コード例 #1
0
def pdf_logPt2_incoh():

    #PDF fit to log_10(pT^2)

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #output log file
    out = open("out.txt", "w")
    ut.log_results(
        out, "in " + infile + " in_coh " + infile_coh + " in_gg " + infile_gg)
    loglist = [(x, eval(x)) for x in
               ["ptbin", "ptmin", "ptmax", "mmin", "mmax", "fitran", "binned"]]
    strlog = ut.make_log_string(loglist)
    ut.log_results(out, strlog + "\n")

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar("x", "log_{10}( #it{p}_{T}^{2} ) (GeV^{2})",
                              draw, RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    tree_in.Draw(draw + " >> hPt", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    ut.log_results(out, ut.log_fit_result(r1))

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    ut.log_results(out, "log_10(pT^2) parametrization:")
    ut.log_results(out, "A = {0:.2f}".format(a))
    ut.log_results(out, ut.log_fit_parameters(r1, 0, 2))
    print "a =", a

    #Coherent contribution
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.Sumw2()
    #tree_coh.Draw(draw + " >> hPtCoh", strsel)
    tree_coh.Draw("TMath::Log10(jGenPt*jGenPt) >> hPtCoh", strsel)
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    #ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5, -2.1)
    #ut.norm_to_num(hPtCoh, 405, rt.kBlue)
    print "Coherent integral:", hPtCoh.Integral()

    #TMath::Log10(jRecPt*jRecPt)

    #Sartre generated coherent shape
    sartre = TFile.Open(
        "/home/jaroslav/sim/sartre_tx/sartre_AuAu_200GeV_Jpsi_coh_2p7Mevt.root"
    )
    sartre_tree = sartre.Get("sartre_tree")
    hSartre = ut.prepare_TH1D("hSartre", ptbin, ptmin, ptmax)
    sartre_tree.Draw("TMath::Log10(pT*pT) >> hSartre",
                     "rapidity>-1 && rapidity<1")
    ut.norm_to_data(hSartre, hPt, rt.kViolet, -5, -2)  # norm for Sartre

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen)

    print "Int GG:", hPtGG.Integral()

    #psi' contribution
    psiP = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP.Get("jRecTree")
    hPtPsiP = ut.prepare_TH1D("hPtPsiP", ptbin, ptmin, ptmax)
    psiP_tree.Draw(draw + " >> hPtPsiP", strsel)
    ut.norm_to_num(hPtPsiP, 12, rt.kViolet)

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    hSum.Add(hPtCoh)
    #add psi(2S) contribution
    #hSum.Add(hPtPsiP)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")
    frame.SetMaximum(75)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    amin = TMath.Power(10, ptmin)
    amax = TMath.Power(10, ptmax) - 1
    print amin, amax
    pt2func = TF1("f1", "TMath::Power(10, x)", amin,
                  amax)  #TMath::Power(x, 10)
    aPt2 = TGaxis(-5, 75, 1, 75, "f1", 510, "-")
    ut.set_axis(aPt2)
    aPt2.SetTitle("pt2")
    #aPt2.Draw();

    leg = ut.prepare_leg(0.57, 0.78, 0.14, 0.19, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed)
    leg.AddEntry(hx, "Data")
    leg.AddEntry(hPtCoh, "Sartre MC", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-} MC", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    #leg.AddEntry(ln, "Incoherent fit", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    desc = pdesc(frame, 0.14, 0.8, 0.054)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    desc.draw()

    #put the sum
    #hSum.Draw("same")

    #gPad.SetLogy()

    frame.Draw("same")

    #put gamma-gamma
    hPtGG.Draw("same")
    #put coherent J/psi
    hPtCoh.Draw("same")

    #put Sartre generated coherent shape
    #hSartre.Draw("same")

    #put psi(2S) contribution
    #hPtPsiP.Draw("same")

    leg2 = ut.prepare_leg(0.14, 0.9, 0.14, 0.08, 0.03)
    leg2.AddEntry(
        ln,
        "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})",
        "l")
    #leg2.AddEntry(hPtCoh, "Sartre MC reconstructed", "l")
    #leg2.AddEntry(hSartre, "Sartre MC generated", "l")
    leg2.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
コード例 #2
0
ファイル: dataFit.py プロジェクト: gdujany/chibAnalysis
def doDataFit(Chib1_parameters,Chib2_parameters, cuts, inputfile_name = None, RooDataSet = None, ptBin_label='', plotTitle = "#chi_{b}",fittedVariable='qValue', printSigReso = False, noPlots = False, useOtherSignalParametrization = False, useOtherBackgroundParametrization = False, massFreeToChange = False, sigmaFreeToChange = False, legendOnPlot=True, drawPulls=False, titleOnPlot=False, cmsOnPlot=True, printLegend=True):

    if RooDataSet != None:
        dataSet = RooDataSet 
    elif inputfile_name != None:
        print "Creating DataSet from file "+str(inputfile_name)
        dataSet = makeRooDataset(inputfile_name)
    else:
        raise ValueError('No dataset and no inputfile passed to function doDataFit')
    
    if(fittedVariable == 'refittedMass'):
        x_var = 'rf1S_chib_mass'
        output_suffix = '_refit'
        x_axis_label= 'm_{#mu^{+} #mu^{-} #gamma} [GeV]'
    else:
        x_var = 'invm1S'
        output_suffix = '_qValue'
        x_axis_label = 'm_{#gamma #mu^{+} #mu^{-}} - m_{#mu^{+} #mu^{-}} + m^{PDG}_{#Upsilon}  [GeV]'
    
    cuts_str = str(cuts)
    #cuts_str = quality_cut + "photon_pt > 0.5 && abs(photon_eta) < 1.0 && ctpv < 0.01  && abs(dimuon_rapidity) < 1.3 && pi0_abs_mass > 0.025 &&  abs(dz) < 0.5"
    data = dataSet.reduce( RooFit.Cut(cuts_str) )
    
    print 'Creating pdf'
    x=RooRealVar(x_var, 'm(#mu #mu #gamma) - m(#mu #mu) + m_{#Upsilon}',9.7,10.1,'GeV')
    numBins = 80 # define here so that if I change it also the ndof change accordingly
    x.setBins(numBins)
    
    # cristal balls
    mean_1 = RooRealVar("mean_1","mean ChiB1",Chib1_parameters.mean,"GeV")
    sigma_1 = RooRealVar("sigma_1","sigma ChiB1",Chib1_parameters.sigma,'GeV')
    a1_1 = RooRealVar('#alpha1_1', '#alpha1_1', Chib1_parameters.a1)
    n1_1 = RooRealVar('n1_1', 'n1_1', Chib1_parameters.n1)
    a2_1 = RooRealVar('#alpha2_1', '#alpha2_1',Chib1_parameters.a2)
    n2_1 = RooRealVar('n2_1', 'n2_1', Chib1_parameters.n2)
    parameters = RooArgSet(a1_1, a2_1, n1_1, n2_1)
    
    mean_2 = RooRealVar("mean_2","mean ChiB2",Chib2_parameters.mean,"GeV")
    sigma_2 = RooRealVar("sigma_2","sigma ChiB2",Chib2_parameters.sigma,'GeV')
    a1_2 = RooRealVar('#alpha1_2', '#alpha1_2', Chib2_parameters.a1)
    n1_2 = RooRealVar('n1_2', 'n1_2', Chib2_parameters.n1)
    a2_2 = RooRealVar('#alpha2_2', '#alpha2_2', Chib2_parameters.a2)
    n2_2 = RooRealVar('n2_2', 'n2_2', Chib2_parameters.n2)
    parameters.add(RooArgSet( a1_2, a2_2, n1_2, n2_2))

    if massFreeToChange:
        # scale_mean = RooRealVar('scale_mean', 'Scale that multiplies masses found with MC', 0.8,1.2)
        # mean_1_fixed = RooRealVar("mean_1_fixed","mean ChiB1",Chib1_parameters.mean,"GeV")
        # mean_2_fixed = RooRealVar("mean_2_fixed","mean ChiB2",Chib2_parameters.mean,"GeV")
        # mean_1 = RooFormulaVar("mean_1",'@0*@1', RooArgList(scale_mean, mean_1_fixed))
        # mean_2 = RooFormulaVar("mean_2",'@0*@1', RooArgList(scale_mean, mean_2_fixed))
        variazione_m = 0.05 # 50 MeV
        diff_m_12 = RooRealVar('diff_m_12', 'Difference between masses chib1 and chib2',0.0194,'GeV') # 19.4 MeV from PDG
        mean_1=RooRealVar("mean_1","mean ChiB1",Chib1_parameters.mean,Chib1_parameters.mean-variazione_m,Chib1_parameters.mean+variazione_m ,"GeV")
        mean_2=RooFormulaVar('mean_2', '@0+@1',RooArgList(mean_1, diff_m_12))
        # mean_2=RooRealVar("mean_2","mean ChiB2",Chib2_parameters.mean,Chib2_parameters.mean-variazione_m,Chib2_parameters.mean+variazione_m ,"GeV")
        parameters.add(mean_1)
    else:
        parameters.add(RooArgSet(mean_1, mean_2))
        
    
    chib1_pdf = My_double_CB('chib1', 'chib1', x, mean_1, sigma_1, a1_1, n1_1, a2_1, n2_1)
    chib2_pdf = My_double_CB('chib2', 'chib2', x, mean_2, sigma_2, a1_2, n1_2, a2_2, n2_2)
    
    if sigmaFreeToChange:
        scale_sigma = RooRealVar('scale_sigma', 'Scale that multiplies sigmases found with MC', 1, 1.1)#1.01
        sigma_1_fixed = RooRealVar("sigma_1","sigma ChiB1",Chib1_parameters.sigma,'GeV')
        sigma_2_fixed = RooRealVar("sigma_2","sigma ChiB2",Chib2_parameters.sigma,'GeV')
        sigma_1 = RooFormulaVar("sigma_1",'@0*@1', RooArgList(scale_sigma, sigma_1_fixed))
        sigma_2 = RooFormulaVar("sigma_2",'@0*@1', RooArgList(scale_sigma, sigma_2_fixed))
        parameters.add(scale_sigma)
    else:
        parameters.add(RooArgSet(sigma_1, sigma_2))

    chib1_pdf = My_double_CB('chib1', 'chib1', x, mean_1, sigma_1, a1_1, n1_1, a2_1, n2_1)
    chib2_pdf = My_double_CB('chib2', 'chib2', x, mean_2, sigma_2, a1_2, n1_2, a2_2, n2_2)

    if useOtherSignalParametrization: # In this case I redefine cb_pdf
        cb1 = RooCBShape('cb1', 'cb1', x, mean_1, sigma_1, a1_1, n1_1)
        cb2 = RooCBShape('cb2', 'cb2', x, mean_2, sigma_2, a1_2, n1_2)
        # I use a2 as the sigma of my gaussian 
        gauss1 = RooCBShape('gauss1', 'gauss1',x, mean_1, a2_1, a1_1, n1_1)
        gauss2 = RooCBShape('gauss2', 'gauss2',x, mean_2, a2_2, a1_2, n1_2)
        # I use n2 as the ratio of cb with respect to gauss 
        chib1_pdf = RooAddPdf('chib1','chib1',RooArgList(cb1, gauss1),RooArgList(n2_1))
        chib2_pdf = RooAddPdf('chib2','chib2',RooArgList(cb2, gauss2),RooArgList(n2_2))
        
