if args.ana_output == None: args.ana_output = "default_ana_output.root" print "No ana output file selected. If necessary, output will go to:" print "\t" + args.ana_output mgr = fmwk.storage_manager() mgr.set_io_mode(mgr.READ) for source in args.source: mgr.add_in_filename(source) if len(sys.argv) > 2: mgr.set_in_rootdir("scanner") mgr.open() algo = cluster.ClusterParamsExecutor() algo.SetUseHitBlurring(false) algo.DisableFANN() if args.argoneut != None: algo.SetArgoneutGeometry() fann = cluster.TrainingModule() fann.setFeatureVectorLength(13) fann.setOutputVectorLength(2) fann.setOutputFileName("track_shower.net") fann.init() # Here is the neural network that has been more rigorously trained: cascadeFANN = cluster.FANNModule() cascadeFANN.LoadFromFile("cascade_net.net")
# ana_proc.add_input_file(args.source) mgr = fmwk.storage_manager() mgr.set_io_mode(mgr.READ) mgr.add_in_filename(args.source) if len(sys.argv) > 2: mgr.set_in_rootdir("scanner") mgr.open() chit = TCanvas("chit", "chit", 800, 700) chit.SetGridx(1) chit.SetGridy(1) algo = cluster.ClusterParamsExecutor() algo.SetUseHitBlurring(false) merger = cluster.ClusterMergeAlgNew() processed_events = 0 fGSer = larutil.GeometryUtilities.GetME() fGeo = larutil.Geometry.GetME() while mgr.next_event(): # Get event_cluster ... std::vector<larlight::cluster> cluster_v = mgr.get_data(fmwk.DATA.FuzzyCluster)