コード例 #1
0
ファイル: MakeFlat.py プロジェクト: ytchenak/RMS
def makeFlat(dir_path, config):
    """ Makes a flat field from the files in the given folder. CALSTARS file is needed to estimate the
        quality of every image by counting the number of detected stars.

    Arguments:
        dir_path: [str] Path to the directory which contains the FF files and a CALSTARS file.
        config: [config object]

    Return:
        [2d ndarray] Flat field image as a numpy array. If the flat generation failed, None will be returned.
        
    """

    # Find the CALSTARS file in the given folder
    calstars_file = None
    for calstars_file in os.listdir(dir_path):
        if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file):
            break

    if calstars_file is None:
        print('CALSTARS file could not be found in the given directory!')
        return None

    # Load the calstars file
    calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file)

    # Convert the list to a dictionary
    calstars = {ff_file: star_data for ff_file, star_data in calstars_list}

    print('CALSTARS file: ' + calstars_file + ' loaded!')

    # A list of FF files which have any stars on them
    calstars_ff_files = [line[0] for line in calstars_list]

    ff_list = []

    # Get a list of FF files in the folder
    for file_name in os.listdir(dir_path):
        if validFFName(file_name) and (file_name in calstars_ff_files):
            ff_list.append(file_name)

    # Check that there are any FF files in the folder
    if not ff_list:
        print('No FF files in the selected folder!')
        return None

    ff_list_good = []
    ff_times = []

    # Take only those FF files with enough stars on them
    for ff_name in ff_list:

        if not validFFName(ff_name):
            continue

        if ff_name in calstars:

            # Get the number of stars detected on the FF image
            ff_nstars = len(calstars[ff_name])

            # Check if the number of stars on the image is over the detection threshold
            if ff_nstars > config.ff_min_stars:

                # Add the FF file to the list of FF files to be used to make a flat
                ff_list_good.append(ff_name)

                # Calculate the time of the FF files
                ff_time = date2JD(*getMiddleTimeFF(
                    ff_name, config.fps, ret_milliseconds=True))
                ff_times.append(ff_time)

    # Check that there are enough good FF files in the folder
    if len(ff_times) < config.flat_min_imgs:
        print('Not enough FF files have enough stars on them!')
        return None

    # Make sure the files cover at least 2 hours
    if not (max(ff_times) - min(ff_times)) * 24 > 2:
        print('Good FF files cover less than 2 hours!')
        return None

    # Sample FF files if there are more than 200
    max_ff_flat = 200
    if len(ff_list_good) > max_ff_flat:
        ff_list_good = sorted(random.sample(ff_list_good, max_ff_flat))

    print('Using {:d} files for flat...'.format(len(ff_list_good)))

    c = 0
    ff_avg_list = []
    median_list = []

    # Median combine all good FF files
    for i in range(len(ff_list_good)):

        # Load 10 files at the time and median combine them, which conserves memory
        if c < 10:

            ff = readFF(dir_path, ff_list_good[i])
            ff_avg_list.append(ff.avepixel)

            c += 1

        else:

            ff_avg_list = np.array(ff_avg_list)

            # Median combine the loaded 10 (or less) images
            ff_median = np.median(ff_avg_list, axis=0)
            median_list.append(ff_median)

            ff_avg_list = []
            c = 0

    # If there are more than 1 calculated median image, combine them
    if len(median_list) > 1:

        # Median combine all median images
        median_list = np.array(median_list)
        ff_median = np.median(median_list, axis=0)

    else:
        ff_median = median_list[0]

    # Stretch flat to 0-255
    ff_median = ff_median / np.max(ff_median) * 255

    # Convert the flat to 8 bits
    ff_median = ff_median.astype(np.uint8)

    return ff_median
コード例 #2
0
def generateCalibrationReport(config,
                              night_dir_path,
                              match_radius=2.0,
                              platepar=None,
                              show_graphs=False):
    """ Given the folder of the night, find the Calstars file, check the star fit and generate a report
        with the quality of the calibration. The report contains information about both the astrometry and
        the photometry calibration. Graphs will be saved in the given directory of the night.
    
    Arguments:
        config: [Config instance]
        night_dir_path: [str] Full path to the directory of the night.

    Keyword arguments:
        match_radius: [float] Match radius for star matching between image and catalog stars (px).
        platepar: [Platepar instance] Use this platepar instead of finding one in the folder.
        show_graphs: [bool] Show the graphs on the screen. False by default.

    Return:
        None
    """

    # Find the CALSTARS file in the given folder
    calstars_file = None
    for calstars_file in os.listdir(night_dir_path):
        if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file):
            break

    if calstars_file is None:
        print('CALSTARS file could not be found in the given directory!')
        return None

    # Load the calstars file
    star_list = readCALSTARS(night_dir_path, calstars_file)

    ### Load recalibrated platepars, if they exist ###

    # Find recalibrated platepars file per FF file
    platepars_recalibrated_file = None
    for file_name in os.listdir(night_dir_path):
        if file_name == config.platepars_recalibrated_name:
            platepars_recalibrated_file = file_name
            break

    # Load all recalibrated platepars if the file is available
    recalibrated_platepars = None
    if platepars_recalibrated_file:
        with open(os.path.join(night_dir_path,
                               platepars_recalibrated_file)) as f:
            recalibrated_platepars = json.load(f)
            print(
                'Loaded recalibrated platepars JSON file for the calibration report...'
            )

    ### ###

    ### Load the platepar file ###

    # Find the platepar file in the given directory if it was not given
    if platepar is None:

        # Find the platepar file
        platepar_file = None
        for file_name in os.listdir(night_dir_path):
            if file_name == config.platepar_name:
                platepar_file = file_name
                break

        if platepar_file is None:
            print('The platepar cannot be found in the night directory!')
            return None

        # Load the platepar file
        platepar = Platepar()
        platepar.read(os.path.join(night_dir_path, platepar_file),
                      use_flat=config.use_flat)

    ### ###

    night_name = os.path.split(night_dir_path.strip(os.sep))[1]

    # Go one mag deeper than in the config
    lim_mag = config.catalog_mag_limit + 1

    # Load catalog stars (load one magnitude deeper)
    catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\
        config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \
        mag_band_ratios=config.star_catalog_band_ratios)

    ### Take only those CALSTARS entires for which FF files exist in the folder ###

    # Get a list of FF files in the folder
    ff_list = []
    for file_name in os.listdir(night_dir_path):
        if validFFName(file_name):
            ff_list.append(file_name)

    # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs
    star_dict = {}
    ff_dict = {}
    for entry in star_list:

        ff_name, star_data = entry

        # Check if the FF from CALSTARS exists in the folder
        if ff_name not in ff_list:
            continue

        dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)
        jd = date2JD(*dt)

        # Add the time and the stars to the dict
        star_dict[jd] = star_data
        ff_dict[jd] = ff_name

    ### ###

    # If there are no FF files in the directory, don't generate a report
    if len(star_dict) == 0:
        print('No FF files from the CALSTARS file in the directory!')
        return None

    # If the recalibrated platepars file exists, take the one with the most stars
    max_jd = 0
    using_recalib_platepars = False
    if recalibrated_platepars is not None:
        max_stars = 0
        for ff_name_temp in recalibrated_platepars:

            # Compute the Julian date of the FF middle
            dt = getMiddleTimeFF(ff_name_temp,
                                 config.fps,
                                 ret_milliseconds=True)
            jd = date2JD(*dt)

            # Check that this file exists in CALSTARS and the list of FF files
            if (jd not in star_dict) or (jd not in ff_dict):
                continue

            # Check if the number of stars on this FF file is larger than the before
            if len(star_dict[jd]) > max_stars:
                max_jd = jd
                max_stars = len(star_dict[jd])

