def plotStars(ff, x2, y2): """ Plots detected stars on the input image. """ # Plot image with adjusted levels to better see stars plt.imshow(Image.adjustLevels(ff.avepixel, 0, 1.3, 255), cmap='gray') # Plot stars for star in zip(list(y2), list(x2)): y, x = star c = plt.Circle((x, y), 5, fill=False, color='r') plt.gca().add_patch(c) plt.show() plt.clf() plt.close()
def generateCalibrationReport(config, night_dir_path, match_radius=2.0, platepar=None, show_graphs=False): """ Given the folder of the night, find the Calstars file, check the star fit and generate a report with the quality of the calibration. The report contains information about both the astrometry and the photometry calibration. Graphs will be saved in the given directory of the night. Arguments: config: [Config instance] night_dir_path: [str] Full path to the directory of the night. Keyword arguments: match_radius: [float] Match radius for star matching between image and catalog stars (px). platepar: [Platepar instance] Use this platepar instead of finding one in the folder. show_graphs: [bool] Show the graphs on the screen. False by default. Return: None """ # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(night_dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file star_list = readCALSTARS(night_dir_path, calstars_file) ### Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file: with open(os.path.join(night_dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print( 'Loaded recalibrated platepars JSON file for the calibration report...' ) ### ### ### Load the platepar file ### # Find the platepar file in the given directory if it was not given if platepar is None: # Find the platepar file platepar_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepar_name: platepar_file = file_name break if platepar_file is None: print('The platepar cannot be found in the night directory!') return None # Load the platepar file platepar = Platepar() platepar.read(os.path.join(night_dir_path, platepar_file), use_flat=config.use_flat) ### ### night_name = os.path.split(night_dir_path.strip(os.sep))[1] # Go one mag deeper than in the config lim_mag = config.catalog_mag_limit + 1 # Load catalog stars (load one magnitude deeper) catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\ config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \ mag_band_ratios=config.star_catalog_band_ratios) ### Take only those CALSTARS entires for which FF files exist in the folder ### # Get a list of FF files in the folder ff_list = [] for file_name in os.listdir(night_dir_path): if validFFName(file_name): ff_list.append(file_name) # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs star_dict = {} ff_dict = {} for entry in star_list: ff_name, star_data = entry # Check if the FF from CALSTARS exists in the folder if ff_name not in ff_list: continue dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Add the time and the stars to the dict star_dict[jd] = star_data ff_dict[jd] = ff_name ### ### # If there are no FF files in the directory, don't generate a report if len(star_dict) == 0: print('No FF files from the CALSTARS file in the directory!') return None # If the recalibrated platepars file exists, take the one with the most stars max_jd = 0 using_recalib_platepars = False if recalibrated_platepars is not None: max_stars = 0 for ff_name_temp in recalibrated_platepars: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Check that this file exists in CALSTARS and the list of FF files if (jd not in star_dict) or (jd not in ff_dict): continue # Check if the number of stars on this FF file is larger than the before if len(star_dict[jd]) > max_stars: max_jd = jd max_stars = len(star_dict[jd]) # Set a flag to indicate if using recalibrated platepars has failed if max_jd == 0: using_recalib_platepars = False else: print('Using recalibrated platepars, file:', ff_dict[max_jd]) using_recalib_platepars = True # Select the platepar where the FF file has the most stars platepar_dict = recalibrated_platepars[ff_dict[max_jd]] platepar = Platepar() platepar.loadFromDict(platepar_dict, use_flat=config.use_flat) filtered_star_dict = {max_jd: star_dict[max_jd]} # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) max_matched_stars = n_matched # Otherwise take the optimal FF file for evaluation if (recalibrated_platepars is None) or (not using_recalib_platepars): # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on # the image if len(star_dict) > config.calstars_files_N: # Find JDs of FF files with most stars on them top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \ - 1] filtered_star_dict = {} for i in top_nstars_indices: filtered_star_dict[list(star_dict.keys())[i]] = list( star_dict.values())[i] star_dict = filtered_star_dict # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) # If no recalibrated platepars where found, find the image with the largest number of matched stars if (not using_recalib_platepars) or (max_jd == 0): max_jd = 0 max_matched_stars = 0 for jd in matched_stars: _, _, distances = matched_stars[jd] if len(distances) > max_matched_stars: max_jd = jd max_matched_stars = len(distances) # If there are no matched stars, use the image with the largest number of detected stars if max_matched_stars <= 2: max_jd = max(star_dict, key=lambda x: len(star_dict[x])) distances = [np.inf] # Take the FF file with the largest number of matched stars ff_name = ff_dict[max_jd] # Load the FF file ff = readFF(night_dir_path, ff_name) img_h, img_w = ff.avepixel.shape dpi = 200 plt.figure(figsize=(ff.avepixel.shape[1] / dpi, ff.avepixel.shape[0] / dpi), dpi=dpi) # Take