    
    #background
    q01S_Start = 9.5
    alpha   =   RooRealVar("#alpha","#alpha",1.5,-1,3.5)#0.2 anziche' 1
    beta    =   RooRealVar("#beta","#beta",-2.5,-7.,0.)
    q0      =   RooRealVar("q0","q0",q01S_Start)#,9.5,9.7)
    delta   =   RooFormulaVar("delta","TMath::Abs(@0-@1)",RooArgList(x,q0))
    b1      =   RooFormulaVar("b1","@0*(@1-@2)",RooArgList(beta,x,q0))
    signum1 =   RooFormulaVar( "signum1","( TMath::Sign( -1.,@0-@1 )+1 )/2.", RooArgList(x,q0) )
    
    
    background = RooGenericPdf("background","Background", "signum1*pow(delta,#alpha)*exp(b1)", RooArgList(signum1,delta,alpha,b1) )

    if useOtherBackgroundParametrization: # in thies case I redefine background
        a0 = RooRealVar('a0','a0',1.,-1.,1.) #,0.5,0.,1.)
        a1 = RooRealVar('a1','a1',0.1,-1.,1.) #-0.2,0.,1.)
        #a2 = RooRealVar('a2','a2',-0.1,1.,-1.)
        background = RooChebychev('background','Background',x,RooArgList(a0,a1))
        parameters.add(RooArgSet(a0, a1))
    else:
        parameters.add(RooArgSet(alpha, beta, q0))

    #together
    chibs = RooArgList(chib1_pdf,chib2_pdf,background)    
    
    # ndof
    floatPars = parameters.selectByAttrib("Constant",ROOT.kFALSE)
    ndof = numBins - floatPars.getSize() - 1

    # # Here I have as parameters N1, N2, and N_background
    # n_chib1 = RooRealVar("n_chib1","n_chib1",1250, 0, 50000)
    # n_chib2 =  RooRealVar("n_chib2","n_chib2",825, 0, 50000)
    # n_background = RooRealVar('n_background','n_background',4550, 0, 50000)
    # ratio_list = RooArgList(n_chib1, n_chib2, n_background)
    # modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list)

    # Here I have as parameters N_12, ratio_12, N_background
    n_chib = RooRealVar("n_chib","n_chib",2075, 0, 100000)
    ratio_21 = RooRealVar("ratio_21","ratio_21",0.6, 0, 1)
    n_chib1 = RooFormulaVar("n_chib1","@0/(1+@1)",RooArgList(n_chib, ratio_21))
    n_chib2 = RooFormulaVar("n_chib2","@0/(1+1/@1)",RooArgList(n_chib, ratio_21))
    n_background = RooRealVar('n_background','n_background',4550, 0, 50000)
    ratio_list = RooArgList(n_chib1, n_chib2, n_background)
    parameters.add(RooArgSet(n_chib1, n_chib2, n_background))
    modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list)
    
    print 'Fitting to data'
    fit_region = x.setRange("fit_region",9.7,10.1)
    result=modelPdf.fitTo(data,RooFit.Save(), RooFit.Range("fit_region"))
    
        
    # define frame
    frame = x.frame()
    frame.SetNameTitle("fit_resonance","Fit Resonanace")
    frame.GetXaxis().SetTitle(x_axis_label )
    frame.GetYaxis().SetTitle( "Events/5 MeV " )
    frame.GetXaxis().SetTitleSize(0.04)
    frame.GetYaxis().SetTitleSize(0.04)
    frame.GetXaxis().SetTitleOffset(1.1)
    frame.GetXaxis().SetLabelSize(0.04)
    frame.GetYaxis().SetLabelSize(0.04)
    frame.SetLineWidth(1)
    frame.SetTitle(plotTitle) 
    
    # plot things on frame
    data.plotOn(frame, RooFit.MarkerSize(0.7))
    chib1P_set = RooArgSet(chib1_pdf)
    modelPdf.plotOn(frame,RooFit.Components(chib1P_set), RooFit.LineColor(ROOT.kGreen+2), RooFit.LineStyle(2), RooFit.LineWidth(1))
    chib2P_set = RooArgSet(chib2_pdf)
    modelPdf.plotOn(frame, RooFit.Components(chib2P_set),RooFit.LineColor(ROOT.kRed), RooFit.LineStyle(2), RooFit.LineWidth(1))
    background_set =  RooArgSet(background)
    modelPdf.plotOn(frame,RooFit.Components(background_set), RooFit.LineColor(ROOT.kBlack), RooFit.LineStyle(2), RooFit.LineWidth(1))
    modelPdf.plotOn(frame, RooFit.LineWidth(2))
    frame.SetName("fit_resonance")  

    # Make numChib object
    numChib = NumChib(numChib=n_chib.getVal(), s_numChib=n_chib.getError(), ratio_21=ratio_21.getVal(), s_ratio_21=ratio_21.getError(), numBkg=n_background.getVal(), s_numBkg=n_background.getError(), corr_NB=result.correlation(n_chib, n_background),corr_NR=result.correlation(n_chib, ratio_21) , name='numChib'+output_suffix+ptBin_label,q0=q0.getVal(),s_q0=q0.getError(),alpha=alpha.getVal(),s_alpha=alpha.getError(), beta=beta.getVal(), s_beta=beta.getError(), chiSquare=frame.chiSquare())
    #numChib.saveToFile('numChib'+output_suffix+'.txt')

    if noPlots:
        chi2 = frame.chiSquare()
        del frame
        return numChib, chi2
    
    # Legend
    parameters_on_legend = RooArgSet()#n_chib, ratio_21, n_background)
    if massFreeToChange:
        #parameters_on_legend.add(scale_mean)
        parameters_on_legend.add(mean_1)
        #parameters_on_legend.add(mean_2)
    if sigmaFreeToChange:
        parameters_on_legend.add(scale_sigma)
    if massFreeToChange or sigmaFreeToChange:
        modelPdf.paramOn(frame, RooFit.Layout(0.1,0.6,0.2),RooFit.Parameters(parameters_on_legend))
    
    if printLegend: #chiquadro, prob, numchib...
        leg = TLegend(0.48,0.75,0.97,0.95)
        leg.SetBorderSize(0)
        #leg.SetTextSize(0.04)
        leg.SetFillStyle(0)
        chi2 = frame.chiSquare()
        probChi2 = TMath.Prob(chi2*ndof, ndof)
        chi2 = round(chi2,2)
        probChi2 = round(probChi2,2)
        leg.AddEntry(0,'#chi^{2} = '+str(chi2),'')
        leg.AddEntry(0,'Prob #chi^{2} = '+str(probChi2),'')
        N_bkg, s_N_bkg = roundPair(numChib.numBkg, numChib.s_numBkg)
        leg.AddEntry(0,'N_{bkg} = '+str(N_bkg)+' #pm '+str(s_N_bkg),'')
        N_chib12, s_N_chib12 = roundPair(numChib.numChib, numChib.s_numChib)
        leg.AddEntry(0,'N_{#chi_{b}} = '+str(N_chib12)+' #pm '+str(s_N_chib12),'')
        Ratio = numChib.calcRatio()
        s_Ratio = numChib.calcRatioError()
        Ratio, s_Ratio = roundPair(Ratio, s_Ratio)
        leg.AddEntry(0,'N_{2}/N_{1} = '+str(Ratio)+' #pm '+str(s_Ratio),'')

        if printSigReso: # Add Significance
            Sig =  numChib.calcSignificance()
            s_Sig = numChib.calcSignificanceError()
            Sig, s_Sig = roundPair(Sig, s_Sig)
            leg.AddEntry(0,'Sig = '+str(Sig)+' #pm '+str(s_Sig),'')
            if(Chib1_parameters.sigma>Chib2_parameters.sigma):
                Reso = Chib1_parameters.sigma * 1000 # So it's in MeV and not in GeV
                s_Reso = Chib1_parameters.s_sigma * 1000 # So it's in MeV and not in GeV
            else:
                Reso = Chib2_parameters.sigma * 1000 # So it's in MeV and not in GeV
                s_Reso = Chib2_parameters.s_sigma * 1000 # So it's in MeV and not in GeV
            Reso, s_Reso =roundPair(Reso, s_Reso)
            leg.AddEntry(0,'Reso = '+str(Reso)+' #pm '+str(s_Reso)+' MeV','')
            #N1 = numChib.numChib1
            #s_N1 = numChib.s_numChib1
            #N1, s_N1 = roundPair(N1, s_N1)
            #leg.AddEntry(0,'N_{1} = '+str(N1)+' #pm '+str(s_N1),'')
            #N2 = numChib.numChib2
            #s_N2 = numChib.s_numChib2
            #N2, s_N2 = roundPair(N2, s_N2)
            #leg.AddEntry(0,'N_{2} = '+str(N2)+' #pm '+str(s_N2),'')

        frame.addObject(leg)

    if legendOnPlot:  #  < pT <
        legend = TLegend(.06,.75,.53,.93)
        legend.SetFillStyle(0)
        legend.SetBorderSize(0)
        #legend.AddEntry(0,'CMS','')
        legend.AddEntry(0,str(cuts.upsilon_pt_lcut)+' GeV < p_{T}(#Upsilon) < '+str(cuts.upsilon_pt_hcut)+' GeV','')
        #legend.AddEntry(0,'p_{T}(#Upsilon)<'+str(cuts.upsilon_pt_hcut),'')
        frame.addObject(legend)

    if titleOnPlot:
        titleLegend = TLegend(.06,.4,.55,.73)
       