        # Set a flag to indicate if using recalibrated platepars has failed
        if max_jd == 0:
            using_recalib_platepars = False
        else:

            print('Using recalibrated platepars, file:', ff_dict[max_jd])
            using_recalib_platepars = True

            # Select the platepar where the FF file has the most stars
            platepar_dict = recalibrated_platepars[ff_dict[max_jd]]
            platepar = Platepar()
            platepar.loadFromDict(platepar_dict, use_flat=config.use_flat)

            filtered_star_dict = {max_jd: star_dict[max_jd]}

            # Match stars on the image with the stars in the catalog
            n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \
                filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag)

            max_matched_stars = n_matched

    # Otherwise take the optimal FF file for evaluation
    if (recalibrated_platepars is None) or (not using_recalib_platepars):

        # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on
        #   the image
        if len(star_dict) > config.calstars_files_N:

            # Find JDs of FF files with most stars on them
            top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \
                - 1]

            filtered_star_dict = {}
            for i in top_nstars_indices:
                filtered_star_dict[list(star_dict.keys())[i]] = list(
                    star_dict.values())[i]

            star_dict = filtered_star_dict

        # Match stars on the image with the stars in the catalog
        n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \
            star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag)

    # If no recalibrated platepars where found, find the image with the largest number of matched stars
    if (not using_recalib_platepars) or (max_jd == 0):

        max_jd = 0
        max_matched_stars = 0
        for jd in matched_stars:
            _, _, distances = matched_stars[jd]
            if len(distances) > max_matched_stars:
                max_jd = jd
                max_matched_stars = len(distances)

        # If there are no matched stars, use the image with the largest number of detected stars
        if max_matched_stars <= 2:
            max_jd = max(star_dict, key=lambda x: len(star_dict[x]))
            distances = [np.inf]

    # Take the FF file with the largest number of matched stars
    ff_name = ff_dict[max_jd]

    # Load the FF file
    ff = readFF(night_dir_path, ff_name)
    img_h, img_w = ff.avepixel.shape

    dpi = 200
    plt.figure(figsize=(ff.avepixel.shape[1] / dpi,
                        ff.avepixel.shape[0] / dpi),
               dpi=dpi)

    # Take the average pixel
    img = ff.avepixel

    # Slightly adjust the levels
    img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.3,
                             np.percentile(img, 99.99))

    plt.imshow(img, cmap='gray', interpolation='nearest')

    legend_handles = []

    # Plot detected stars
    for img_star in star_dict[max_jd]:

        y, x, _, _ = img_star

        rect_side = 5 * match_radius
        square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \
            fill=False, label='Image stars')

        plt.gca().add_artist(square_patch)

    legend_handles.append(square_patch)

    # If there are matched stars, plot them
    if max_matched_stars > 2:

        # Take the solution with the largest number of matched stars
        image_stars, matched_catalog_stars, distances = matched_stars[max_jd]

        # Plot matched stars
        for img_star in image_stars:
            x, y, _, _ = img_star

            circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \
                label='Matched stars')

            plt.gca().add_artist(circle_patch)

        legend_handles.append(circle_patch)

        ### Plot match residuals ###

        # Compute preducted positions of matched image stars from the catalog
        x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \
            matched_catalog_stars[:, 1], max_jd, platepar)

        img_y, img_x, _, _ = image_stars.T

        delta_x = x_predicted - img_x
        delta_y = y_predicted - img_y

        # Compute image residual and angle of the error
        res_angle = np.arctan2(delta_y, delta_x)
        res_distance = np.sqrt(delta_x**2 + delta_y**2)

        # Calculate coordinates of the beginning of the residual line
        res_x_beg = img_x + 3 * match_radius * np.cos(res_angle)
        res_y_beg = img_y + 3 * match_radius * np.sin(res_angle)

        # Calculate coordinates of the end of the residual line
        res_x_end = img_x + 100 * np.cos(res_angle) * res_distance
        res_y_end = img_y + 100 * np.sin(res_angle) * res_distance

        # Plot the 100x residuals
        for i in range(len(x_predicted)):
            res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \
                lw=0.5, label='100x residuals')

        legend_handles.append(res_plot[0])

        ### ###

    else:

        distances = [np.inf]

        # If there are no matched stars, plot large text in the middle of the screen
        plt.text(img_w / 2,
                 img_h / 2,
                 "NO MATCHED STARS!",
                 color='r',
                 alpha=0.5,
                 fontsize=20,
                 ha='center',
                 va='center')

    ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ###

    # Find the faintest magnitude among matched stars
    if max_matched_stars > 2:
        faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1

    else:
        # If there are no matched stars, use the limiting magnitude from config
        faintest_mag = config.catalog_mag_limit + 1

    # Estimate RA,dec of the centre of the FOV
    _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res / 2],
                                    [platepar.Y_res / 2], [1], platepar)

    RA_c = RA_c[0]
    dec_c = dec_c[0]

    fov_radius = np.hypot(*computeFOVSize(platepar))

    # Get stars from the catalog around the defined center in a given radius
    _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c,
                                         fov_radius, faintest_mag)
    ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T

    # Compute image positions of all catalog stars that should be on the image
    x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd,
                                       platepar)

    # Filter all catalog stars outside the image
    temp_arr = np.c_[x_catalog, y_catalog, mag_catalog]
    temp_arr = temp_arr[temp_arr[:, 0] >= 0]
    temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]]
    temp_arr = temp_arr[temp_arr[:, 1] >= 0]
    temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]]
    x_catalog, y_catalog, mag_catalog = temp_arr.T

    # Plot catalog stars on the image
    cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \
        s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars')

    legend_handles.append(cat_stars_handle)

    ### ###

    # Add info text in the corner
    info_text = ff_dict[max_jd] + '\n' \
        + "Matched stars within {:.1f} px radius: {:d}/{:d} \n".format(match_radius, max_matched_stars, \
            len(star_dict[max_jd])) \
        + "Median distance = {:.2f} px\n".format(np.median(distances)) \
        + "Catalog lim mag = {:.1f}".format(lim_mag)

    plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \
        color='w', family='monospace')

    legend = plt.legend(handles=legend_handles,
                        prop={'size': 4},
                        loc='upper right')
    legend.get_frame().set_facecolor('k')
    legend.get_frame().set_edgecolor('k')
    for txt in legend.get_texts():
        txt.set_color('w')

    ### Add FOV info (centre, size) ###

    # Mark FOV centre
    plt.scatter(platepar.X_res / 2,
                platepar.Y_res / 2,
                marker='+',
                s=20,
                c='r',
                zorder=4)

    # Compute FOV centre alt/az
    azim_centre, alt_centre = raDec2AltAz(max_jd, platepar.lon, platepar.lat,
                                          RA_c, dec_c)

    # Compute FOV size
    fov_h, fov_v = computeFOVSize(platepar)

    # Compute the rotation wrt. horizon
    rot_horizon = rotationWrtHorizon(platepar)

    fov_centre_text = "Azim  = {:6.2f}$\\degree$\n".format(azim_centre) \
                    + "Alt   = {:6.2f}$\\degree$\n".format(alt_centre) \
                    + "Rot h = {:6.2f}$\\degree$\n".format(rot_horizon) \
                    + "FOV h = {:6.2f}$\\degree$\n".format(fov_h) \
                    + "FOV v = {:6.2f}$\\degree$".format(fov_v) \

    plt.text(10, platepar.Y_res - 10, fov_centre_text, bbox=dict(facecolor='black', alpha=0.5), \
        va='bottom', ha='left', fontsize=4, color='w', family='monospace')