the average pixel img = ff.avepixel # Slightly adjust the levels img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.3, np.percentile(img, 99.99)) plt.imshow(img, cmap='gray', interpolation='nearest') legend_handles = [] # Plot detected stars for img_star in star_dict[max_jd]: y, x, _, _ = img_star rect_side = 5 * match_radius square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \ fill=False, label='Image stars') plt.gca().add_artist(square_patch) legend_handles.append(square_patch) # If there are matched stars, plot them if max_matched_stars > 2: # Take the solution with the largest number of matched stars image_stars, matched_catalog_stars, distances = matched_stars[max_jd] # Plot matched stars for img_star in image_stars: x, y, _, _ = img_star circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \ label='Matched stars') plt.gca().add_artist(circle_patch) legend_handles.append(circle_patch) ### Plot match residuals ### # Compute preducted positions of matched image stars from the catalog x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \ matched_catalog_stars[:, 1], max_jd, platepar) img_y, img_x, _, _ = image_stars.T delta_x = x_predicted - img_x delta_y = y_predicted - img_y # Compute image residual and angle of the error res_angle = np.arctan2(delta_y, delta_x) res_distance = np.sqrt(delta_x**2 + delta_y**2) # Calculate coordinates of the beginning of the residual line res_x_beg = img_x + 3 * match_radius * np.cos(res_angle) res_y_beg = img_y + 3 * match_radius * np.sin(res_angle) # Calculate coordinates of the end of the residual line res_x_end = img_x + 100 * np.cos(res_angle) * res_distance res_y_end = img_y + 100 * np.sin(res_angle) * res_distance # Plot the 100x residuals for i in range(len(x_predicted)): res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \ lw=0.5, label='100x residuals') legend_handles.append(res_plot[0]) ### ### else: distances = [np.inf] # If there are no matched stars, plot large text in the middle of the screen plt.text(img_w / 2, img_h / 2, "NO MATCHED STARS!", color='r', alpha=0.5, fontsize=20, ha='center', va='center') ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ### # Find the faintest magnitude among matched stars if max_matched_stars > 2: faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1 else: # If there are no matched stars, use the limiting magnitude from config faintest_mag = config.catalog_mag_limit + 1 # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res / 2], [platepar.Y_res / 2], [1], platepar) RA_c = RA_c[0] dec_c = dec_c[0] fov_radius = np.hypot(*computeFOVSize(platepar)) # Get stars from the catalog around the defined center in a given radius _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, fov_radius, faintest_mag) ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T # Compute image positions of all catalog stars that should be on the image x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd, platepar) # Filter all catalog stars outside the image temp_arr = np.c_[x_catalog, y_catalog, mag_catalog] temp_arr = temp_arr[temp_arr[:, 0] >= 0] temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]] temp_arr = temp_arr[temp_arr[:, 1] >= 0] temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]] x_catalog, y_catalog, mag_catalog = temp_arr.T # Plot catalog stars on the image cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \ s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars') legend_handles.append(cat_stars_handle) ### ### # Add info text in the corner info_text = ff_dict[max_jd] + '\n' \ + "Matched stars within {:.1f} px radius: {:d}/{:d} \n".format(match_radius, max_matched_stars, \ len(star_dict[max_jd])) \ + "Median distance = {:.2f} px\n".format(np.median(distances)) \ + "Catalog lim mag = {:.1f}".format(lim_mag) plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \ color='w', family='monospace') legend = plt.legend(handles=legend_handles, prop={'size': 4}, loc='upper right') legend.get_frame().set_facecolor('k') legend.get_frame().set_edgecolor('k') for txt in legend.get_texts(): txt.set_color('w') ### Add FOV info (centre, size) ### # Mark FOV centre plt.scatter(platepar.X_res / 2, platepar.Y_res / 2, marker='+', s=20, c='r', zorder=4) # Compute FOV centre alt/az azim_centre, alt_centre = raDec2AltAz(max_jd, platepar.lon, platepar.lat, RA_c, dec_c) # Compute FOV size fov_h, fov_v = computeFOVSize(platepar) # Compute the rotation wrt. horizon rot_horizon = rotationWrtHorizon(platepar) fov_centre_text = "Azim = {:6.2f}$\\degree$\n".format(azim_centre) \ + "Alt = {:6.2f}$\\degree$\n".format(alt_centre) \ + "Rot h = {:6.2f}$\\degree$\n".format(rot_horizon) \ + "FOV h = {:6.2f}$\\degree$\n".format(fov_h) \ + "FOV v = {:6.2f}$\\degree$".format(fov_v) \ plt.text(10, platepar.Y_res - 10, fov_centre_text, bbox=dict(facecolor='black', alpha=0.5), \ va='bottom', ha='left', fontsize=4, color='w', family='monospace') ### ### # Plot RA/Dec gridlines # addEquatorialGrid(plt, platepar, max_jd) plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, ff.avepixel.shape[1]]) plt.ylim([ff.avepixel.shape[0], 0]) # Remove the margins plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \ bbox_inches='tight', pad_inches=0, dpi=dpi) if show_graphs: plt.show() else: plt.clf() plt.close() if max_matched_stars > 2: ### PHOTOMETRY FIT ### # If a flat is used, set the vignetting coeff to 0 if config.use_flat: platepar.vignetting_coeff = 0.0 # Extact intensities and mangitudes star_intensities = image_stars[:, 2] catalog_mags = matched_catalog_stars[:, 2] # Compute radius of every star from image centre radius_arr = np.hypot(image_stars[:, 0] - img_h / 2, image_stars[:, 1] - img_w / 2) # Fit the photometry on automated star intensities (use the fixed vignetting coeff, use robust fit) photom_params, fit_stddev, fit_resid, star_intensities, radius_arr, catalog_mags = \ photometryFitRobust(star_intensities, radius_arr, catalog_mags, \ fixed_vignetting=platepar.vignetting_coeff) photom_offset, _ = photom_params ### ### ### PLOT PHOTOMETRY ### # Note: An almost identical code exists in RMS.Astrometry.SkyFit in the PlateTool.photometry function dpi = 130 fig_p, (ax_p, ax_r) = plt.subplots(nrows=2, facecolor=None, figsize=(6.0, 7.0), dpi=dpi, \ gridspec_kw={'height_ratios':[2, 1]}) # Plot raw star intensities ax_p.scatter(-2.5 * np.log10(star_intensities), catalog_mags, s=5, c='r', alpha=0.5, label="Raw") # If a flat is used, disregard the vignetting if not config.use_flat: # Plot intensities of image stars corrected for vignetting lsp_corr_arr = np.log10(correctVignetting(star_intensities, radius_arr, \ platepar.vignetting_coeff)) ax_p.scatter(-2.5*lsp_corr_arr, catalog_mags, s=5, c='b', alpha=0.5, \ label="Corrected for vignetting") # Plot photometric offset from the platepar x_min, x_max = ax_p.get_xlim() y_min, y_max = ax_p.get_ylim() x_min_w = x_min - 3 x_max_w = x_max + 3 y_min_w = y_min - 3 y_max_w = y_max + 3 photometry_info = "Platepar: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(platepar.mag_0, \ platepar.mag_lev, platepar.mag_lev_stddev) \ + "\nVignetting coeff = {:.5f}".format(platepar.vignetting_coeff) \ + "\nGamma = {:.2f}".format(platepar.gamma) # Plot the photometry calibration from the platepar logsum_arr = np.linspace(x_min_w, x_max_w, 10) ax_p.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \ color='k', alpha=0.5) # Plot the fitted photometry calibration fit_info = "Fit: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format( -2.5, photom_offset, fit_stddev) ax_p.plot(logsum_arr, logsum_arr + photom_offset, label=fit_info, linestyle='--', color='b', alpha=0.75) ax_p.legend() ax_p.set_ylabel("Catalog magnitude ({:s})".format(mag_band_str)) ax_p.set_xlabel("Uncalibrated magnitude") # Set wider axis limits ax_p.set_xlim(x_min_w, x_max_w) ax_p.set_ylim(y_min_w, y_max_w) ax_p.invert_yaxis() ax_p.invert_xaxis() ax_p.grid() ### Plot photometry vs radius ### img_diagonal = np.hypot(img_h / 2, img_w / 2) # Plot photometry residuals (including vignetting) ax_r.scatter(radius_arr, fit_resid, c='b', alpha=0.75, s=5, zorder=3) # Plot a zero line ax_r.plot(np.linspace(0, img_diagonal, 10), np.zeros(10), linestyle='dashed', alpha=0.5, \ color='k') # Plot only when no flat is used if not config.use_flat: # Plot radius from centre vs. fit residual fit_resids_novignetting = catalog_mags - photomLine((np.array(star_intensities), \ np.array(radius_arr)), photom_offset, 0.0) ax_r.scatter(radius_arr, fit_resids_novignetting, s=5, c='r', alpha=0.5, zorder=3) px_sum_tmp = 1000 radius_arr_tmp = np.linspace(0, img_diagonal, 50) # Plot vignetting loss curve vignetting_loss = 2.5*np.log10(px_sum_tmp) \ - 2.5*np.log10(correctVignetting(px_sum_tmp, radius_arr_tmp, \ platepar.vignetting_coeff)) ax_r.plot(radius_arr_tmp, vignetting_loss, linestyle='dotted', alpha=0.5, color='k') ax_r.grid() ax_r.set_ylabel("Fit residuals (mag)") ax_r.set_xlabel("Radius from centre (px)") ax_r.set_xlim(0, img_diagonal) ### ### plt.tight_layout() plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_photometry.png'), dpi=150) if show_graphs: plt.show() else: plt.clf() plt.close()
def getThresholdedStripe3DPoints(config, img_handle, frame_min, frame_max, rho, theta, mask, flat_struct, \ dark, stripe_width_factor=1.0, centroiding=False, point1=None, point2=None, debug=False): """ Threshold the image and get a list of pixel positions and frames of threshold passers. This function handles all input types of data. Arguments; config: [config object] configuration object (loaded from the .config file). img_handle: [FrameInterface instance] Object which has a common interface to various input files. frame_min: [int] First frame to process. frame_max: [int] Last frame to process. rho: [float] Line distance from the center in HT space (pixels). theta: [float] Angle in degrees in HT space. mask: [ndarray] Image mask. flat_struct: [Flat struct] Structure containing the flat field. None by default. dark: [ndarray] Dark frame. Keyword arguments: stripe_width_factor: [float] Multipler by which the default stripe width will be multiplied. Default is 1.0 centroiding: [bool] If True, the indices will be returned in the centroiding mode, which means that point1 and point2 arguments must be given. point1: [list] (x, y, frame) Of the first reference point of the detection. point2: [list] (x, y, frame) Of the second reference point of the detection. debug: [bool] If True, extra debug messages and plots will be shown. Return: xs, ys, zs: [tuple of lists] Indices of (x, y, frame) of threshold passers for every frame. """ # Get indices of stripe pixels around the line of the meteor img_h, img_w = img_handle.ff.maxpixel.shape stripe_indices = getStripeIndices( rho, theta, stripe_width_factor * config.stripe_width, img_h, img_w) # If centroiding should be done, prepare everything for cutting out parts of the image for photometry if centroiding: # Compute the unit vector which describes the motion of the meteor in the image domain point1 = np.array(point1) point2 = np.array(point2) motion_vect = point2[:2] - point1[:2] motion_vect_unit = vectNorm(motion_vect) # Get coordinates of 2 points that describe the line x1, y1, z1 = point1 x2, y2, z2 = point2 # Compute the average