        #titleLegend.SetTextSize(0.03)
        titleLegend.SetFillStyle(0)
        titleLegend.SetBorderSize(0)
        titleLegend.AddEntry(0,plotTitle,'')
        frame.addObject(titleLegend)

    if cmsOnPlot:
        if printLegend:
            pvtxt = TPaveText(.1,.55,.55,.73,"NDC")
        else:
            pvtxt = TPaveText(0.5,0.75,0.97,0.9,"NDC") #(.06,.4,.55,.73)
        pvtxt.AddText('CMS Preliminary')
        pvtxt.AddText('pp, #sqrt{s} = 8 TeV')
        pvtxt.AddText('L = 20.7 fb^{-1}')
        pvtxt.SetFillStyle(0)
        pvtxt.SetBorderSize(0)
        pvtxt.SetTextSize(0.04)
        frame.addObject(pvtxt)
    
    # Canvas
    c1=TCanvas('Chib12_1P'+output_suffix+ptBin_label,'Chib12_1P'+output_suffix+ptBin_label)
    frame.Draw()
    if drawPulls:
        #c1=TCanvas(output_name+output_suffix,output_name+output_suffix,700, 625)
        hpull = frame.pullHist()
        framePulls = x.frame()
        framePulls.SetTitle(';;Pulls')
        framePulls.GetYaxis().SetLabelSize(0.18)
        framePulls.GetYaxis().SetTitle('Pulls')
        framePulls.GetYaxis().SetTitleSize(0.18)
        framePulls.GetYaxis().SetTitleOffset(0.15)
        framePulls.GetYaxis().SetNdivisions(005)
        framePulls.GetXaxis().SetLabelSize(0.16)
        framePulls.GetXaxis().SetTitle('')
        line0 = TLine(9.7, 0, 10.1, 0)
        line0.SetLineColor(ROOT.kBlue)
        line0.SetLineWidth(2)
        framePulls.addObject(line0)
        framePulls.addPlotable(hpull,"P") 
        framePulls.SetMaximum(5)
        framePulls.SetMinimum(-5)
        pad1 = TPad("pad1", "The pad 80% of the height",0.0,0.2,1.0,1.0)
        pad1.cd()
        frame.Draw()
        pad2 = TPad("pad2", "The pad 20% of the height",0.0,0.01,1.0,0.2)
        pad2.cd()
        framePulls.Draw()
        c1.cd()
        pad1.Draw()
        pad2.Draw()
    #c1.SaveAs('Chib12_1P'+output_suffix+'.png')
    print 'Chi2 = '+str(frame.chiSquare())
    

    # print ratio background/all in the signal refion
    signal_region = x.setRange("signal_region",9.87,9.92)
    pdf_integral = modelPdf.createIntegral(RooArgSet(x), RooFit.Range('signal_region')).getVal() * (n_chib.getVal() + n_background.getVal())
    bkg_integral = background.createIntegral(RooArgSet(x), RooFit.Range('signal_region')).getVal() * n_background.getVal()

    print 'Ratio bkg/all in signal region = '+str(bkg_integral/pdf_integral)

    return numChib, c1
コード例 #3
0
def fitChicSpectrum(dataset, binname):
    """ Fit chic spectrum"""

    x = RooRealVar('s', 's', -2, 2)

    x.setBins(200)

    #signal model

    q_chi1 = RooRealVar('qchi1', 'q_{#chi 1}', 0.414, 0.2, 0.6)
    q_chi2 = RooRealVar('qchi2', 'q_{#chi 2}', 0.430, 0.2, 0.6)

    delta_chi10 = RooRealVar('delta_chi10', 'delta_chi10', 0.09591)
    q_chi0 = RooFormulaVar('q_chi0', '@0 - @1',
                           RooArgList(q_chi1, delta_chi10))

    alphacb_chi1 = RooRealVar('alphacb_chi1', '#alpha^{CB}_{#chi 1}', 0.6, 0,
                              2)
    alphacb_chi2 = RooRealVar('alphacb_chi2', '#alpha^{CB}_{#chi 2}', 0.4, 0,
                              2)
    sigmacb_chi1 = RooRealVar('sigmacb_chi1', '#sigma^{CB}_{#chi 1}', 0.005, 0,
                              1)
    sigmacb_chi2 = RooRealVar('sigmacb_chi2', '#sigma^{CB}_{#chi 2}', 0.005, 0,
                              1)
    n_cb = RooRealVar('ncb', 'n^{CB}', 3.0, 0., 5.)

    gamma_chi0 = RooRealVar('gamma_chi0', 'gamma_chi0', 0.0104)
    sigmacb_chi0 = RooRealVar('sigmacb_chi0', '#sigma^{CB}_{#chi 0}', 0.005)

    chi0_sig = RooVoigtian('chi0sig', 'chi0sig,', x, q_chi0, sigmacb_chi0,
                           gamma_chi0)
    chi1_sig = RooCBShape('chi1sig', 'chi1sig', x, q_chi1, sigmacb_chi1,
                          alphacb_chi1, n_cb)
    chi2_sig = RooCBShape('chi2sig', 'chi2sig', x, q_chi2, sigmacb_chi2,
                          alphacb_chi2, n_cb)

    fchi0 = RooRealVar('fchi0', 'f_{#chi 0}', 0.01, 0, 1)
    fchi1 = RooRealVar('fchi1', 'f_{#chi 1}', 0.5, 0, 1)
    fchi2 = RooFormulaVar('fchi2', '1-@0-@1', RooArgList(fchi0, fchi1))
    fbck = RooRealVar('fbck', 'f_{bck}', 0.2, 0, 1)

    sigmodel = RooAddPdf('sigm', 'sigm',
                         RooArgList(chi0_sig, chi1_sig, chi2_sig),
                         RooArgList(fchi0, fchi1, fchi2))

    #background model

    q0Start = 0.0
    a_bck = RooRealVar('a_bck', 'a_{bck}', 0.5, -5, 5)
    b_bck = RooRealVar('b_bck', 'b_{bck}', -2.5, -7., 0.)
    q0 = RooRealVar('q0', 'q0', q0Start)
    delta = RooFormulaVar('delta', 'TMath::Abs(@0-@1)', RooArgList(x, q0))
    bfun = RooFormulaVar('bfun', '@0*(@1-@2)', RooArgList(b_bck, x, q0))
    signum = RooFormulaVar('signum', '( TMath::Sign( -1.,@0-@1 )+1 )/2.',
                           RooArgList(x, q0))

    background = RooGenericPdf('background', 'Background',
                               'signum*pow(delta,a_bck)*exp(bfun)',
                               RooArgList(signum, delta, a_bck, bfun))

    modelPdf = RooAddPdf('chicmodel', 'chicmodel',
                         RooArgList(sigmodel, background), RooArgList(fbck))

    frame = x.frame(RooFit.Title('Q'))
    range = x.setRange('range', 0, 2)
    #    result = modelPdf.fitTo(dataset,RooFit.Save(),RooFit.Range('range'))
    dataset.plotOn(frame, RooFit.MarkerSize(0.7))

    modelPdf.plotOn(frame, RooFit.LineWidth(2))

    #plotting
    canvas = TCanvas('fit', "", 1400, 700)
    canvas.Divide(1)
    canvas.cd(1)
    gPad.SetRightMargin(0.3)
    gPad.SetFillColor(10)
    modelPdf.paramOn(frame, RooFit.Layout(0.725, 0.9875, 0.9))
    frame.Draw()
    canvas.SaveAs('out-' + binname + '.png')
    canvas.SaveAs('out-' + binname + '.root')
コード例 #4
0
    def create_pdfs(self, paths_to_data, save=True):
        """ 
        Fit amplitude and offset of sinusoidal pdfs
        """
        
        if not isinstance(paths_to_data, list):
            paths_to_data = [paths_to_data]
        
        files_H = []
        files_A = []
        for path in paths_to_data:
            # These are merged, so only one of each
            if not path.endswith('/'): path += '/'
            files_H.append(path+'model_H_merged.h5')
            files_A.append(path+'model_A_merged.h5')

        # TODO: Background samples: uniform pdf
        
        
        self.phistar = RooRealVar('phistar', 'phistar', 0, 2*pi)
        self.ampl = RooRealVar('ampl', 'ampl', 1, 0, 10)        # Must remain in scope
        self.offset = RooRealVar('offset', 'offset', 1, 0, 10)  # - " -
        
        # Read in the data
        # Need only to fit pdf parameters for H, since the pdf for A is
        # equal but with a 180 deg phase shift.
        starttime = time.time()
        dataH_X, _, feats = self.read_array_from_files(files_H)
        dataH_X = self.select_features(dataH_X, feats)
        
        print 'Limiting events for pdf creation to 1e6'
        dataH_X = dataH_X[:1000000]
        
        templatedataH = RooDataSet('templatedataH', 'templatedataH', RooArgSet(self.phistar))
        for phi in dataH_X:
            self.phistar.setVal(phi)
            templatedataH.add(RooArgSet(self.phistar))
                