    ### ###

    # Plot RA/Dec gridlines #
    addEquatorialGrid(plt, platepar, max_jd)

    plt.axis('off')
    plt.gca().get_xaxis().set_visible(False)
    plt.gca().get_yaxis().set_visible(False)

    plt.xlim([0, ff.avepixel.shape[1]])
    plt.ylim([ff.avepixel.shape[0], 0])

    # Remove the margins
    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)

    plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \
        bbox_inches='tight', pad_inches=0, dpi=dpi)

    if show_graphs:
        plt.show()

    else:
        plt.clf()
        plt.close()

    if max_matched_stars > 2:

        ### PHOTOMETRY FIT ###

        # If a flat is used, set the vignetting coeff to 0
        if config.use_flat:
            platepar.vignetting_coeff = 0.0

        # Extact intensities and mangitudes
        star_intensities = image_stars[:, 2]
        catalog_mags = matched_catalog_stars[:, 2]

        # Compute radius of every star from image centre
        radius_arr = np.hypot(image_stars[:, 0] - img_h / 2,
                              image_stars[:, 1] - img_w / 2)

        # Fit the photometry on automated star intensities (use the fixed vignetting coeff, use robust fit)
        photom_params, fit_stddev, fit_resid, star_intensities, radius_arr, catalog_mags = \
            photometryFitRobust(star_intensities, radius_arr, catalog_mags, \
            fixed_vignetting=platepar.vignetting_coeff)

        photom_offset, _ = photom_params

        ### ###

        ### PLOT PHOTOMETRY ###
        # Note: An almost identical code exists in RMS.Astrometry.SkyFit in the PlateTool.photometry function

        dpi = 130
        fig_p, (ax_p, ax_r) = plt.subplots(nrows=2, facecolor=None, figsize=(6.0, 7.0), dpi=dpi, \
            gridspec_kw={'height_ratios':[2, 1]})

        # Plot raw star intensities
        ax_p.scatter(-2.5 * np.log10(star_intensities),
                     catalog_mags,
                     s=5,
                     c='r',
                     alpha=0.5,
                     label="Raw")

        # If a flat is used, disregard the vignetting
        if not config.use_flat:

            # Plot intensities of image stars corrected for vignetting
            lsp_corr_arr = np.log10(correctVignetting(star_intensities, radius_arr, \
                platepar.vignetting_coeff))
            ax_p.scatter(-2.5*lsp_corr_arr, catalog_mags, s=5, c='b', alpha=0.5, \
                label="Corrected for vignetting")

        # Plot photometric offset from the platepar
        x_min, x_max = ax_p.get_xlim()
        y_min, y_max = ax_p.get_ylim()

        x_min_w = x_min - 3
        x_max_w = x_max + 3
        y_min_w = y_min - 3
        y_max_w = y_max + 3

        photometry_info = "Platepar: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(platepar.mag_0, \
            platepar.mag_lev, platepar.mag_lev_stddev) \
            + "\nVignetting coeff = {:.5f}".format(platepar.vignetting_coeff) \
            + "\nGamma = {:.2f}".format(platepar.gamma)

        # Plot the photometry calibration from the platepar
        logsum_arr = np.linspace(x_min_w, x_max_w, 10)
        ax_p.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \
            color='k', alpha=0.5)

        # Plot the fitted photometry calibration
        fit_info = "Fit: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(
            -2.5, photom_offset, fit_stddev)
        ax_p.plot(logsum_arr,
                  logsum_arr + photom_offset,
                  label=fit_info,
                  linestyle='--',
                  color='b',
                  alpha=0.75)

        ax_p.legend()

        ax_p.set_ylabel("Catalog magnitude ({:s})".format(mag_band_str))
        ax_p.set_xlabel("Uncalibrated magnitude")

        # Set wider axis limits
        ax_p.set_xlim(x_min_w, x_max_w)
        ax_p.set_ylim(y_min_w, y_max_w)

        ax_p.invert_yaxis()
        ax_p.invert_xaxis()

        ax_p.grid()

        ### Plot photometry vs radius ###

        img_diagonal = np.hypot(img_h / 2, img_w / 2)

        # Plot photometry residuals (including vignetting)
        ax_r.scatter(radius_arr, fit_resid, c='b', alpha=0.75, s=5, zorder=3)

        # Plot a zero line
        ax_r.plot(np.linspace(0, img_diagonal, 10), np.zeros(10), linestyle='dashed', alpha=0.5, \
            color='k')

        # Plot only when no flat is used
        if not config.use_flat:

            #  Plot radius from centre vs. fit residual
            fit_resids_novignetting = catalog_mags - photomLine((np.array(star_intensities), \
                np.array(radius_arr)), photom_offset, 0.0)
            ax_r.scatter(radius_arr,
                         fit_resids_novignetting,
                         s=5,
                         c='r',
                         alpha=0.5,
                         zorder=3)

            px_sum_tmp = 1000
            radius_arr_tmp = np.linspace(0, img_diagonal, 50)

            # Plot vignetting loss curve
            vignetting_loss = 2.5*np.log10(px_sum_tmp) \
                - 2.5*np.log10(correctVignetting(px_sum_tmp, radius_arr_tmp, \
                    platepar.vignetting_coeff))

            ax_r.plot(radius_arr_tmp,
                      vignetting_loss,
                      linestyle='dotted',
                      alpha=0.5,
                      color='k')

        ax_r.grid()

        ax_r.set_ylabel("Fit residuals (mag)")
        ax_r.set_xlabel("Radius from centre (px)")

        ax_r.set_xlim(0, img_diagonal)

        ### ###

        plt.tight_layout()

        plt.savefig(os.path.join(night_dir_path,
                                 night_name + '_calib_report_photometry.png'),
                    dpi=150)

        if show_graphs:
            plt.show()

        else:
            plt.clf()
            plt.close()
コード例 #3
0
ファイル: MakeFlat.py プロジェクト: CroatianMeteorNetwork/RMS
def makeFlat(dir_path, config, nostars=False, use_images=False):
    """ Makes a flat field from the files in the given folder. CALSTARS file is needed to estimate the
        quality of every image by counting the number of detected stars.

    Arguments:
        dir_path: [str] Path to the directory which contains the FF files and a CALSTARS file.
        config: [config object]

    Keyword arguments:
        nostars: [bool] If True, all files will be taken regardless of if they have stars on them or not.
        use_images: [bool] Use image files instead of FF files. False by default.

    Return:
        [2d ndarray] Flat field image as a numpy array. If the flat generation failed, None will be returned.
        
    """

    # If only images are used, then don't look for a CALSTARS file
    if use_images:
        nostars = True

    # Load the calstars file if it should be used
    if not nostars:

        # Find the CALSTARS file in the given folder
        calstars_file = None
        for calstars_file in os.listdir(dir_path):
            if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file):
                break

        if calstars_file is None:
            print('CALSTARS file could not be found in the given directory!')
            return None

        # Load the calstars file
        calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file)

        # Convert the list to a dictionary
        calstars = {ff_file: star_data for ff_file, star_data in calstars_list}

        print('CALSTARS file: ' + calstars_file + ' loaded!')