angular velocity in px per frame ang_vel = np.sqrt((x2 - x1)**2 + (y2 - y1)**2) / (z2 - z1) # Compute the vector describing the length and direction of the meteor per frame motion_vect = ang_vel * motion_vect_unit # If the FF files is given, extract the points from FF after threshold if img_handle.input_type == 'ff': # Threshold the FF file img_thres = Image.thresholdFF(img_handle.ff, config.k1_det, config.j1_det, mask=mask, \ mask_ave_bright=False) # Extract the thresholded image by min and max frames from FF file img = selectFFFrames(np.copy(img_thres), img_handle.ff, frame_min, frame_max) # Remove lonely pixels img = morph.clean(img) # Extract the stripe from the thresholded image stripe = np.zeros(img.shape, img.dtype) stripe[stripe_indices] = img[stripe_indices] # Show stripe # show2("stripe", stripe*255) # Show 3D could # show3DCloud(ff, stripe) # Get stripe positions (x, y, frame) stripe_positions = stripe.nonzero() xs = stripe_positions[1] ys = stripe_positions[0] zs = img_handle.ff.maxframe[stripe_positions] return xs, ys, zs # If video frames are available, extract indices on all frames in the given range else: xs_array = [] ys_array = [] zs_array = [] # Go through all frames in the frame range for fr in range(frame_min, frame_max + 1): # Break the loop if outside frame size if fr == (img_handle.total_frames - 1): break # Set the frame number img_handle.setFrame(fr) # Load the frame fr_img = img_handle.loadFrame() # Apply the dark frame if dark is not None: fr_img = Image.applyDark(fr_img, dark) # Apply the flat to frame if flat_struct is not None: fr_img = Image.applyFlat(fr_img, flat_struct) # Mask the image fr_img = MaskImage.applyMask(fr_img, mask) # Threshold the frame img_thres = Image.thresholdImg(fr_img, img_handle.ff.avepixel, img_handle.ff.stdpixel, \ config.k1_det, config.j1_det, mask=mask, mask_ave_bright=False) # Remove lonely pixels img_thres = morph.clean(img_thres) # Extract the stripe from the thresholded image stripe = np.zeros(img_thres.shape, img_thres.dtype) stripe[stripe_indices] = img_thres[stripe_indices] # Include more pixels for centroiding and photometry and mask out per frame pixels if centroiding: # Dilate the pixels in the stripe twice, to include more pixels for photometry stripe = morph.dilate(stripe) stripe = morph.dilate(stripe) # Get indices of the stripe that is perpendicular to the meteor, and whose thickness is the # length of the meteor on this particular frame - this is called stripe_indices_motion # Compute the previous, current, and the next linear model position of the meteor on the # image model_pos_prev = point1[:2] + (fr - 1 - z1) * motion_vect model_pos = point1[:2] + (fr - z1) * motion_vect model_pos_next = point1[:2] + (fr + 1 - z1) * motion_vect # Get the rho, theta of the line perpendicular to the meteor line x_inters, y_inters = model_pos # Check if the previous, current or the next centroids are outside bounds, and if so, skip the # frame if (not checkCentroidBounds(model_pos_prev, img_w, img_h)) or \ (not checkCentroidBounds(model_pos, img_w, img_h)) or \ (not checkCentroidBounds(model_pos_next, img_w, img_h)): continue # Get parameters of the perpendicular line to the meteor line rho2, theta2 = htLinePerpendicular(rho, theta, x_inters, y_inters, img_h, img_w) # Compute the image indices of this position which will be the intersection with the stripe # The width of the line will be 2x the angular velocity stripe_length = 6 * ang_vel if stripe_length < stripe_width_factor * config.stripe_width: stripe_length = stripe_width_factor * config.stripe_width stripe_indices_motion = getStripeIndices( rho2, theta2, stripe_length, img_h, img_w) # Mark only those parts which overlap both lines, which effectively creates a mask for # photometry an centroiding, excluding other influences stripe_new = np.zeros_like(stripe) stripe_new[stripe_indices_motion] = stripe[ stripe_indices_motion] stripe = stripe_new if debug: # Show the extracted stripe img_stripe = np.zeros_like(stripe) img_stripe[stripe_indices] = 1 final_stripe = np.zeros_like(stripe) final_stripe[stripe_indices_motion] = img_stripe[ stripe_indices_motion] plt.imshow(final_stripe) plt.show() if debug and centroiding: print(fr) print('mean stdpixel3:', np.mean(img_handle.ff.stdpixel)) print('mean avepixel3:', np.mean(img_handle.ff.avepixel)) print('mean frame:', np.mean(fr_img)) fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True, sharey=True) fr_img_noavg = Image.applyDark(fr_img, img_handle.ff.avepixel) #fr_img_noavg = fr_img # Auto levels min_lvl = np.percentile(fr_img_noavg[2:, :], 1) max_lvl = np.percentile(fr_img_noavg[2:, :], 99.0) # Adjust levels fr_img_autolevel = Image.adjustLevels(fr_img_noavg, min_lvl, 1.0, max_lvl) ax1.imshow(stripe, cmap='gray') ax2.imshow(fr_img_autolevel, cmap='gray') plt.show() pass # Get stripe positions (x, y, frame) stripe_positions = stripe.nonzero() xs = stripe_positions[1] ys = stripe_positions[0] zs = np.zeros_like(xs) + fr # Add the points to the list xs_array.append(xs) ys_array.append(ys) zs_array.append(zs) if debug: print('---') print(stripe.nonzero()) print(xs, ys, zs) if len(xs_array) > 0: # Flatten the arrays xs_array = np.concatenate(xs_array) ys_array = np.concatenate(ys_array) zs_array = np.concatenate(zs_array) else: xs_array = np.array(xs_array) ys_array = np.array(ys_array) zs_array = np.array(zs_array) return xs_array, ys_array, zs_array