        # Reset parameters
        self.ampl = RooRealVar('ampl', 'ampl', 1, 0, 10)
        self.offset = RooRealVar('offset', 'offset', 1, 0, 10)
        
        # Pdf for scalar decay
        scalar_pdf = RooGenericPdf('scalar_pdf', 'scalar_pdf', 'ampl*sin(phistar-1.570796) + offset', RooArgList(self.ampl, self.phistar, self.offset))
        scalar_pdf.fitTo(templatedataH)
        
        self.ampl.setConstant()
        self.offset.setConstant()
        
        # Fitting only the scalar pdf is enough to get the pseudoscalar parameters too
        pseudoscalar_pdf = RooGenericPdf('pseudoscalar_pdf', 'pseudoscalar_pdf', 'ampl*sin(phistar+1.570796) + offset', RooArgList(self.ampl, self.phistar, self.offset))
        
        self.pdfs['H'] = scalar_pdf
        self.pdfs['A'] = pseudoscalar_pdf
        
        print 'Creating phistar pdf took %s' % time.strftime("%H:%M:%S", time.gmtime(time.time()-starttime))
        
        if save:
            ws = RooWorkspace('ws', 'ws')
            getattr(ws, 'import')(self.phistar)
            getattr(ws, 'import')(self.ampl)
            getattr(ws, 'import')(self.offset)
            getattr(ws, 'import')(self.pdfs['H'])
            getattr(ws, 'import')(self.pdfs['A'])
            ws.writeToFile('%s/pdfs_%s.root' % (self.outdir, self.title))
コード例 #5
0



if fitDat: 

    # -----------------------------------------
    # define parameters for background
    # function 0 (standard parametrization)
    NBINS = 166
    #if fitModel==0:
    p1 = RooRealVar('p1','p1',6.21862535247,0.,100)
    p2 = RooRealVar('p2','p2',6.48308946408,0,60)
    p3 = RooRealVar('p3','p3',0.217160577769,-10,10)

    background = RooGenericPdf('background','(pow(1-@0/13000,@1)/pow(@0/13000,@2+@3*log(@0/13000)))',RooArgList(x,p1,p2,p3))
    background_norm = RooRealVar('background_norm','background_norm',434176,0,10000000)
    
    ebkg = RooExtendPdf("ebkg","extended background p.d.f",background,background_norm)
    
    roohistSig = RooDataHist('roohist','roohist',RooArgList(x),hSig)
    signal = RooHistPdf('signal','signal',RooArgSet(x),roohistSig)
    signal_norm = RooRealVar('signal_norm','signal_norm',0,-1000,1000)
    
    model = RooAddPdf("model","s+b",RooArgList(background,signal),RooArgList(background_norm,signal_norm))

    ##variation 1, with one more parameter 
    #if fitModel==1:
    #  TMath::Power(1-x/8000,[1])*(1+[4]*x/8000) ) / ( TMath::Power(x/8000,[2]+[3]*log(x/8000))
    #
    
コード例 #6
0
def dijet(category):

    channel = 'bb'
    stype = channel
    isSB = True  # relict from using Alberto's more complex script
    isData = not ISMC
    nTupleDir = NTUPLEDIR

    samples = data if isData else back
    pd = []
    for sample_name in samples:
        if YEAR == 'run2':
            pd += sample[sample_name]['files']
        else:
            pd += [x for x in sample[sample_name]['files'] if YEAR in x]
    print "datasets:", pd
    if not os.path.exists(PLOTDIR): os.makedirs(PLOTDIR)
    if BIAS: print "Running in BIAS mode"

    order = 0
    RSS = {}

    X_mass = RooRealVar("jj_mass_widejet", "m_{jj}", X_min, X_max, "GeV")
    weight = RooRealVar("MANtag_weight", "", -1.e9, 1.e9)

    variables = RooArgSet(X_mass)
    variables.add(RooArgSet(weight))

    if VARBINS:
        binsXmass = RooBinning(len(abins) - 1, abins)
        X_mass.setBinning(RooBinning(len(abins_narrow) - 1, abins_narrow))
        plot_binning = RooBinning(
            int((X_mass.getMax() - X_mass.getMin()) / 100), X_mass.getMin(),
            X_mass.getMax())
    else:
        X_mass.setBins(int((X_mass.getMax() - X_mass.getMin()) / 10))
        binsXmass = RooBinning(int((X_mass.getMax() - X_mass.getMin()) / 100),
                               X_mass.getMin(), X_mass.getMax())
        plot_binning = binsXmass

    baseCut = ""

    print stype, "|", baseCut

    print " - Reading from Tree"
    treeBkg = TChain("tree")
    for ss in pd:
        if os.path.exists(nTupleDir + ss + "_" + BTAGGING + ".root"):
            treeBkg.Add(nTupleDir + ss + "_" + BTAGGING + ".root")
        else:
            print "found no file for sample:", ss
    setData = RooDataSet("setData", "Data (QCD+TTbar MC)", variables,
                         RooFit.Cut(baseCut), RooFit.WeightVar(weight),
                         RooFit.Import(treeBkg))

    nevents = setData.sumEntries()
    dataMin, dataMax = array('d', [0.]), array('d', [0.])
    setData.getRange(X_mass, dataMin, dataMax)
    xmin, xmax = dataMin[0], dataMax[0]

    lastBin = X_mass.getMax()
    if VARBINS:
        for b in narrow_bins:
            if b > xmax:
                lastBin = b
                break

    print "Imported", (
        "data" if isData else "MC"
    ), "RooDataSet with", nevents, "events between [%.1f, %.1f]" % (xmin, xmax)
    #xmax = xmax+binsXmass.averageBinWidth() # start form next bin

    # 1 parameter
    print "fitting 1 parameter model"
    p1_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p1_1", "p1", 7.0, 0.,
                      2000.)
    modelBkg1 = RooGenericPdf("Bkg1", "Bkg. fit (2 par.)",
                              "1./pow(@0/13000, @1)", RooArgList(X_mass, p1_1))
    normzBkg1 = RooRealVar(
        modelBkg1.GetName() + "_norm", "Number of background events", nevents,
        0., 5. * nevents)  #range dependent of actual number of events!
    modelExt1 = RooExtendPdf(modelBkg1.GetName() + "_ext",
                             modelBkg1.GetTitle(), modelBkg1, normzBkg1)
    fitRes1 = modelExt1.fitTo(setData, RooFit.Extended(True), RooFit.Save(1),
                              RooFit.SumW2Error(not isData),
                              RooFit.Strategy(2), RooFit.Minimizer("Minuit2"),
                              RooFit.PrintLevel(1 if VERBOSE else -1))
    fitRes1.Print()
    RSS[1] = drawFit("Bkg1", category, X_mass, modelBkg1, setData, binsXmass,
                     [fitRes1], normzBkg1.getVal())

    # 2 parameters
    print "fitting 2 parameter model"
    p2_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p2_1", "p1", 0., -100.,
                      1000.)
    p2_2 = RooRealVar("CMS" + YEAR + "_" + category + "_p2_2", "p2",
                      p1_1.getVal(), -100., 600.)
    modelBkg2 = RooGenericPdf("Bkg2", "Bkg. fit (3 par.)",
                              "pow(1-@0/13000, @1) / pow(@0/13000, @2)",
                              RooArgList(X_mass, p2_1, p2_2))
    normzBkg2 = RooRealVar(modelBkg2.GetName() + "_norm",
                           "Number of background events", nevents, 0.,
                           5. * nevents)
    modelExt2 = RooExtendPdf(modelBkg2.GetName() + "_ext",
                             modelBkg2.GetTitle(), modelBkg2, normzBkg2)
    fitRes2 = modelExt2.fitTo(setData, RooFit.Extended(True), RooFit.Save(1),
                              RooFit.SumW2Error(not isData),
                              RooFit.Strategy(2), RooFit.Minimizer("Minuit2"),
                              RooFit.PrintLevel(1 if VERBOSE else -1))
    fitRes2.Print()
    RSS[2] = drawFit("Bkg2", category, X_mass, modelBkg2, setData, binsXmass,
                     [fitRes2], normzBkg2.getVal())

    # 3 parameters
    print "fitting 3 parameter model"
    p3_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p3_1", "p1",
                      p2_1.getVal(), -2000., 2000.)
    p3_2 = RooRealVar("CMS" + YEAR + "_" + category + "_p3_2", "p2",
                      p2_2.getVal(), -400., 2000.)
    p3_3 = RooRealVar("CMS" + YEAR + "_" + category + "_p3_3", "p3", -2.5,
                      -500., 500.)
    modelBkg3 = RooGenericPdf(
        "Bkg3", "Bkg. fit (4 par.)",
        "pow(1-@0/13000, @1) / pow(@0/13000, @2+@3*log(@0/13000))",
        RooArgList(X_mass, p3_1, p3_2, p3_3))
    normzBkg3 = RooRealVar(modelBkg3.GetName() + "_norm",
                           "Number of background events", nevents, 0.,
                           5. * nevents)
    modelExt3 = RooExtendPdf(modelBkg3.GetName() + "_ext",
                             modelBkg3.GetTitle(), modelBkg3, normzBkg3)
    fitRes3 = modelExt3.fitTo(setData, RooFit.Extended(True), RooFit.Save(1),
                              RooFit.SumW2Error(not isData),
                              RooFit.Strategy(2), RooFit.Minimizer("Minuit2"),
                              RooFit.PrintLevel(1 if VERBOSE else -1))
    fitRes3.Print()
    RSS[3] = drawFit("Bkg3", category, X_mass, modelBkg3, setData, binsXmass,
                     [fitRes3], normzBkg3.getVal())