        # A list of FF files which have any stars on them
        calstars_ff_files = [line[0] for line in calstars_list]

    else:
        calstars = {}



    # Use image files
    if use_images:

        # Find the file type with the highest file frequency in the given folder
        file_extensions = []
        for file_name in os.listdir(dir_path):
            file_ext = file_name.split('.')[-1]
            if file_ext.lower() in ['jpg', 'png', 'bmp']:
                file_extensions.append(file_ext)
            
        # Get only the most frequent file type
        file_freqs = np.unique(file_extensions, return_counts=True)
        most_freq_type = file_freqs[0][0]

        print('Using image type:', most_freq_type)

        # Take only files of that file type
        ff_list = [file_name for file_name in sorted(os.listdir(dir_path)) \
            if file_name.lower().endswith(most_freq_type)]


    # Use FF files
    else:
        ff_list = []

        # Get a list of FF files in the folder
        for file_name in os.listdir(dir_path):
            if validFFName(file_name) and ((file_name in calstars_ff_files) or nostars):
                ff_list.append(file_name)
                

        # Check that there are any FF files in the folder
        if not ff_list:
            print('No valid FF files in the selected folder!')
            return None



    ff_list_good = []
    ff_times = []

    # Take only those FF files with enough stars on them
    for ff_name in ff_list:

        if (ff_name in calstars) or nostars:

            # Disable requiring minimum number of stars if specified
            if not nostars:
                
                # Get the number of stars detected on the FF image
                ff_nstars = len(calstars[ff_name])

            else:
                ff_nstars = 0

            
            # Check if the number of stars on the image is over the detection threshold
            if (ff_nstars > config.ff_min_stars) or nostars:

                # Add the FF file to the list of FF files to be used to make a flat
                ff_list_good.append(ff_name)


                # If images are used, don't compute the time
                if use_images:
                    ff_time = 0

                else:
                    # Calculate the time of the FF files
                    ff_time = date2JD(*getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True))


                ff_times.append(ff_time)


    # Check that there are enough good FF files in the folder
    if (len(ff_times) < config.flat_min_imgs) and (not nostars):
        print('Not enough FF files have enough stars on them!')
        return None
        
    
    # Make sure the files cover at least 2 hours
    if (not (max(ff_times) - min(ff_times))*24 > 2) and (not nostars):
        print('Good FF files cover less than 2 hours!')
        return None


    # Sample FF files if there are more than 200
    max_ff_flat = 200
    if len(ff_list_good) > max_ff_flat:
        ff_list_good = sorted(random.sample(ff_list_good, max_ff_flat))


    print('Using {:d} files for flat...'.format(len(ff_list_good)))


    c = 0
    img_list = []
    median_list = []

    # Median combine all good FF files
    for i in range(len(ff_list_good)):

        # Load 10 files at the time and median combine them, which conserves memory
        if c < 10:

            # Use images
            if use_images:
                img = scipy.ndimage.imread(os.path.join(dir_path, ff_list_good[i]), -1)


            # Use FF files
            else:
                ff = readFF(dir_path, ff_list_good[i])

                # Skip the file if it is corruped
                if ff is None:
                    continue

                img = ff.avepixel

            
            img_list.append(img)

            c += 1


        else:

            img_list = np.array(img_list)

            # Median combine the loaded 10 (or less) images
            ff_median = np.median(img_list, axis=0)
            median_list.append(ff_median)

            img_list = []
            c = 0


    # If there are more than 1 calculated median image, combine them
    if len(median_list) > 1:

        # Median combine all median images
        median_list = np.array(median_list)
        ff_median = np.median(median_list, axis=0)

    else:
        if len(median_list) > 0:
            ff_median = median_list[0]
        else:
            ff_median = np.median(np.array(img_list), axis=0)


    # Stretch flat to 0-255
    ff_median = ff_median/np.max(ff_median)*255

    # Convert the flat to 8 bits
    ff_median = ff_median.astype(np.uint8)

    return ff_median
コード例 #4
0
ファイル: FFTalign.py プロジェクト: CroatianMeteorNetwork/RMS
    # Load the calstars file
    calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file)
    calstars_dict = {ff_file: star_data for ff_file, star_data in calstars_list}

    print('CALSTARS file: ' + calstars_file + ' loaded!')

    # Extract star list from CALSTARS file from FF file with most stars
    max_len_ff = max(calstars_dict, key=lambda k: len(calstars_dict[k]))
    
    # Take only X, Y (change order so X is first)
    calstars_coords = np.array(calstars_dict[max_len_ff])[:, :2]
    calstars_coords[:, [0, 1]] = calstars_coords[:, [1, 0]]
        
    # Get the time of the FF file
    calstars_time = getMiddleTimeFF(max_len_ff, config.fps, ret_milliseconds=True)



    # Align the platepar with stars in CALSTARS
    platepar_aligned = alignPlatepar(config, platepar, calstars_time, calstars_coords, show_plot=False)


    # Backup the old platepar
    shutil.copy(platepar_path, platepar_path + '.bak')

    # Save the updated platepar
    platepar_aligned.write(platepar_path)

    ### Testing
    sys.exit()
コード例 #5
0
ファイル: FFTalign.py プロジェクト: GoodStuff11/RMS
        ff_file: star_data
        for ff_file, star_data in calstars_list
    }

    print('CALSTARS file: ' + calstars_file + ' loaded!')

    # Extract star list from CALSTARS file from FF file with most stars
    max_len_ff = max(calstars_dict, key=lambda k: len(calstars_dict[k]))

    # Take only X, Y (change order so X is first)
    calstars_coords = np.array(calstars_dict[max_len_ff])[:, :2]
    calstars_coords[:, [0, 1]] = calstars_coords[:, [1, 0]]

    # Get the time of the FF file
    calstars_time = getMiddleTimeFF(max_len_ff,
                                    config.fps,
                                    ret_milliseconds=True)

    # Align the platepar with stars in CALSTARS
    platepar_aligned = alignPlatepar(config,
                                     platepar,
                                     calstars_time,
                                     calstars_coords,
                                     show_plot=False)

    # Backup the old platepar
    shutil.copy(platepar_path, platepar_path + '.bak')

    # Save the updated platepar
    platepar_aligned.write(platepar_path)
コード例 #6
0
ファイル: MakeFlat.py プロジェクト: tammojan/RMS
def makeFlat(dir_path, config, nostars=False, use_images=False):
    """ Makes a flat field from the files in the given folder. CALSTARS file is needed to estimate the
        quality of every image by counting the number of detected stars.

    Arguments:
        dir_path: [str] Path to the directory which contains the FF files and a CALSTARS file.
        config: [config object]

    Keyword arguments:
        nostars: [bool] If True, all files will be taken regardless of if they have stars on them or not.
        use_images: [bool] Use image files instead of FF files. False by default.

    Return:
        [2d ndarray] Flat field image as a numpy array. If the flat generation failed, None will be returned.
        
    """

    # If only images are used, then don't look for a CALSTARS file
    if use_images:
        nostars = True

    # Load the calstars file if it should be used
    if not nostars:

        # Find the CALSTARS file in the given folder
        calstars_file = None
        for calstars_file in os.listdir(dir_path):
            if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file):
                break

        if calstars_file is None:
            print('CALSTARS file could not be found in the given directory!')
            return None

        # Load the calstars file
        calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file)

        # Convert the list to a dictionary
        calstars = {ff_file: star_data for ff_file, star_data in calstars_list}

        print('CALSTARS file: ' + calstars_file + ' loaded!')