def getThresholdedStripe3DPoints(config, img_handle, frame_min, frame_max, rho, theta, mask, flat_struct, \ dark, stripe_width_factor=1.0, centroiding=False, point1=None, point2=None, debug=False): """ Threshold the image and get a list of pixel positions and frames of threshold passers. This function handles all input types of data. Arguments; config: [config object] configuration object (loaded from the .config file). img_handle: [FrameInterface instance] Object which has a common interface to various input files. frame_min: [int] First frame to process. frame_max: [int] Last frame to process. rho: [float] Line distance from the center in HT space (pixels). theta: [float] Angle in degrees in HT space. mask: [ndarray] Image mask. flat_struct: [Flat struct] Structure containing the flat field. None by default. dark: [ndarray] Dark frame. Keyword arguments: stripe_width_factor: [float] Multipler by which the default stripe width will be multiplied. Default is 1.0 centroiding: [bool] If True, the indices will be returned in the centroiding mode, which means that point1 and point2 arguments must be given. point1: [list] (x, y, frame) Of the first reference point of the detection. point2: [list] (x, y, frame) Of the second reference point of the detection. debug: [bool] If True, extra debug messages and plots will be shown. Return: xs, ys, zs: [tuple of lists] Indices of (x, y, frame) of threshold passers for every frame. """ # Get indices of stripe pixels around the line of the meteor img_h, img_w = img_handle.ff.maxpixel.shape stripe_indices = getStripeIndices(rho, theta, stripe_width_factor*config.stripe_width, img_h, img_w) # If centroiding should be done, prepare everything for cutting out parts of the image for photometry if centroiding: # Compute the unit vector which describes the motion of the meteor in the image domain point1 = np.array(point1) point2 = np.array(point2) motion_vect = point2[:2] - point1[:2] motion_vect_unit = vectNorm(motion_vect) # Get coordinates of 2 points that describe the line x1, y1, z1 = point1 x2, y2, z2 = point2 # Compute the average angular velocity in px per frame ang_vel = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)/(z2 - z1) # Compute the vector describing the length and direction of the meteor per frame motion_vect = ang_vel*motion_vect_unit # If the FF files is given, extract the points from FF after threshold if img_handle.input_type == 'ff': # Threshold the FF file img_thres = Image.thresholdFF(img_handle.ff, config.k1_det, config.j1_det, mask=mask, \ mask_ave_bright=False) # Extract the thresholded image by min and max frames from FF file img = selectFFFrames(np.copy(img_thres), img_handle.ff, frame_min, frame_max) # Remove lonely pixels img = morph.clean(img) # Extract the stripe from the thresholded image stripe = np.zeros(img.shape, img.dtype) stripe[stripe_indices] = img[stripe_indices] # Show stripe # show2("stripe", stripe*255) # Show 3D could # show3DCloud(ff, stripe) # Get stripe positions (x, y, frame) stripe_positions = stripe.nonzero() xs = stripe_positions[1] ys = stripe_positions[0] zs = img_handle.ff.maxframe[stripe_positions] return xs, ys, zs # If video frames are available, extract indices on all frames in the given range else: xs_array = [] ys_array = [] zs_array = [] # Go through all frames in the frame range for fr in range(frame_min, frame_max + 1): # Break the loop if outside frame size if fr == (img_handle.total_frames - 1): break # Set the frame number img_handle.setFrame(fr) # Load the frame fr_img = img_handle.loadFrame() # Apply the dark frame if dark is not None: fr_img = Image.applyDark(fr_img, dark) # Apply the flat to frame if flat_struct is not None: fr_img = Image.applyFlat(fr_img, flat_struct) # Mask the image fr_img = MaskImage.applyMask(fr_img, mask) # Threshold the frame img_thres = Image.thresholdImg(fr_img, img_handle.ff.avepixel, img_handle.ff.stdpixel, \ config.k1_det, config.j1_det, mask=mask, mask_ave_bright=False) # Remove lonely pixels img_thres = morph.clean(img_thres) # Extract the stripe from the thresholded image stripe = np.zeros(img_thres.shape, img_thres.dtype) stripe[stripe_indices] = img_thres[stripe_indices] # Include more pixels for centroiding and photometry and mask out per frame pixels if centroiding: # Dilate the pixels in the stripe twice, to include more pixels for photometry stripe = morph.dilate(stripe) stripe = morph.dilate(stripe) # Get indices of the stripe that is perpendicular to the meteor, and whose thickness is the # length of the meteor on this particular frame - this is called stripe_indices_motion # Compute the previous, current, and the next linear model position of the meteor on the # image model_pos_prev = point1[:2] + (fr - 1 - z1)*motion_vect model_pos = point1[:2] + (fr - z1)*motion_vect model_pos_next = point1[:2] + (fr + 1 - z1)*motion_vect # Get the rho, theta of the line perpendicular to the meteor line x_inters, y_inters = model_pos # Check if the previous, current or the next centroids are outside bounds, and if so, skip the # frame if (not checkCentroidBounds(model_pos_prev, img_w, img_h)) or \ (not checkCentroidBounds(model_pos, img_w, img_h)) or \ (not checkCentroidBounds(model_pos_next, img_w, img_h)): continue # Get parameters of the perpendicular line to the meteor line rho2, theta2 = htLinePerpendicular(rho, theta, x_inters, y_inters, img_h, img_w) # Compute the image indices of this position which will be the intersection with the stripe # The width of the line will be 2x the angular velocity stripe_length = 6*ang_vel if stripe_length < stripe_width_factor*config.stripe_width: stripe_length = stripe_width_factor*config.stripe_width stripe_indices_motion = getStripeIndices(rho2, theta2, stripe_length, img_h, img_w) # Mark only those parts which overlap both lines, which