    # 4 parameters
    print "fitting 4 parameter model"
    p4_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_1", "p1",
                      p3_1.getVal(), -2000., 2000.)
    p4_2 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_2", "p2",
                      p3_2.getVal(), -2000., 2000.)
    p4_3 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_3", "p3",
                      p3_3.getVal(), -50., 50.)
    p4_4 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_4", "p4", 0.1, -50.,
                      50.)
    modelBkg4 = RooGenericPdf(
        "Bkg4", "Bkg. fit (5 par.)",
        "pow(1 - @0/13000, @1) / pow(@0/13000, @2+@3*log(@0/13000)+@4*pow(log(@0/13000), 2))",
        RooArgList(X_mass, p4_1, p4_2, p4_3, p4_4))
    normzBkg4 = RooRealVar(modelBkg4.GetName() + "_norm",
                           "Number of background events", nevents, 0.,
                           5. * nevents)
    modelExt4 = RooExtendPdf(modelBkg4.GetName() + "_ext",
                             modelBkg4.GetTitle(), modelBkg4, normzBkg4)
    fitRes4 = modelExt4.fitTo(setData, RooFit.Extended(True), RooFit.Save(1),
                              RooFit.SumW2Error(not isData),
                              RooFit.Strategy(2), RooFit.Minimizer("Minuit2"),
                              RooFit.PrintLevel(1 if VERBOSE else -1))
    fitRes4.Print()
    RSS[4] = drawFit("Bkg4", category, X_mass, modelBkg4, setData, binsXmass,
                     [fitRes4], normzBkg4.getVal())

    # Normalization parameters are should be set constant, but shape ones should not
    #    if BIAS:
    #        p1_1.setConstant(True)
    #        p2_1.setConstant(True)
    #        p2_2.setConstant(True)
    #        p3_1.setConstant(True)
    #        p3_2.setConstant(True)
    #        p3_3.setConstant(True)
    #        p4_1.setConstant(True)
    #        p4_2.setConstant(True)
    #        p4_3.setConstant(True)
    #        p4_4.setConstant(True)
    normzBkg1.setConstant(True)
    normzBkg2.setConstant(True)
    normzBkg3.setConstant(True)
    normzBkg4.setConstant(True)

    #*******************************************************#
    #                                                       #
    #                         Fisher                        #
    #                                                       #
    #*******************************************************#

    # Fisher test
    with open(PLOTDIR + "/Fisher_" + category + ".tex", 'w') as fout:
        fout.write(r"\begin{tabular}{c|c|c|c|c}")
        fout.write("\n")
        fout.write(r"function & $\chi^2$ & RSS & ndof & F-test \\")
        fout.write("\n")
        fout.write("\hline")
        fout.write("\n")
        CL_high = False
        for o1 in range(1, 5):
            o2 = min(o1 + 1, 5)
            fout.write("%d par & %.2f & %.2f & %d & " %
                       (o1 + 1, RSS[o1]["chi2"], RSS[o1]["rss"],
                        RSS[o1]["nbins"] - RSS[o1]["npar"]))
            if o2 > len(RSS):
                fout.write(r"\\")
                fout.write("\n")
                continue  #order==0 and
            CL = fisherTest(RSS[o1]['rss'], RSS[o2]['rss'], o1 + 1., o2 + 1.,
                            RSS[o1]["nbins"])
            fout.write("CL=%.3f " % (CL))
            if CL > 0.10:  # The function with less parameters is enough
                if not CL_high:
                    order = o1
                    #fout.write( "%d par are sufficient " % (o1+1))
                    CL_high = True
            else:
                #fout.write( "%d par are needed " % (o2+1))
                if not CL_high:
                    order = o2
            fout.write(r"\\")
            fout.write("\n")
        fout.write("\hline")
        fout.write("\n")
        fout.write(r"\end{tabular}")
    print "saved F-test table as", PLOTDIR + "/Fisher_" + category + ".tex"

    #print "-"*25
    #print "function & $\\chi^2$ & RSS & ndof & F-test & result \\\\"
    #print "\\multicolumn{6}{c}{", "Zprime_to_bb", "} \\\\"
    #print "\\hline"
    #CL_high = False
    #for o1 in range(1, 5):
    #    o2 = min(o1 + 1, 5)
    #    print "%d par & %.2f & %.2f & %d & " % (o1+1, RSS[o1]["chi2"], RSS[o1]["rss"], RSS[o1]["nbins"]-RSS[o1]["npar"]),
    #    if o2 > len(RSS):
    #        print "\\\\"
    #        continue #order==0 and
    #    CL = fisherTest(RSS[o1]['rss'], RSS[o2]['rss'], o1+1., o2+1., RSS[o1]["nbins"])
    #    print "%d par vs %d par CL=%f & " % (o1+1, o2+1, CL),
    #    if CL > 0.10: # The function with less parameters is enough
    #        if not CL_high:
    #            order = o1
    #            print "%d par are sufficient" % (o1+1),
    #            CL_high=True
    #    else:
    #        print "%d par are needed" % (o2+1),
    #        if not CL_high:
    #            order = o2
    #    print "\\\\"
    #print "\\hline"
    #print "-"*25
    #print "@ Order is", order, "("+category+")"

    #order = min(3, order)
    #order = 2
    if order == 1:
        modelBkg = modelBkg1  #.Clone("Bkg")
        modelAlt = modelBkg2  #.Clone("BkgAlt")
        normzBkg = normzBkg1  #.Clone("Bkg_norm")
        fitRes = fitRes1
    elif order == 2:
        modelBkg = modelBkg2  #.Clone("Bkg")
        modelAlt = modelBkg3  #.Clone("BkgAlt")
        normzBkg = normzBkg2  #.Clone("Bkg_norm")
        fitRes = fitRes2
    elif order == 3:
        modelBkg = modelBkg3  #.Clone("Bkg")
        modelAlt = modelBkg4  #.Clone("BkgAlt")
        normzBkg = normzBkg3  #.Clone("Bkg_norm")
        fitRes = fitRes3
    elif order == 4:
        modelBkg = modelBkg4  #.Clone("Bkg")
        modelAlt = modelBkg3  #.Clone("BkgAlt")
        normzBkg = normzBkg4  #.Clone("Bkg_norm")
        fitRes = fitRes4
    else:
        print "Functions with", order + 1, "or more parameters are needed to fit the background"
        exit()

    modelBkg.SetName("Bkg_" + YEAR + "_" + category)
    modelAlt.SetName("Alt_" + YEAR + "_" + category)
    normzBkg.SetName("Bkg_" + YEAR + "_" + category + "_norm")

    print "-" * 25

    # Generate pseudo data
    setToys = RooDataSet()
    setToys.SetName("data_toys")
    setToys.SetTitle("Data (toys)")
    if not isData:
        print " - Generating", nevents, "events for toy data"
        setToys = modelBkg.generate(RooArgSet(X_mass), nevents)
        #setToys = modelAlt.generate(RooArgSet(X_mass), nevents)
        print "toy data generated"

    if VERBOSE: raw_input("Press Enter to continue...")

    #*******************************************************#
    #                                                       #
    #                         Plot                          #
    #                                                       #
    #*******************************************************#

    print "starting to plot"
    c = TCanvas("c_" + category, category, 800, 800)
    c.Divide(1, 2)
    setTopPad(c.GetPad(1), RATIO)
    setBotPad(c.GetPad(2), RATIO)
    c.cd(1)
    frame = X_mass.frame()
    setPadStyle(frame, 1.25, True)
    if VARBINS: frame.GetXaxis().SetRangeUser(X_mass.getMin(), lastBin)
    signal = getSignal(
        category, stype,
        2000)  #replacing Alberto's getSignal by own dummy function

    graphData = setData.plotOn(frame, RooFit.Binning(plot_binning),
                               RooFit.Scaling(False), RooFit.Invisible())
    modelBkg.plotOn(frame, RooFit.VisualizeError(fitRes, 1, False),
                    RooFit.LineColor(602), RooFit.FillColor(590),
                    RooFit.FillStyle(1001), RooFit.DrawOption("FL"),
                    RooFit.Name("1sigma"))
    modelBkg.plotOn(frame, RooFit.LineColor(602), RooFit.FillColor(590),
                    RooFit.FillStyle(1001), RooFit.DrawOption("L"),
                    RooFit.Name(modelBkg.GetName()))
    modelAlt.plotOn(frame, RooFit.LineStyle(7), RooFit.LineColor(613),
                    RooFit.FillColor(609), RooFit.FillStyle(1001),
                    RooFit.DrawOption("L"), RooFit.Name(modelAlt.GetName()))
    if not isSB and signal[0] is not None:  # FIXME remove /(2./3.)
        signal[0].plotOn(
            frame,
            RooFit.Normalization(signal[1] * signal[2], RooAbsReal.NumEvent),
            RooFit.LineStyle(3), RooFit.LineWidth(6), RooFit.LineColor(629),
            RooFit.DrawOption("L"), RooFit.Name("Signal"))
    graphData = setData.plotOn(
        frame, RooFit.Binning(plot_binning), RooFit.Scaling(False),
        RooFit.XErrorSize(0 if not VARBINS else 1),
        RooFit.DataError(RooAbsData.Poisson if isData else RooAbsData.SumW2),
        RooFit.DrawOption("PE0"), RooFit.Name(setData.GetName()))
    fixData(graphData.getHist(), True, True, not isData)
    pulls = frame.pullHist(setData.GetName(), modelBkg.GetName(), True)
    chi = frame.chiSquare(setData.GetName(), modelBkg.GetName(), True)
    #setToys.plotOn(frame, RooFit.DataError(RooAbsData.Poisson), RooFit.DrawOption("PE0"), RooFit.MarkerColor(2))
    frame.GetYaxis().SetTitle("Events / ( 100 GeV )")
    frame.GetYaxis().SetTitleOffset(1.05)
    frame.Draw()
    #print "frame drawn"
    # Get Chi2
    #    chi2[1] = frame.chiSquare(modelBkg1.GetName(), setData.GetName())
    #    chi2[2] = frame.chiSquare(modelBkg2.GetName(), setData.GetName())
    #    chi2[3] = frame.chiSquare(modelBkg3.GetName(), setData.GetName())
    #    chi2[4] = frame.chiSquare(modelBkg4.GetName(), setData.GetName())