        # A list of FF files which have any stars on them
        calstars_ff_files = [line[0] for line in calstars_list]

    else:
        calstars = {}
        calstars_ff_files = []

    # Use image files
    if use_images:

        # Find the file type with the highest file frequency in the given folder
        file_extensions = []
        for file_name in os.listdir(dir_path):
            file_ext = file_name.split('.')[-1]
            if file_ext.lower() in ['jpg', 'png', 'bmp']:
                file_extensions.append(file_ext)

        # Get only the most frequent file type
        file_freqs = np.unique(file_extensions, return_counts=True)
        most_freq_type = file_freqs[0][0]

        print('Using image type:', most_freq_type)

        # Take only files of that file type
        ff_list = [file_name for file_name in sorted(os.listdir(dir_path)) \
            if file_name.lower().endswith(most_freq_type)]

    # Use FF files
    else:
        ff_list = []

        # Get a list of FF files in the folder
        for file_name in os.listdir(dir_path):
            if validFFName(file_name) and ((file_name in calstars_ff_files)
                                           or nostars):
                ff_list.append(file_name)

        # Check that there are any FF files in the folder
        if not ff_list:
            print('No valid FF files in the selected folder!')
            return None

    ff_list_good = []
    ff_times = []

    # Take only those FF files with enough stars on them
    for ff_name in ff_list:

        if (ff_name in calstars) or nostars:

            # Disable requiring minimum number of stars if specified
            if not nostars:

                # Get the number of stars detected on the FF image
                ff_nstars = len(calstars[ff_name])

            else:
                ff_nstars = 0

            # Check if the number of stars on the image is over the detection threshold
            if (ff_nstars > config.ff_min_stars) or nostars:

                # Add the FF file to the list of FF files to be used to make a flat
                ff_list_good.append(ff_name)

                # If images are used, don't compute the time
                if use_images:
                    ff_time = 0

                else:
                    # Calculate the time of the FF files
                    ff_time = date2JD(*getMiddleTimeFF(
                        ff_name, config.fps, ret_milliseconds=True))

                ff_times.append(ff_time)

    # Check that there are enough good FF files in the folder
    if (len(ff_times) < config.flat_min_imgs) and (not nostars):
        print('Not enough FF files have enough stars on them!')
        return None

    # Make sure the files cover at least 2 hours
    if (not (max(ff_times) - min(ff_times)) * 24 > 2) and (not nostars):
        print('Good FF files cover less than 2 hours!')
        return None

    # Sample FF files if there are more than 200
    max_ff_flat = 200
    if len(ff_list_good) > max_ff_flat:
        ff_list_good = sorted(random.sample(ff_list_good, max_ff_flat))

    print('Using {:d} files for flat...'.format(len(ff_list_good)))

    c = 0
    img_list = []
    median_list = []

    # Median combine all good FF files
    for i in range(len(ff_list_good)):

        # Load 10 files at the time and median combine them, which conserves memory
        if c < 10:

            # Use images
            if use_images:
                img = loadImage(os.path.join(dir_path, ff_list_good[i]), -1)

            # Use FF files
            else:
                ff = readFF(dir_path, ff_list_good[i])

                # Skip the file if it is corruped
                if ff is None:
                    continue

                img = ff.avepixel

            img_list.append(img)

            c += 1

        else:

            img_list = np.array(img_list)

            # Median combine the loaded 10 (or less) images
            ff_median = np.median(img_list, axis=0)
            median_list.append(ff_median)

            img_list = []
            c = 0

    # If there are more than 1 calculated median image, combine them
    if len(median_list) > 1:

        # Median combine all median images
        median_list = np.array(median_list)
        ff_median = np.median(median_list, axis=0)

    else:
        if len(median_list) > 0:
            ff_median = median_list[0]
        else:
            ff_median = np.median(np.array(img_list), axis=0)

    # Stretch flat to 0-255
    ff_median = ff_median / np.max(ff_median) * 255

    # Convert the flat to 8 bits
    ff_median = ff_median.astype(np.uint8)

    return ff_median
コード例 #7
0
def generateCalibrationReport(config, night_dir_path, match_radius=2.0, platepar=None, show_graphs=False):
    """ Given the folder of the night, find the Calstars file, check the star fit and generate a report
        with the quality of the calibration. The report contains information about both the astrometry and
        the photometry calibration. Graphs will be saved in the given directory of the night.
    
    Arguments:
        config: [Config instance]
        night_dir_path: [str] Full path to the directory of the night.

    Keyword arguments:
        match_radius: [float] Match radius for star matching between image and catalog stars (px).
        platepar: [Platepar instance] Use this platepar instead of finding one in the folder.
        show_graphs: [bool] Show the graphs on the screen. False by default.

    Return:
        None
    """

    # Find the CALSTARS file in the given folder
    calstars_file = None
    for calstars_file in os.listdir(night_dir_path):
        if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file):
            break

    if calstars_file is None:
        print('CALSTARS file could not be found in the given directory!')
        return None


    # Load the calstars file
    star_list = readCALSTARS(night_dir_path, calstars_file)



    ### Load recalibrated platepars, if they exist ###

    # Find recalibrated platepars file per FF file
    platepars_recalibrated_file = None
    for file_name in os.listdir(night_dir_path):
        if file_name == config.platepars_recalibrated_name:
            platepars_recalibrated_file = file_name
            break


    # Load all recalibrated platepars if the file is available
    recalibrated_platepars = None
    if platepars_recalibrated_file:
        with open(os.path.join(night_dir_path, platepars_recalibrated_file)) as f:
            recalibrated_platepars = json.load(f)
            print('Loaded recalibrated platepars JSON file for the calibration report...')

    ### ###


    ### Load the platepar file ###

    # Find the platepar file in the given directory if it was not given
    if platepar is None:

        # Find the platepar file
        platepar_file = None
        for file_name in os.listdir(night_dir_path):
            if file_name == config.platepar_name:
                platepar_file = file_name
                break

        if platepar_file is None:
            print('The platepar cannot be found in the night directory!')
            return None

        # Load the platepar file
        platepar = Platepar()
        platepar.read(os.path.join(night_dir_path, platepar_file))


    ### ###


    night_name = os.path.split(night_dir_path.strip(os.sep))[1]


    # Go one mag deeper than in the config
    lim_mag = config.catalog_mag_limit + 1

    # Load catalog stars (load one magnitude deeper)
    catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\
        config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \
        mag_band_ratios=config.star_catalog_band_ratios)

    
    ### Take only those CALSTARS entires for which FF files exist in the folder ###

    # Get a list of FF files in the folder\
    ff_list = []
    for file_name in os.listdir(night_dir_path):
        if validFFName(file_name):
            ff_list.append(file_name)


    # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs
    star_dict = {}
    ff_dict = {}
    for entry in star_list:

        ff_name, star_data = entry

        # Check if the FF from CALSTARS exists in the folder
        if ff_name not in ff_list:
            continue


        dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)
        jd = date2JD(*dt)

        # Add the time and the stars to the dict
        star_dict[jd] = star_data
        ff_dict[jd] = ff_name

    ### ###

    # If there are no FF files in the directory, don't generate a report
    if len(star_dict) == 0:
        print('No FF files from the CALSTARS file in the directory!')
        return None


    # If the recalibrated platepars file exists, take the one with the most stars
    max_jd = 0
    if recalibrated_platepars is not None:
        max_stars = 0
        for ff_name_temp in recalibrated_platepars:

            # Compute the Julian date of the FF middle
            dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True)
            jd = date2JD(*dt)

            # Check that this file exists in CALSTARS and the list of FF files
            if (jd not in star_dict) or (jd not in ff_dict):
                continue

            # Check if the number of stars on this FF file is larger than the before
            if len(star_dict[jd]) > max_stars:
                max_jd = jd
                max_stars = len(star_dict[jd])


        # Set a flag to indicate if using recalibrated platepars has failed
        if max_jd == 0:
            using_recalib_platepars = False
        else:

            print('Using recalibrated platepars, file:', ff_dict[max_jd])
            using_recalib_platepars = True

            # Select the platepar where the FF file has the most stars
            platepar_dict = recalibrated_platepars[ff_dict[max_jd]]
            platepar = Platepar()
            platepar.loadFromDict(platepar_dict)

            filtered_star_dict = {max_jd: star_dict[max_jd]}

            # Match stars on the image with the stars in the catalog
            n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \
                filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag)

            max_matched_stars = n_matched


    # Otherwise take the optimal FF file for evaluation
    if (recalibrated_platepars is None) or (not using_recalib_platepars):

        # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on
        #   the image
        if len(star_dict) > config.calstars_files_N:

            # Find JDs of FF files with most stars on them
            top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \
                - 1]

            filtered_star_dict = {}
            for i in top_nstars_indices:
                filtered_star_dict[list(star_dict.keys())[i]] = list(star_dict.values())[i]

            star_dict = filtered_star_dict


        # Match stars on the image with the stars in the catalog
        n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \
            star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag)



    # If no recalibrated platepars where found, find the image with the largest number of matched stars
    if (not using_recalib_platepars) or (max_jd == 0):

        max_jd = 0
        max_matched_stars = 0
        for jd in matched_stars:
            _, _, distances = matched_stars[jd]
            if len(distances) > max_matched_stars:
                max_jd = jd
                max_matched_stars = len(distances)

        
        # If there are no matched stars, use the image with the largest number of detected stars
        if max_matched_stars <= 2:
            max_jd = max(star_dict, key=lambda x: len(star_dict[x]))
            distances = [np.inf]



    # Take the FF file with the largest number of matched stars
    ff_name = ff_dict[max_jd]

    # Load the FF file
    ff = readFF(night_dir_path, ff_name)
    img_h, img_w = ff.avepixel.shape

    dpi = 200
    plt.figure(figsize=(ff.avepixel.shape[1]/dpi, ff.avepixel.shape[0]/dpi), dpi=dpi)

    # Take the average pixel
    img = ff.avepixel

    # Slightly adjust the levels
    img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.2, np.percentile(img, 99.99))

    plt.imshow(img, cmap='gray', interpolation='nearest')

    legend_handles = []


    # Plot detected stars
    for img_star in star_dict[max_jd]:

        y, x, _, _ = img_star

        rect_side = 5*match_radius
        square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \
            fill=False, label='Image stars')

        plt.gca().add_artist(square_patch)

    legend_handles.append(square_patch)



    # If there are matched stars, plot them
    if max_matched_stars > 2:

        # Take the solution with the largest number of matched stars
        image_stars, matched_catalog_stars, distances = matched_stars[max_jd]

        # Plot matched stars
        for img_star in image_stars:
            x, y, _, _ = img_star

            circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \
                label='Matched stars')

            plt.gca().add_artist(circle_patch)

        legend_handles.append(circle_patch)


        ### Plot match residuals ###

        # Compute preducted positions of matched image stars from the catalog
        x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \
            matched_catalog_stars[:, 1], max_jd, platepar)

        img_y, img_x, _, _ = image_stars.T

        delta_x = x_predicted - img_x
        delta_y = y_predicted - img_y

        # Compute image residual and angle of the error
        res_angle = np.arctan2(delta_y, delta_x)
        res_distance = np.sqrt(delta_x**2 + delta_y**2)


        # Calculate coordinates of the beginning of the residual line
        res_x_beg = img_x + 3*match_radius*np.cos(res_angle)
        res_y_beg = img_y + 3*match_radius*np.sin(res_angle)

        # Calculate coordinates of the end of the residual line
        res_x_end = img_x + 100*np.cos(res_angle)*res_distance
        res_y_end = img_y + 100*np.sin(res_angle)*res_distance

        # Plot the 100x residuals
        for i in range(len(x_predicted)):
            res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \
                lw=0.5, label='100x residuals')

        legend_handles.append(res_plot[0])

        ### ###

    else:

        distances = [np.inf]
        
        # If there are no matched stars, plot large text in the middle of the screen
        plt.text(img_w/2, img_h/2, "NO MATCHED STARS!", color='r', alpha=0.5, fontsize=20, ha='center',
            va='center')


    ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ###

    # Find the faintest magnitude among matched stars
    if max_matched_stars > 2:
        faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1

    else:
        # If there are no matched stars, use the limiting magnitude from config
        faintest_mag = config.catalog_mag_limit + 1


    # Estimate RA,dec of the centre of the FOV
    _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res/2], [platepar.Y_res/2], [1], 
        platepar)

    RA_c = RA_c[0]
    dec_c = dec_c[0]

    fov_radius = np.hypot(*computeFOVSize(platepar))

    # Get stars from the catalog around the defined center in a given radius
    _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, fov_radius, faintest_mag)
    ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T

    # Compute image positions of all catalog stars that should be on the image
    x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd, platepar)

    # Filter all catalog stars outside the image
    temp_arr = np.c_[x_catalog, y_catalog, mag_catalog]
    temp_arr = temp_arr[temp_arr[:, 0] >= 0]
    temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]]
    temp_arr = temp_arr[temp_arr[:, 1] >= 0]
    temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]]
    x_catalog, y_catalog, mag_catalog = temp_arr.T

    # Plot catalog stars on the image
    cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \
        s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars')

    legend_handles.append(cat_stars_handle)

    ### ###


    # Add info text
    info_text = ff_dict[max_jd] + '\n' \
        + "Matched stars: {:d}/{:d}\n".format(max_matched_stars, len(star_dict[max_jd])) \
        + "Median distance: {:.2f} px\n".format(np.median(distances)) \
        + "Catalog limiting magnitude: {:.1f}".format(lim_mag)

    plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \
        color='w')

    legend = plt.legend(handles=legend_handles, prop={'size': 4}, loc='upper right')
    legend.get_frame().set_facecolor('k')
    legend.get_frame().set_edgecolor('k')
    for txt in legend.get_texts():
        txt.set_color('w')


    plt.axis('off')
    plt.gca().get_xaxis().set_visible(False)
    plt.gca().get_yaxis().set_visible(False)

    plt.xlim([0, ff.avepixel.shape[1]])
    plt.ylim([ff.avepixel.shape[0], 0])

    # Remove the margins
    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)

    plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \
        bbox_inches='tight', pad_inches=0, dpi=dpi)


    if show_graphs:
        plt.show()

    else:
        plt.clf()
        plt.close()



    if max_matched_stars > 2:

        ### Plot the photometry ###

        plt.figure(dpi=dpi)

        # Take only those stars which are inside the 3/4 of the shorter image axis from the center
        photom_selection_radius = np.min([img_h, img_w])/3
        filter_indices = ((image_stars[:, 0] - img_h/2)**2 + (image_stars[:, 1] \
            - img_w/2)**2) <= photom_selection_radius**2
        star_intensities = image_stars[filter_indices, 2]
        catalog_mags = matched_catalog_stars[filter_indices, 2]

        # Plot intensities of image stars
        #star_intensities = image_stars[:, 2]
        plt.scatter(-2.5*np.log10(star_intensities), catalog_mags, s=5, c='r')

        # Fit the photometry on automated star intensities
        photom_offset, fit_stddev, _ = photometryFit(np.log10(star_intensities), catalog_mags)


        # Plot photometric offset from the platepar
        x_min, x_max = plt.gca().get_xlim()
        y_min, y_max = plt.gca().get_ylim()

        x_min_w = x_min - 3
        x_max_w = x_max + 3
        y_min_w = y_min - 3
        y_max_w = y_max + 3

        photometry_info = 'Platepar: {:+.2f}LSP {:+.2f} +/- {:.2f} \nGamma = {:.2f}'.format(platepar.mag_0, \
            platepar.mag_lev, platepar.mag_lev_stddev, platepar.gamma)

        # Plot the photometry calibration from the platepar
        logsum_arr = np.linspace(x_min_w, x_max_w, 10)
        plt.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \
            color='k', alpha=0.5)

