.fits header_meta["NFRAMES"] = 256 header_meta["EXPTIME"] = 256 / config.fps header_meta["SITELONG"] = round(config.longitude, 2) header_meta["SITELAT"] = round(config.latitude, 2) for hdu in hdu_list: if hdu.header[ "NAXIS"] == 0: # First header is not an image so should not get WCS new_header = Header() else: new_header = w.to_fits(relax=True)[0].header for key, value in header_meta.items(): new_header.append((key, value)) for key, value in new_header.items(): if key in hdu.header: continue hdu.header[key] = value hdu_list.writeto(ff_filename, overwrite=True)