    frame.SetMaximum(frame.GetMaximum() * 10)
    frame.SetMinimum(max(frame.GetMinimum(), 1.e-1))
    c.GetPad(1).SetLogy()

    drawAnalysis(category)
    drawRegion(category, True)
    #drawCMS(LUMI, "Simulation Preliminary")
    drawCMS(LUMI, "Work in Progress", suppressCMS=True)

    leg = TLegend(0.575, 0.6, 0.95, 0.9)
    leg.SetBorderSize(0)
    leg.SetFillStyle(0)  #1001
    leg.SetFillColor(0)
    leg.AddEntry(setData.GetName(),
                 setData.GetTitle() + " (%d events)" % nevents, "PEL")
    leg.AddEntry(modelBkg.GetName(), modelBkg.GetTitle(),
                 "FL")  #.SetTextColor(629)
    leg.AddEntry(modelAlt.GetName(), modelAlt.GetTitle(), "L")
    if not isSB and signal[0] is not None:
        leg.AddEntry("Signal", signal[0].GetTitle(), "L")
    leg.SetY1(0.9 - leg.GetNRows() * 0.05)
    leg.Draw()

    latex = TLatex()
    latex.SetNDC()
    latex.SetTextSize(0.04)
    latex.SetTextFont(42)
    if not isSB:
        latex.DrawLatex(leg.GetX1() * 1.16,
                        leg.GetY1() - 0.04, "HVT model B (g_{V}=3)")
    #    latex.DrawLatex(0.67, leg.GetY1()-0.045, "#sigma_{X} = 1.0 pb")

    c.cd(2)
    frame_res = X_mass.frame()
    setPadStyle(frame_res, 1.25)
    frame_res.addPlotable(pulls, "P")
    setBotStyle(frame_res, RATIO, False)
    if VARBINS: frame_res.GetXaxis().SetRangeUser(X_mass.getMin(), lastBin)
    frame_res.GetYaxis().SetRangeUser(-5, 5)
    frame_res.GetYaxis().SetTitle("pulls(#sigma)")
    frame_res.GetYaxis().SetTitleOffset(0.3)
    frame_res.Draw()
    fixData(pulls, False, True, False)

    drawChi2(RSS[order]["chi2"], RSS[order]["nbins"] - (order + 1), True)
    line = drawLine(X_mass.getMin(), 0, lastBin, 0)

    if VARBINS:
        c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".pdf")
        c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".png")
    else:
        c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".pdf")
        c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".png")

    #*******************************************************#
    #                                                       #
    #                   Generate workspace                  #
    #                                                       #
    #*******************************************************#

    if BIAS:
        gSystem.Load("libHiggsAnalysisCombinedLimit.so")
        from ROOT import RooMultiPdf
        cat = RooCategory("pdf_index", "Index of Pdf which is active")
        pdfs = RooArgList(modelBkg, modelAlt)
        roomultipdf = RooMultiPdf("roomultipdf", "All Pdfs", cat, pdfs)
        normulti = RooRealVar("roomultipdf_norm",
                              "Number of background events", nevents, 0., 1.e6)

    normzBkg.setConstant(
        False
    )  ## newly put here to ensure it's freely floating in the combine fit

    # create workspace
    w = RooWorkspace("Zprime_" + YEAR, "workspace")
    # Dataset
    if isData: getattr(w, "import")(setData, RooFit.Rename("data_obs"))
    else: getattr(w, "import")(setToys, RooFit.Rename("data_obs"))
    #getattr(w, "import")(setData, RooFit.Rename("data_obs"))
    if BIAS:
        getattr(w, "import")(cat, RooFit.Rename(cat.GetName()))
        getattr(w, "import")(normulti, RooFit.Rename(normulti.GetName()))
        getattr(w, "import")(roomultipdf, RooFit.Rename(roomultipdf.GetName()))
    getattr(w, "import")(modelBkg, RooFit.Rename(modelBkg.GetName()))
    getattr(w, "import")(modelAlt, RooFit.Rename(modelAlt.GetName()))
    getattr(w, "import")(normzBkg, RooFit.Rename(normzBkg.GetName()))
    w.writeToFile(WORKDIR + "%s_%s.root" % (DATA_TYPE + "_" + YEAR, category),
                  True)
    print "Workspace", WORKDIR + "%s_%s.root" % (
        DATA_TYPE + "_" + YEAR, category), "saved successfully"
    if VERBOSE: raw_input("Press Enter to continue...")
コード例 #7
0
        print "[debug] hSig.GetMean() = " + str(hSig.GetMean())
        print "[debug] hSig.GetRMS() = " + str(hSig.GetRMS())
        rooSigHist = RooDataHist('rooSigHist','rooSigHist',RooArgList(mjj),hSig)
        rooSigHist.Print()
        signal = RooHistPdf('signal','signal',RooArgSet(mjj),rooSigHist)
        signal.Print()
        signal_norm = RooRealVar('signal_norm','signal_norm',0,-1e+05,1e+05)
        if args.fitBonly: signal_norm.setConstant()
        signal_norm.Print()

        p1 = RooRealVar('p1','p1',args.p1,0.,100.)
        p2 = RooRealVar('p2','p2',args.p2,0.,60.)
        p3 = RooRealVar('p3','p3',args.p3,-10.,10.)
        if args.fixP3: p3.setConstant()

        background = RooGenericPdf('background','(pow(1-@0/%.1f,@1)/pow(@0/%.1f,@2+@3*log(@0/%.1f)))'%(sqrtS,sqrtS,sqrtS),RooArgList(mjj,p1,p2,p3))
        background.Print()
        dataInt = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm = RooRealVar('background_norm','background_norm',dataInt,0.,1e+08)
        background_norm.Print()

        # S+B model
        model = RooAddPdf("model","s+b",RooArgList(background,signal),RooArgList(background_norm,signal_norm))

        rooDataHist = RooDataHist('rooDatahist','rooDathist',RooArgList(mjj),hData)
        rooDataHist.Print()

        if args.runFit:
            res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            if not args.decoBkg: res.Print()
コード例 #8
0
def main():
    # usage description
    usage = "Example: ./scripts/createDatacards.py --inputData inputs/rawhistV7_Run2015D_scoutingPFHT_UNBLINDED_649_838_JEC_HLTplusV7_Mjj_cor_smooth.root --dataHistname mjj_mjjcor_gev --inputSig inputs/ResonanceShapes_gg_13TeV_Scouting_Spring15.root -f gg -o datacards -l 1866 --lumiUnc 0.027 --massrange 1000 1500 50 --runFit --p1 5 --p2 7 --p3 0.4 --massMin 838 --massMax 2037 --fitStrategy 2"

    # input parameters
    parser = ArgumentParser(description='Script that creates combine datacards and corresponding RooFit workspaces',epilog=usage)

    parser.add_argument("--inputData", dest="inputData", required=True,
                        help="Input data spectrum",
                        metavar="INPUT_DATA")

    parser.add_argument("--dataHistname", dest="dataHistname", required=True,
                        help="Data histogram name",
                        metavar="DATA_HISTNAME")

    parser.add_argument("--inputSig", dest="inputSig", required=True,
                        help="Input signal shapes",
                        metavar="INPUT_SIGNAL")

    parser.add_argument("-f", "--final_state", dest="final_state", required=True,
                        help="Final state (e.g. qq, qg, gg)",
                        metavar="FINAL_STATE")

    parser.add_argument("-f2", "--type", dest="atype", required=True, help="Type (e.g. hG, lG, hR, lR)")

    parser.add_argument("-o", "--output_path", dest="output_path", required=True,
                        help="Output path where datacards and workspaces will be stored",
                        metavar="OUTPUT_PATH")

    parser.add_argument("-l", "--lumi", dest="lumi", required=True,
                        default=1000., type=float,
                        help="Integrated luminosity in pb-1 (default: %(default).1f)",
                        metavar="LUMI")

    parser.add_argument("--massMin", dest="massMin",
                        default=500, type=int,
                        help="Lower bound of the mass range used for fitting (default: %(default)s)",
                        metavar="MASS_MIN")

    parser.add_argument("--massMax", dest="massMax",
                        default=1200, type=int,
                        help="Upper bound of the mass range used for fitting (default: %(default)s)",
                        metavar="MASS_MAX")

    parser.add_argument("--p1", dest="p1",
                        default=5.0000e-03, type=float,
                        help="Fit function p1 parameter (default: %(default)e)",
                        metavar="P1")

    parser.add_argument("--p2", dest="p2",
                        default=9.1000e+00, type=float,
                        help="Fit function p2 parameter (default: %(default)e)",
                        metavar="P2")

    parser.add_argument("--p3", dest="p3",
                        default=5.0000e-01, type=float,
                        help="Fit function p3 parameter (default: %(default)e)",
                        metavar="P3")

    parser.add_argument("--lumiUnc", dest="lumiUnc",
                        required=True, type=float,
                        help="Relative uncertainty in the integrated luminosity",
                        metavar="LUMI_UNC")

    parser.add_argument("--jesUnc", dest="jesUnc",
                        type=float,
                        help="Relative uncertainty in the jet energy scale",
                        metavar="JES_UNC")

    parser.add_argument("--jerUnc", dest="jerUnc",
                        type=float,
                        help="Relative uncertainty in the jet energy resolution",
                        metavar="JER_UNC")

    parser.add_argument("--sqrtS", dest="sqrtS",
                        default=13000., type=float,
                        help="Collision center-of-mass energy (default: %(default).1f)",
                        metavar="SQRTS")

    parser.add_argument("--fixP3", dest="fixP3", default=False, action="store_true", help="Fix the fit function p3 parameter")

    parser.add_argument("--runFit", dest="runFit", default=False, action="store_true", help="Run the fit")

    parser.add_argument("--fitBonly", dest="fitBonly", default=False, action="store_true", help="Run B-only fit")

    parser.add_argument("--fixBkg", dest="fixBkg", default=False, action="store_true", help="Fix all background parameters")