effectively creates a mask for # photometry an centroiding, excluding other influences stripe_new = np.zeros_like(stripe) stripe_new[stripe_indices_motion] = stripe[stripe_indices_motion] stripe = stripe_new if debug: # Show the extracted stripe img_stripe = np.zeros_like(stripe) img_stripe[stripe_indices] = 1 final_stripe = np.zeros_like(stripe) final_stripe[stripe_indices_motion] = img_stripe[stripe_indices_motion] plt.imshow(final_stripe) plt.show() if debug and centroiding: print(fr) print('mean stdpixel3:', np.mean(img_handle.ff.stdpixel)) print('mean avepixel3:', np.mean(img_handle.ff.avepixel)) print('mean frame:', np.mean(fr_img)) fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True, sharey=True) fr_img_noavg = Image.applyDark(fr_img, img_handle.ff.avepixel) #fr_img_noavg = fr_img # Auto levels min_lvl = np.percentile(fr_img_noavg[2:, :], 1) max_lvl = np.percentile(fr_img_noavg[2:, :], 99.0) # Adjust levels fr_img_autolevel = Image.adjustLevels(fr_img_noavg, min_lvl, 1.0, max_lvl) ax1.imshow(stripe, cmap='gray') ax2.imshow(fr_img_autolevel, cmap='gray') plt.show() pass # Get stripe positions (x, y, frame) stripe_positions = stripe.nonzero() xs = stripe_positions[1] ys = stripe_positions[0] zs = np.zeros_like(xs) + fr # Add the points to the list xs_array.append(xs) ys_array.append(ys) zs_array.append(zs) if debug: print('---') print(stripe.nonzero()) print(xs, ys, zs) if len(xs_array) > 0: # Flatten the arrays xs_array = np.concatenate(xs_array) ys_array = np.concatenate(ys_array) zs_array = np.concatenate(zs_array) else: xs_array = np.array(xs_array) ys_array = np.array(ys_array) zs_array = np.array(zs_array) return xs_array, ys_array, zs_array
def generateCalibrationReport(config, night_dir_path, match_radius=2.0, platepar=None, show_graphs=False): """ Given the folder of the night, find the Calstars file, check the star fit and generate a report with the quality of the calibration. The report contains information about both the astrometry and the photometry calibration. Graphs will be saved in the given directory of the night. Arguments: config: [Config instance] night_dir_path: [str] Full path to the directory of the night. Keyword arguments: match_radius: [float] Match radius for star matching between image and catalog stars (px). platepar: [Platepar instance] Use this platepar instead of finding one in the folder. show_graphs: [bool] Show the graphs on the screen. False by default. Return: None """ # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(night_dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file star_list = readCALSTARS(night_dir_path, calstars_file) ### Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file: with open(os.path.join(night_dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print('Loaded recalibrated platepars JSON file for the calibration report...') ### ### ### Load the platepar file ### # Find the platepar file in the given directory if it was not given if platepar is None: # Find the platepar file platepar_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepar_name: platepar_file = file_name break if platepar_file is None: print('The platepar cannot be found in the night directory!') return None # Load the platepar file platepar = Platepar() platepar.read(os.path.join(night_dir_path, platepar_file)) ### ### night_name = os.path.split(night_dir_path.strip(os.sep))[1] # Go one mag deeper than in the config lim_mag = config.catalog_mag_limit + 1 # Load catalog stars (load one magnitude deeper) catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\ config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \ mag_band_ratios=config.star_catalog_band_ratios) ### Take only those CALSTARS entires for which FF files exist in the folder ### # Get a list of FF files in the folder\ ff_list = [] for file_name in os.listdir(night_dir_path): if validFFName(file_name): ff_list.append(file_name) # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs star_dict = {} ff_dict = {} for entry in star_list: ff_name, star_data = entry # Check if the FF from CALSTARS exists in the folder if ff_name not in ff_list: continue dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Add the time and the stars to the dict star_dict[jd] = star_data ff_dict[jd] = ff_name ### ### # If there are no FF files in the directory, don't generate a report if len(star_dict) == 0: print('No FF files from the CALSTARS file in the directory!') return None # If the recalibrated platepars file exists, take the one with the most stars max_jd = 0 if recalibrated_platepars is not None: max_stars = 0 for ff_name_temp in recalibrated_platepars: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Check that this file exists in CALSTARS and the list of FF files if (jd not in star_dict) or (jd not in ff_dict): continue # Check if the number of stars on this FF file is larger than the before if len(star_dict[jd]) > max_stars: max_jd = jd max_stars = len(star_dict[jd]) # Set a flag to indicate if using recalibrated platepars has failed if max_jd == 0: using_recalib_platepars = False else: print('Using recalibrated platepars, file:', ff_dict[max_jd]) using_recalib_platepars = True # Select the platepar where the FF file has the most stars platepar_dict = recalibrated_platepars[ff_dict[max_jd]] platepar = Platepar() platepar.loadFromDict(platepar_dict) filtered_star_dict = {max_jd: star_dict[max_jd]} # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) max_matched_stars = n_matched # Otherwise take the optimal FF file for evaluation if (recalibrated_platepars is None) or (not