        # Plot the fitted photometry calibration
        fit_info = "Fit: {:+.2f}LSP {:+.2f} +/- {:.2f}".format(-2.5, photom_offset, fit_stddev)
        plt.plot(logsum_arr, logsum_arr + photom_offset, label=fit_info, linestyle='--', color='red', 
            alpha=0.5)

        plt.legend()

        plt.ylabel("Catalog magnitude ({:s})".format(mag_band_str))
        plt.xlabel("Uncalibrated magnitude")

        # Set wider axis limits
        plt.xlim(x_min_w, x_max_w)
        plt.ylim(y_min_w, y_max_w)

        plt.gca().invert_yaxis()
        plt.gca().invert_xaxis()

        plt.grid()

        plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_photometry.png'), dpi=150)


        if show_graphs:
            plt.show()

        else:
            plt.clf()
            plt.close()
コード例 #8
0
ファイル: TrackStack.py プロジェクト: tammojan/RMS
def trackStack(dir_path,
               config,
               border=5,
               background_compensation=True,
               hide_plot=False):
    """ Generate a stack with aligned stars, so the sky appears static. The folder should have a
        platepars_all_recalibrated.json file.

    Arguments:
        dir_path: [str] Path to the directory with image files.
        config: [Config instance]

    Keyword arguments:
        border: [int] Border around the image to exclude (px).
        background_compensation: [bool] Normalize the background by applying a median filter to avepixel and
            use it as a flat field. Slows down the procedure and may sometimes introduce artifacts. True
            by default.
    """

    # Load recalibrated platepars, if they exist ###

    # Find recalibrated platepars file per FF file
    platepars_recalibrated_file = None
    for file_name in os.listdir(dir_path):
        if file_name == config.platepars_recalibrated_name:
            platepars_recalibrated_file = file_name
            break

    # Load all recalibrated platepars if the file is available
    recalibrated_platepars = None
    if platepars_recalibrated_file is not None:
        with open(os.path.join(dir_path, platepars_recalibrated_file)) as f:
            recalibrated_platepars = json.load(f)
            print(
                'Loaded recalibrated platepars JSON file for the calibration report...'
            )

    # ###

    # If the recalib platepars is not found, stop
    if recalibrated_platepars is None:
        print("The {:s} file was not found!".format(
            config.platepars_recalibrated_name))
        return False

    # Get a list of FF files in the folder
    ff_list = []
    for file_name in os.listdir(dir_path):
        if validFFName(file_name):
            ff_list.append(file_name)

    # Take the platepar with the middle time as the reference one
    ff_found_list = []
    jd_list = []
    for ff_name_temp in recalibrated_platepars:

        if ff_name_temp in ff_list:

            # Compute the Julian date of the FF middle
            dt = getMiddleTimeFF(ff_name_temp,
                                 config.fps,
                                 ret_milliseconds=True)
            jd = date2JD(*dt)

            jd_list.append(jd)
            ff_found_list.append(ff_name_temp)

    if len(jd_list) < 2:
        print("Not more than 1 FF image!")
        return False

    # Take the FF file with the middle JD
    jd_list = np.array(jd_list)
    jd_middle = np.mean(jd_list)
    jd_mean_index = np.argmin(np.abs(jd_list - jd_middle))
    ff_mid = ff_found_list[jd_mean_index]

    # Load the middle platepar as the reference one
    pp_ref = Platepar()
    pp_ref.loadFromDict(recalibrated_platepars[ff_mid],
                        use_flat=config.use_flat)

    # Try loading the mask
    mask_path = None
    if os.path.exists(os.path.join(dir_path, config.mask_file)):
        mask_path = os.path.join(dir_path, config.mask_file)

    # Try loading the default mask
    elif os.path.exists(config.mask_file):
        mask_path = os.path.abspath(config.mask_file)

    # Load the mask if given
    mask = None
    if mask_path is not None:
        mask = loadMask(mask_path)
        print("Loaded mask:", mask_path)

    # If the shape of the mask doesn't fit, init an empty mask
    if mask is not None:
        if (mask.img.shape[0] != pp_ref.Y_res) or (mask.img.shape[1] !=
                                                   pp_ref.X_res):
            print("Mask is of wrong shape!")
            mask = None

    if mask is None:
        mask = MaskStructure(255 + np.zeros(
            (pp_ref.Y_res, pp_ref.X_res), dtype=np.uint8))

    # Compute the middle RA/Dec of the reference platepar
    _, ra_temp, dec_temp, _ = xyToRaDecPP([jd2Date(jd_middle)],
                                          [pp_ref.X_res / 2],
                                          [pp_ref.Y_res / 2], [1],
                                          pp_ref,
                                          extinction_correction=False)

    ra_mid, dec_mid = ra_temp[0], dec_temp[0]

    # Go through all FF files and find RA/Dec of image corners to find the size of the stack image ###

    # List of corners
    x_corns = [0, pp_ref.X_res, 0, pp_ref.X_res]
    y_corns = [0, 0, pp_ref.Y_res, pp_ref.Y_res]

    ra_list = []
    dec_list = []

    for ff_temp in ff_found_list:

        # Load the recalibrated platepar
        pp_temp = Platepar()
        pp_temp.loadFromDict(recalibrated_platepars[ff_temp],
                             use_flat=config.use_flat)

        for x_c, y_c in zip(x_corns, y_corns):
            _, ra_temp, dec_temp, _ = xyToRaDecPP(
                [getMiddleTimeFF(ff_temp, config.fps, ret_milliseconds=True)],
                [x_c], [y_c], [1],
                pp_ref,
                extinction_correction=False)
            ra_c, dec_c = ra_temp[0], dec_temp[0]

            ra_list.append(ra_c)
            dec_list.append(dec_c)

    # Compute the angular separation from the middle equatorial coordinates of the reference image to all
    #   RA/Dec corner coordinates
    ang_sep_list = []
    for ra_c, dec_c in zip(ra_list, dec_list):
        ang_sep = np.degrees(
            angularSeparation(np.radians(ra_mid), np.radians(dec_mid),
                              np.radians(ra_c), np.radians(dec_c)))

        ang_sep_list.append(ang_sep)

    # Find the maximum angular separation and compute the image size using the plate scale
    #   The image size will be resampled to 1/2 of the original size to avoid interpolation
    scale = 0.5
    ang_sep_max = np.max(ang_sep_list)
    img_size = int(scale * 2 * ang_sep_max * pp_ref.F_scale)

    #

    # Create the stack platepar with no distortion and a large image size
    pp_stack = copy.deepcopy(pp_ref)
    pp_stack.resetDistortionParameters()
    pp_stack.X_res = img_size
    pp_stack.Y_res = img_size
    pp_stack.F_scale *= scale
    pp_stack.refraction = False

    # Init the image
    avg_stack_sum = np.zeros((img_size, img_size), dtype=float)
    avg_stack_count = np.zeros((img_size, img_size), dtype=int)
    max_deaveraged = np.zeros((img_size, img_size), dtype=np.uint8)

    # Load individual FFs and map them to the stack
    for i, ff_name in enumerate(ff_found_list):

        print("Stacking {:s}, {:.1f}% done".format(
            ff_name, 100 * i / len(ff_found_list)))

        # Read the FF file
        ff = readFF(dir_path, ff_name)

        # Load the recalibrated platepar
        pp_temp = Platepar()
        pp_temp.loadFromDict(recalibrated_platepars[ff_name],
                             use_flat=config.use_flat)

        # Make a list of X and Y image coordinates
        x_coords, y_coords = np.meshgrid(
            np.arange(border, pp_ref.X_res - border),
            np.arange(border, pp_ref.Y_res - border))
        x_coords = x_coords.ravel()
        y_coords = y_coords.ravel()