    parser.add_argument("--decoBkg", dest="decoBkg", default=False, action="store_true", help="Decorrelate background parameters")

    parser.add_argument("--fitStrategy", dest="fitStrategy", type=int, default=1, help="Fit strategy (default: %(default).1f)")

    parser.add_argument("--debug", dest="debug", default=False, action="store_true", help="Debug printout")

    parser.add_argument("--postfix", dest="postfix", default='', help="Postfix for the output file names (default: %(default)s)")

    parser.add_argument("--pyes", dest="pyes", default=False, action="store_true", help="Make files for plots")

    parser.add_argument("--jyes", dest="jyes", default=False, action="store_true", help="Make files for JES/JER plots")

    parser.add_argument("--pdir", dest="pdir", default='testarea', help="Name a directory for the plots (default: %(default)s)")

    parser.add_argument("--chi2", dest="chi2", default=False, action="store_true", help="Compute chi squared")

    parser.add_argument("--widefit", dest="widefit", default=False, action="store_true", help="Fit with wide bin hist")

    mass_group = parser.add_mutually_exclusive_group(required=True)
    mass_group.add_argument("--mass",
                            type=int,
                            nargs = '*',
                            default = 1000,
                            help="Mass can be specified as a single value or a whitespace separated list (default: %(default)i)"
                            )
    mass_group.add_argument("--massrange",
                            type=int,
                            nargs = 3,
                            help="Define a range of masses to be produced. Format: min max step",
                            metavar = ('MIN', 'MAX', 'STEP')
                            )
    mass_group.add_argument("--masslist",
                            help = "List containing mass information"
                            )

    args = parser.parse_args()

    if args.atype == 'hG':
	fstr = "bbhGGBB"
	in2 = 'bcorrbin/binmodh.root'
    elif args.atype == 'hR':
	fstr = "bbhRS"
	in2 = 'bcorrbin/binmodh.root'
    elif args.atype == 'lG':
	fstr = "bblGGBB"
	in2 = 'bcorrbin/binmodl.root'
    else:
	fstr = "bblRS"
	in2 = 'bcorrbin/binmodl.root'

    # check if the output directory exists
    if not os.path.isdir( os.path.join(os.getcwd(),args.output_path) ):
        os.mkdir( os.path.join(os.getcwd(),args.output_path) )

    # mass points for which resonance shapes will be produced
    masses = []

    if args.massrange != None:
        MIN, MAX, STEP = args.massrange
        masses = range(MIN, MAX+STEP, STEP)
    elif args.masslist != None:
        # A mass list was provided
        print  "Will create mass list according to", args.masslist
        masslist = __import__(args.masslist.replace(".py",""))
        masses = masslist.masses
    else:
        masses = args.mass

    # sort masses
    masses.sort()

    # import ROOT stuff
    from ROOT import gStyle, TFile, TH1F, TH1D, TGraph, kTRUE, kFALSE, TCanvas, TLegend, TPad, TLine
    from ROOT import RooHist, RooRealVar, RooDataHist, RooArgList, RooArgSet, RooAddPdf, RooFit, RooGenericPdf, RooWorkspace, RooMsgService, RooHistPdf

    if not args.debug:
        RooMsgService.instance().setSilentMode(kTRUE)
        RooMsgService.instance().setStreamStatus(0,kFALSE)
        RooMsgService.instance().setStreamStatus(1,kFALSE)

    # input data file
    inputData = TFile(args.inputData)
    # input data histogram
    hData = inputData.Get(args.dataHistname)

    inData2 = TFile(in2)
    hData2 = inData2.Get('h_data')

    # input sig file
    inputSig = TFile(args.inputSig)

    sqrtS = args.sqrtS

    # mass variable
    mjj = RooRealVar('mjj','mjj',float(args.massMin),float(args.massMax))

    # integrated luminosity and signal cross section
    lumi = args.lumi
    signalCrossSection = 1. # set to 1. so that the limit on r can be interpreted as a limit on the signal cross section

    for mass in masses:

        print ">> Creating datacard and workspace for %s resonance with m = %i GeV..."%(args.final_state, int(mass))

        # get signal shape
        hSig = inputSig.Get( "h_" + args.final_state + "_" + str(int(mass)) )
        # normalize signal shape to the expected event yield (works even if input shapes are not normalized to unity)
        hSig.Scale(signalCrossSection*lumi/hSig.Integral()) # divide by a number that provides roughly an r value of 1-10
        rooSigHist = RooDataHist('rooSigHist','rooSigHist',RooArgList(mjj),hSig)
        print 'Signal acceptance:', (rooSigHist.sumEntries()/hSig.Integral())
        signal = RooHistPdf('signal','signal',RooArgSet(mjj),rooSigHist)
        signal_norm = RooRealVar('signal_norm','signal_norm',0,-1e+05,1e+05)
        if args.fitBonly: signal_norm.setConstant()

        p1 = RooRealVar('p1','p1',args.p1,0.,100.)
        p2 = RooRealVar('p2','p2',args.p2,0.,60.)
        p3 = RooRealVar('p3','p3',args.p3,-10.,10.)
	p4 = RooRealVar('p4','p4',5.6,-50.,50.)
	p5 = RooRealVar('p5','p5',10.,-50.,50.)
	p6 = RooRealVar('p6','p6',.016,-50.,50.)
	p7 = RooRealVar('p7','p7',8.,-50.,50.)
	p8 = RooRealVar('p8','p8',.22,-50.,50.)
	p9 = RooRealVar('p9','p9',14.1,-50.,50.)
	p10 = RooRealVar('p10','p10',8.,-50.,50.)
	p11 = RooRealVar('p11','p11',4.8,-50.,50.)
	p12 = RooRealVar('p12','p12',7.,-50.,50.)
	p13 = RooRealVar('p13','p13',7.,-50.,50.)
	p14 = RooRealVar('p14','p14',7.,-50.,50.)
	p15 = RooRealVar('p15','p15',1.,-50.,50.)
	p16 = RooRealVar('p16','p16',9.,-50.,50.)
	p17 = RooRealVar('p17','p17',0.6,-50.,50.)

        if args.fixP3: p3.setConstant()

        background = RooGenericPdf('background','(pow(1-@0/%.1f,@1)/pow(@0/%.1f,@2+@3*log(@0/%.1f)))'%(sqrtS,sqrtS,sqrtS),RooArgList(mjj,p1,p2,p3))
        dataInt = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm = RooRealVar('background_norm','background_norm',dataInt,0.,1e+08)

	background2 = RooGenericPdf('background2','(pow(@0/%.1f,-@1)*pow(1-@0/%.1f,@2))'%(sqrtS,sqrtS),RooArgList(mjj,p4,p5))
        dataInt2 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm2 = RooRealVar('background_norm2','background_norm2',dataInt2,0.,1e+08)

	background3 = RooGenericPdf('background3','(1/pow(@1+@0/%.1f,@2))'%(sqrtS),RooArgList(mjj,p6,p7))
        dataInt3 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm3 = RooRealVar('background_norm3','background_norm3',dataInt3,0.,1e+08)

	background4 = RooGenericPdf('background4','(1/pow(@1+@2*@0/%.1f+pow(@0/%.1f,2),@3))'%(sqrtS,sqrtS),RooArgList(mjj,p8,p9,p10))
        dataInt4 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm4 = RooRealVar('background_norm4','background_norm4',dataInt4,0.,1e+08)

	background5 = RooGenericPdf('background5','(pow(@0/%.1f,-@1)*pow(1-pow(@0/%.1f,1/3),@2))'%(sqrtS,sqrtS),RooArgList(mjj,p11,p12))
        dataInt5 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm5 = RooRealVar('background_norm5','background_norm5',dataInt5,0.,1e+08)

	background6 = RooGenericPdf('background6','(pow(@0/%.1f,2)+@1*@0/%.1f+@2)'%(sqrtS,sqrtS),RooArgList(mjj,p13,p14))
        dataInt6 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm6 = RooRealVar('background_norm6','background_norm6',dataInt6,0.,1e+08)

	background7 = RooGenericPdf('background7','((-1+@1*@0/%.1f)*pow(@0/%.1f,@2+@3*log(@0/%.1f)))'%(sqrtS,sqrtS,sqrtS),RooArgList(mjj,p15,p16,p17))
        dataInt7 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm7 = RooRealVar('background_norm7','background_norm7',dataInt7,0.,1e+08)

        # S+B model
        model = RooAddPdf("model","s+b",RooArgList(background,signal),RooArgList(background_norm,signal_norm))
	model2 = RooAddPdf("model2","s+b2",RooArgList(background2,signal),RooArgList(background_norm2,signal_norm))
	model3 = RooAddPdf("model3","s+b3",RooArgList(background3,signal),RooArgList(background_norm3,signal_norm))
	model4 = RooAddPdf("model4","s+b4",RooArgList(background4,signal),RooArgList(background_norm4,signal_norm))
	model5 = RooAddPdf("model5","s+b5",RooArgList(background5,signal),RooArgList(background_norm5,signal_norm))
	model6 = RooAddPdf("model6","s+b6",RooArgList(background6,signal),RooArgList(background_norm6,signal_norm))
	model7 = RooAddPdf("model7","s+b7",RooArgList(background7,signal),RooArgList(background_norm7,signal_norm))

        rooDataHist = RooDataHist('rooDatahist','rooDathist',RooArgList(mjj),hData)


        if args.runFit:
	    mframe = mjj.frame()
	    rooDataHist.plotOn(mframe, ROOT.RooFit.Name("setonedata"), ROOT.RooFit.Invisible())
	    res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
	    model.plotOn(mframe, ROOT.RooFit.Name("model1"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) 
	    res2 = model2.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            model2.plotOn(mframe, ROOT.RooFit.Name("model2"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kOrange))
	    res3 = model3.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            model3.plotOn(mframe, ROOT.RooFit.Name("model3"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kGreen))
	    res4 = model4.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            model4.plotOn(mframe, ROOT.RooFit.Name("model4"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kBlue))
	    res5 = model5.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            model5.plotOn(mframe, ROOT.RooFit.Name("model5"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kViolet))
	    res6 = model6.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
#           model6.plotOn(mframe, ROOT.RooFit.Name("model6"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kPink))
	    res7 = model7.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
#           model7.plotOn(mframe, ROOT.RooFit.Name("model7"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kAzure))