using_recalib_platepars): # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on # the image if len(star_dict) > config.calstars_files_N: # Find JDs of FF files with most stars on them top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \ - 1] filtered_star_dict = {} for i in top_nstars_indices: filtered_star_dict[list(star_dict.keys())[i]] = list(star_dict.values())[i] star_dict = filtered_star_dict # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) # If no recalibrated platepars where found, find the image with the largest number of matched stars if (not using_recalib_platepars) or (max_jd == 0): max_jd = 0 max_matched_stars = 0 for jd in matched_stars: _, _, distances = matched_stars[jd] if len(distances) > max_matched_stars: max_jd = jd max_matched_stars = len(distances) # If there are no matched stars, use the image with the largest number of detected stars if max_matched_stars <= 2: max_jd = max(star_dict, key=lambda x: len(star_dict[x])) distances = [np.inf] # Take the FF file with the largest number of matched stars ff_name = ff_dict[max_jd] # Load the FF file ff = readFF(night_dir_path, ff_name) img_h, img_w = ff.avepixel.shape dpi = 200 plt.figure(figsize=(ff.avepixel.shape[1]/dpi, ff.avepixel.shape[0]/dpi), dpi=dpi) # Take the average pixel img = ff.avepixel # Slightly adjust the levels img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.2, np.percentile(img, 99.99)) plt.imshow(img, cmap='gray', interpolation='nearest') legend_handles = [] # Plot detected stars for img_star in star_dict[max_jd]: y, x, _, _ = img_star rect_side = 5*match_radius square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \ fill=False, label='Image stars') plt.gca().add_artist(square_patch) legend_handles.append(square_patch) # If there are matched stars, plot them if max_matched_stars > 2: # Take the solution with the largest number of matched stars image_stars, matched_catalog_stars, distances = matched_stars[max_jd] # Plot matched stars for img_star in image_stars: x, y, _, _ = img_star circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \ label='Matched stars') plt.gca().add_artist(circle_patch) legend_handles.append(circle_patch) ### Plot match residuals ### # Compute preducted positions of matched image stars from the catalog x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \ matched_catalog_stars[:, 1], max_jd, platepar) img_y, img_x, _, _ = image_stars.T delta_x = x_predicted - img_x delta_y = y_predicted - img_y # Compute image residual and angle of the error res_angle = np.arctan2(delta_y, delta_x) res_distance = np.sqrt(delta_x**2 + delta_y**2) # Calculate coordinates of the beginning of the residual line res_x_beg = img_x + 3*match_radius*np.cos(res_angle) res_y_beg = img_y + 3*match_radius*np.sin(res_angle) # Calculate coordinates of the end of the residual line res_x_end = img_x + 100*np.cos(res_angle)*res_distance res_y_end = img_y + 100*np.sin(res_angle)*res_distance # Plot the 100x residuals for i in range(len(x_predicted)): res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \ lw=0.5, label='100x residuals') legend_handles.append(res_plot[0]) ### ### else: distances = [np.inf] # If there are no matched stars, plot large text in the middle of the screen plt.text(img_w/2, img_h/2, "NO MATCHED STARS!", color='r', alpha=0.5, fontsize=20, ha='center', va='center') ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ### # Find the faintest magnitude among matched stars if max_matched_stars > 2: faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1 else: # If there are no matched stars, use the limiting magnitude from config faintest_mag = config.catalog_mag_limit + 1 # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res/2], [platepar.Y_res/2], [1], platepar) RA_c = RA_c[0] dec_c = dec_c[0] fov_radius = np.hypot(*computeFOVSize(platepar)) # Get stars from the catalog around the defined center in a given radius _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, fov_radius, faintest_mag) ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T # Compute image positions of all catalog stars that should be on the image x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd, platepar) # Filter all catalog stars outside the image temp_arr = np.c_[x_catalog, y_catalog, mag_catalog] temp_arr = temp_arr[temp_arr[:, 0] >= 0] temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]] temp_arr = temp_arr[temp_arr[:, 1] >= 0] temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]] x_catalog, y_catalog, mag_catalog = temp_arr.T # Plot catalog stars on the image cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \ s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars') legend_handles.append(cat_stars_handle) ### ### # Add info text info_text = ff_dict[max_jd] + '\n' \ + "Matched stars: {:d}/{:d}\n".format(max_matched_stars, len(star_dict[max_jd])) \ + "Median distance: {:.2f} px\n".format(np.median(distances)) \ + "Catalog limiting magnitude: {:.1f}".format(lim_mag) plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \ color='w') legend = plt.legend(handles=legend_handles, prop={'size': 4}, loc='upper right') legend.get_frame().set_facecolor('k') legend.get_frame().set_edgecolor('k') for txt in legend.get_texts(): txt.set_color('w') plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, ff.avepixel.shape[1]]) plt.ylim([ff.avepixel.shape[0], 0]) # Remove the margins plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \ bbox_inches='tight', pad_inches=0, dpi=dpi) if show_graphs: plt.show() else: plt.clf() plt.close() if max_matched_stars > 2: ### Plot the photometry ### plt.figure(dpi=dpi) # Take only those