        # Map image pixels to sky
        jd_arr, ra_coords, dec_coords, _ = xyToRaDecPP(
            len(x_coords) *
            [getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)],
            x_coords,
            y_coords,
            len(x_coords) * [1],
            pp_temp,
            extinction_correction=False)

        # Map sky coordinates to stack image coordinates
        stack_x, stack_y = raDecToXYPP(ra_coords, dec_coords, jd_middle,
                                       pp_stack)

        # Round pixel coordinates
        stack_x = np.round(stack_x, decimals=0).astype(int)
        stack_y = np.round(stack_y, decimals=0).astype(int)

        # Cut the image to limits
        filter_arr = (stack_x > 0) & (stack_x < img_size) & (stack_y > 0) & (
            stack_y < img_size)
        x_coords = x_coords[filter_arr].astype(int)
        y_coords = y_coords[filter_arr].astype(int)
        stack_x = stack_x[filter_arr]
        stack_y = stack_y[filter_arr]

        # Apply the mask to maxpixel and avepixel
        maxpixel = copy.deepcopy(ff.maxpixel)
        maxpixel[mask.img == 0] = 0
        avepixel = copy.deepcopy(ff.avepixel)
        avepixel[mask.img == 0] = 0

        # Compute deaveraged maxpixel
        max_deavg = maxpixel - avepixel

        # Normalize the backgroud brightness by applying a large-kernel median filter to avepixel
        if background_compensation:

            # # Apply a median filter to the avepixel to get an estimate of the background brightness
            # avepixel_median = scipy.ndimage.median_filter(ff.avepixel, size=101)
            avepixel_median = cv2.medianBlur(ff.avepixel, 301)

            # Make sure to avoid zero division
            avepixel_median[avepixel_median < 1] = 1

            # Normalize the avepixel by subtracting out the background brightness
            avepixel = avepixel.astype(float)
            avepixel /= avepixel_median
            avepixel *= 50  # Normalize to a good background value, which is usually 50
            avepixel = np.clip(avepixel, 0, 255)
            avepixel = avepixel.astype(np.uint8)

            # plt.imshow(avepixel, cmap='gray', vmin=0, vmax=255)
            # plt.show()

        # Add the average pixel to the sum
        avg_stack_sum[stack_y, stack_x] += avepixel[y_coords, x_coords]

        # Increment the counter image where the avepixel is not zero
        ones_img = np.ones_like(avepixel)
        ones_img[avepixel == 0] = 0
        avg_stack_count[stack_y, stack_x] += ones_img[y_coords, x_coords]

        # Set pixel values to the stack, only take the max values
        max_deaveraged[stack_y, stack_x] = np.max(np.dstack(
            [max_deaveraged[stack_y, stack_x], max_deavg[y_coords, x_coords]]),
                                                  axis=2)

    # Compute the blended avepixel background
    stack_img = avg_stack_sum
    stack_img[avg_stack_count > 0] /= avg_stack_count[avg_stack_count > 0]
    stack_img += max_deaveraged
    stack_img = np.clip(stack_img, 0, 255)
    stack_img = stack_img.astype(np.uint8)

    # Crop image
    non_empty_columns = np.where(stack_img.max(axis=0) > 0)[0]
    non_empty_rows = np.where(stack_img.max(axis=1) > 0)[0]
    crop_box = (np.min(non_empty_rows), np.max(non_empty_rows),
                np.min(non_empty_columns), np.max(non_empty_columns))
    stack_img = stack_img[crop_box[0]:crop_box[1] + 1,
                          crop_box[2]:crop_box[3] + 1]

    # Plot and save the stack ###

    dpi = 200
    plt.figure(figsize=(stack_img.shape[1] / dpi, stack_img.shape[0] / dpi),
               dpi=dpi)

    plt.imshow(stack_img,
               cmap='gray',
               vmin=0,
               vmax=256,
               interpolation='nearest')

    plt.axis('off')
    plt.gca().get_xaxis().set_visible(False)
    plt.gca().get_yaxis().set_visible(False)

    plt.xlim([0, stack_img.shape[1]])
    plt.ylim([stack_img.shape[0], 0])

    # Remove the margins (top and right are set to 0.9999, as setting them to 1.0 makes the image blank in
    #   some matplotlib versions)
    plt.subplots_adjust(left=0,
                        bottom=0,
                        right=0.9999,
                        top=0.9999,
                        wspace=0,
                        hspace=0)

    filenam = os.path.join(dir_path,
                           os.path.basename(dir_path) + "_track_stack.jpg")
    plt.savefig(filenam, bbox_inches='tight', pad_inches=0, dpi=dpi)

    #

    if hide_plot is False:
        plt.show()
コード例 #9
0
def add_fffits_metadata(ff_filename, config, platepars_recalibrated,
                        fallback_platepar):
    """
    Add FITS metadata and WCS to FF files generated by RMS

    Args:
        ff_filename (str): full or relative path to FF file
        config (RMS.Config): config instance
        platepars_recalibrated (dict): dictionary with recalibrated platepars
        fallback_platepar (RMS.Platepar): platepar with fitted stars

    Returns:
        None
    """
    ff_basename = os.path.basename(ff_filename)
    platepar_recalibrated = Platepar()
    try:
        platepar_data = platepars_recalibrated[ff_basename]
        with open("platepar_tmp.cal", "w") as f:
            json.dump(platepar_data, f)
        platepar_recalibrated.read("platepar_tmp.cal")
    except (FileNotFoundError, KeyError):
        platepar_recalibrated = fallback_platepar
        logger.warning(f"Using non-recalibrated platepar for {ff_basename}")

    fftime = getMiddleTimeFF(ff_basename, config.fps)

    fit_xy = np.array(fallback_platepar.star_list)[:, 1:3]

    _, fit_ra, fit_dec, _ = xyToRaDecPP([fftime] * len(fit_xy),
                                        fit_xy[:, 0],
                                        fit_xy[:, 1], [1] * len(fit_xy),
                                        platepar_recalibrated,
                                        extinction_correction=False)

    x0 = platepar_recalibrated.X_res / 2
    y0 = platepar_recalibrated.Y_res / 2
    _, ra0, dec0, _ = xyToRaDecPP([fftime], [x0], [y0], [1],
                                  platepar_recalibrated,
                                  extinction_correction=False)
    w = fit_wcs(fit_xy[:, 0],
                fit_xy[:, 1],
                fit_ra,
                fit_dec,
                x0,
                y0,
                ra0[0],
                dec0[0],
                5,
                projection="ZEA")

    hdu_list = fits.open(ff_filename, scale_back=True)
    obstime = Time(filenameToDatetime(ff_basename))

    header_meta = {}
    header_meta["OBSERVER"] = config.stationID.strip()
    header_meta["INSTRUME"] = "Global Meteor Network"
    header_meta["MJD-OBS"] = obstime.mjd
    header_meta["DATE-OBS"] = obstime.fits
    header_meta["NFRAMES"] = 256
    header_meta["EXPTIME"] = 256 / config.fps
    header_meta["SITELONG"] = round(config.longitude, 2)
    header_meta["SITELAT"] = round(config.latitude, 2)

    for hdu in hdu_list:
        if hdu.header[
                "NAXIS"] == 0:  # First header is not an image so should not get WCS
            new_header = Header()
        else:
            new_header = w.to_fits(relax=True)[0].header

        for key, value in header_meta.items():
            new_header.append((key, value))

        for key, value in new_header.items():
            if key in hdu.header:
                continue
            hdu.header[key] = value

    hdu_list.writeto(ff_filename, overwrite=True)