stars which are inside the 3/4 of the shorter image axis from the center photom_selection_radius = np.min([img_h, img_w])/3 filter_indices = ((image_stars[:, 0] - img_h/2)**2 + (image_stars[:, 1] \ - img_w/2)**2) <= photom_selection_radius**2 star_intensities = image_stars[filter_indices, 2] catalog_mags = matched_catalog_stars[filter_indices, 2] # Plot intensities of image stars #star_intensities = image_stars[:, 2] plt.scatter(-2.5*np.log10(star_intensities), catalog_mags, s=5, c='r') # Fit the photometry on automated star intensities photom_offset, fit_stddev, _ = photometryFit(np.log10(star_intensities), catalog_mags) # Plot photometric offset from the platepar x_min, x_max = plt.gca().get_xlim() y_min, y_max = plt.gca().get_ylim() x_min_w = x_min - 3 x_max_w = x_max + 3 y_min_w = y_min - 3 y_max_w = y_max + 3 photometry_info = 'Platepar: {:+.2f}LSP {:+.2f} +/- {:.2f} \nGamma = {:.2f}'.format(platepar.mag_0, \ platepar.mag_lev, platepar.mag_lev_stddev, platepar.gamma) # Plot the photometry calibration from the platepar logsum_arr = np.linspace(x_min_w, x_max_w, 10) plt.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \ color='k', alpha=0.5) # Plot the fitted photometry calibration fit_info = "Fit: {:+.2f}LSP {:+.2f} +/- {:.2f}".format(-2.5, photom_offset, fit_stddev) plt.plot(logsum_arr, logsum_arr + photom_offset, label=fit_info, linestyle='--', color='red', alpha=0.5) plt.legend() plt.ylabel("Catalog magnitude ({:s})".format(mag_band_str)) plt.xlabel("Uncalibrated magnitude") # Set wider axis limits plt.xlim(x_min_w, x_max_w) plt.ylim(y_min_w, y_max_w) plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.grid() plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_photometry.png'), dpi=150) if show_graphs: plt.show() else: plt.clf() plt.close()
def updateImage(self): """ Updates the current plot. """ # Reset circle patches self.circle_aperature = None self.circle_aperature_outer = None # Reset centroid patch self.centroid_handle = None # Reset photometry coloring self.photometry_coloring_handle = None # Save the previous zoom if self.current_image is not None: self.prev_xlim = plt.gca().get_xlim() self.prev_ylim = plt.gca().get_ylim() plt.clf() # PNG mode if self.png_mode: # Get path to current PNG image self.png_img_path = os.path.join( self.png_dir, self.png_list[int(self.current_frame)]) # Read the image img = scipy.misc.imread(self.png_img_path) # FF mode else: # If FF is given, reconstruct frames if self.ff is not None: # Take the current frame from FF file img = np.copy(self.ff.avepixel) frame_mask = np.where( self.ff.maxframe == int(self.current_frame)) img[frame_mask] = self.ff.maxpixel[frame_mask] # Otherwise, create a blank background with the size enough to fit the FR bin else: # Get the maximum extent of the meteor frames y_size = max(max(np.array(self.fr.yc[i]) + np.array(self.fr.size[i])//2) for i in \ range(self.fr.lines)) x_size = max(max(np.array(self.fr.xc[i]) + np.array(self.fr.size[i])//2) for i in \ range(self.fr.lines)) # Make the image square img_size = max(y_size, x_size) img = np.zeros((img_size, img_size), np.uint8) # If FR is given, paste the raw frame onto the image if self.fr is not None: # Compute the index of the frame in the FR bin structure frame_indx = int( self.current_frame) - self.fr.t[self.current_line][0] # Reconstruct the frame if it is within the bounds if (frame_indx < self.fr.frameNum[self.current_line]) and ( frame_indx >= 0): # Get the center position of the detection on the current frame yc = self.fr.yc[self.current_line][frame_indx] xc = self.fr.xc[self.current_line][frame_indx] # # Get the frame number # t = self.fr.t[self.current_line][frame_indx] # Get the size of the window size = self.fr.size[self.current_line][frame_indx] # Paste the frames onto the big image y_img = np.arange(yc - size // 2, yc + size // 2) x_img = np.arange(xc - size // 2, xc + size // 2) Y_img, X_img = np.meshgrid(y_img, x_img) y_frame = np.arange(len(y_img)) x_frame = np.arange(len(x_img)) Y_frame, X_frame = np.meshgrid(y_frame, x_frame) img[Y_img, X_img] = self.fr.frames[ self.current_line][frame_indx][Y_frame, X_frame] # Save the limits of the FR self.fr_xmin = np.min(x_img) self.fr_xmax = np.max(x_img) self.fr_ymin = np.max(y_img) self.fr_ymax = np.min(y_img) # Draw a red rectangle around the pasted frame rect_x = np.min(x_img) rect_y = np.max(y_img) rect_w = np.max(x_img) - rect_x rect_h = np.min(y_img) - rect_y plt.gca().add_patch(mpatches.Rectangle((rect_x, rect_y), rect_w, rect_h, fill=None, \ edgecolor='red', alpha=0.5)) # Apply the deinterlace if self.deinterlace_mode > -1: # Set the deinterlace index to handle proper deinterlacing order if self.deinterlace_mode == 0: deinter_indx = 0 else: deinter_indx = 1 # Deinterlace the image using the appropriate method if (self.current_frame + deinter_indx * 0.5) % 1 == 0: img = Image.deinterlaceOdd(img) else: img = Image.deinterlaceEven(img) # Current image without adjustments self.current_image = np.copy(img) ### Adjust image levels # Guess the bit depth from the array type bit_depth = 8 * img.itemsize img = Image.adjustLevels(img, 0, self.img_gamma, (2**bit_depth - 1), bit_depth) ### plt.imshow(img, cmap='gray', vmin=0, vmax=255) if (self.prev_xlim is not None) and (self.prev_ylim is not None): # Restore previous zoom plt.xlim(self.prev_xlim) plt.ylim(self.prev_ylim) self.drawText() # Don't draw the picks in the photometry coloring more if not self.photometry_coloring_mode: # Plot image pick self.drawPicks(update_plot=False) # Plot the photometry coloring self.drawPhotometryColoring(update_plot=False) plt.gcf().canvas.draw()