	    rooDataHist2 = RooDataHist('rooDatahist2','rooDathist2',RooArgList(mjj),hData2)
	    rooDataHist2.plotOn(mframe, ROOT.RooFit.Name("data"))

	    canvas = TCanvas("cdouble", "cdouble", 800, 1000)

	    gStyle.SetOptStat(0);
            gStyle.SetOptTitle(0);
	    top = TPad("top", "top", 0., 0.5, 1., 1.)
	    top.SetBottomMargin(0.03)
	    top.Draw()
	    top.SetLogy()
            bottom = TPad("bottom", "bottom", 0., 0., 1., 0.5)
	    bottom.SetTopMargin(0.02)
	    bottom.SetBottomMargin(0.2)
	    bottom.Draw()

	    top.cd()
	    frame_top = TH1D("frame_top", "frame_top", 100, 526, 1500)
	    frame_top.GetXaxis().SetTitleSize(0)
	    frame_top.GetXaxis().SetLabelSize(0)
	    frame_top.GetYaxis().SetLabelSize(0.04)
            frame_top.GetYaxis().SetTitleSize(0.04)
            frame_top.GetYaxis().SetTitle("Events")
	    frame_top.SetMaximum(1000.)
	    frame_top.SetMinimum(0.1)
	    frame_top.Draw("axis")
            mframe.Draw("p e1 same")

            bottom.cd()
	    frame_bottom = TH1D("frame_bottom", "frame_bottom", 100, 526, 1500)
            frame_bottom.GetXaxis().SetTitle("m_{jj} [GeV]")
	    frame_bottom.GetYaxis().SetTitle("Pull")

  	    frame_bottom.GetXaxis().SetLabelSize(0.04)
	    frame_bottom.GetXaxis().SetTitleSize(0.06)
	    frame_bottom.GetXaxis().SetLabelOffset(0.01)
	    frame_bottom.GetXaxis().SetTitleOffset(1.1)

	    frame_bottom.GetYaxis().SetLabelSize(0.04)
	    frame_bottom.GetYaxis().SetTitleSize(0.04)
	    frame_bottom.GetYaxis().SetTitleOffset(0.85)

	    frame_bottom.SetMaximum(4.)
            frame_bottom.SetMinimum(-3.)

	    frame_bottom.Draw("axis")

	    zero = TLine(526., 0., 1500., 0.)
	    zero.SetLineColor(ROOT.EColor.kBlack)
	    zero.SetLineStyle(1)
	    zero.SetLineWidth(2)
	    zero.Draw("same")

	    # Ratio histogram with no errors (not so well defined, since this isn't a well-defined efficiency)
	    newHist = mframe.getHist("data")
	    curve = mframe.getObject(1)
	    hresid = newHist.makePullHist(curve,kTRUE)
	    resframe = mjj.frame()
	    mframe.SetAxisRange(526.,1500.)
	    resframe.addPlotable(hresid,"B X")
	    resframe.Draw("same")
	    canvas.cd()
	    canvas.SaveAs("testdouble.pdf")
		

	    if args.pyes:
	    	c = TCanvas("c","c",800,800)
		mframe.SetAxisRange(300.,1300.)
	    	c.SetLogy()
#	    	mframe.SetMaximum(10)
#	    	mframe.SetMinimum(1)
	    	mframe.Draw()
	    	fitname = args.pdir+'/5funcfit_m'+str(mass)+fstr+'.pdf'
	    	c.SaveAs(fitname)

	        cpull = TCanvas("cpull","cpull",800,800)
	    	pulls = mframe.pullHist("data","model3")
	    	pulls.Draw("ABX")
	   	pullname = args.pdir+'/pull_m'+str(mass)+fstr+'.pdf'
	    	cpull.SaveAs(pullname)

		cpull2 = TCanvas("cpull2","cpull2",800,800)
                pulls2 = mframe.pullHist("setonedata","model1")
                pulls2.Draw("ABX")
                pull2name = args.pdir+'/pull2_m'+str(mass)+fstr+'.pdf'
                cpull2.SaveAs(pull2name)

	    if args.widefit:	
		mframew = mjj.frame()
    	        rooDataHist2.plotOn(mframew, ROOT.RooFit.Name("data"))
                res6 = model.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            	model.plotOn(mframew, ROOT.RooFit.Name("model1"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kRed))
            	res7 = model2.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            	model2.plotOn(mframew, ROOT.RooFit.Name("model2"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kOrange))
            	res8 = model3.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            	model3.plotOn(mframew, ROOT.RooFit.Name("model3"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kGreen))
            	res9 = model4.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            	model4.plotOn(mframew, ROOT.RooFit.Name("model4"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kBlue))
            	res10 = model5.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            	model5.plotOn(mframew, ROOT.RooFit.Name("model5"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kViolet))

                if args.pyes:
                    c = TCanvas("c","c",800,800)
                    mframew.SetAxisRange(300.,1300.)
                    c.SetLogy()
#                   mframew.SetMaximum(10)
#                   mframew.SetMinimum(1)
                    mframew.Draw()
                    fitname = args.pdir+'/5funcfittowide_m'+str(mass)+fstr+'.pdf'
		    c.SaveAs(fitname)

                    cpull = TCanvas("cpull","cpull",800,800)
                    pulls = mframew.pullHist("data","model1")
                    pulls.Draw("ABX")
                    pullname = args.pdir+'/pullwidefit_m'+str(mass)+fstr+'.pdf'
                    cpull.SaveAs(pullname)


	    if args.chi2:
		    fullInt = model.createIntegral(RooArgSet(mjj))
		    norm = dataInt/fullInt.getVal()
		    chi1 = 0.
		    fullInt2 = model2.createIntegral(RooArgSet(mjj))
        	    norm2 = dataInt2/fullInt2.getVal()
	      	    chi2 = 0.
		    fullInt3 = model3.createIntegral(RooArgSet(mjj))
       		    norm3 = dataInt3/fullInt3.getVal()
	            chi3 = 0.
		    fullInt4 = model4.createIntegral(RooArgSet(mjj))
       		    norm4 = dataInt4/fullInt4.getVal()
         	    chi4 = 0.
		    fullInt5 = model5.createIntegral(RooArgSet(mjj))
	            norm5 = dataInt5/fullInt5.getVal()
     	            chi5 = 0.
		    for i in range(args.massMin, args.massMax):
        	        new = 0
			new2 = 0
			new3 = 0
			new4 = 0
			new5 = 0
			height = hData.GetBinContent(i)
	        	xLow = hData.GetXaxis().GetBinLowEdge(i)
			xUp = hData.GetXaxis().GetBinLowEdge(i+1)
			obs = height*(xUp-xLow)
			mjj.setRange("intrange",xLow,xUp)
			integ = model.createIntegral(RooArgSet(mjj),ROOT.RooFit.NormSet(RooArgSet(mjj)),ROOT.RooFit.Range("intrange"))
			exp = integ.getVal()*norm
			new = pow(exp-obs,2)/exp
                	chi1 = chi1 + new
			integ2 = model2.createIntegral(RooArgSet(mjj),ROOT.RooFit.NormSet(RooArgSet(mjj)),ROOT.RooFit.Range("intrange"))
                	exp2 = integ2.getVal()*norm2
                	new2 = pow(exp2-obs,2)/exp2
                	chi2 = chi2 + new2
			integ3 = model3.createIntegral(RooArgSet(mjj),ROOT.RooFit.NormSet(RooArgSet(mjj)),ROOT.RooFit.Range("intrange"))
                	exp3 = integ3.getVal()*norm3
                	new3 = pow(exp3-obs,2)/exp3
                	chi3 = chi3 + new3
			integ4 = model4.createIntegral(RooArgSet(mjj),ROOT.RooFit.NormSet(RooArgSet(mjj)),ROOT.RooFit.Range("intrange"))
                	exp4 = integ4.getVal()*norm4
			if exp4 != 0:
                	    new4 = pow(exp4-obs,2)/exp4
                	else:
			    new4 = 0
			chi4 = chi4 + new4
			integ5 = model5.createIntegral(RooArgSet(mjj),ROOT.RooFit.NormSet(RooArgSet(mjj)),ROOT.RooFit.Range("intrange"))
                	exp5 = integ5.getVal()*norm5
                	new5 = pow(exp5-obs,2)/exp5
                	chi5 = chi5 + new5
	    	    print "chi1 %d "%(chi1)
	    	    print "chi2 %d "%(chi2)
	    	    print "chi3 %d "%(chi3)
	    	    print "chi4 %d "%(chi4)
	    	    print "chi5 %d "%(chi5)

	    if not args.decoBkg: 
		print " "
		res.Print()
#	        res2.Print()
#		res3.Print()
#		res4.Print()
#		res5.Print()
#		res6.Print()
#		res7.Print()

            # decorrelated background parameters for Bayesian limits
            if args.decoBkg:
                signal_norm.setConstant()
                res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
                res.Print()
                ## temp workspace for the PDF diagonalizer
                w_tmp = RooWorkspace("w_tmp")
                deco = PdfDiagonalizer("deco",w_tmp,res)
                # here diagonalizing only the shape parameters since the overall normalization is already decorrelated
                background_deco = deco.diagonalize(background)
                print "##################### workspace for decorrelation"
                w_tmp.Print("v")
                print "##################### original parameters"
                background.getParameters(rooDataHist).Print("v")
                print "##################### decorrelated parameters"
                # needed if want to evaluate limits without background systematics
                if args.fixBkg:
                    w_tmp.var("deco_eig1").setConstant()
                    w_tmp.var("deco_eig2").setConstant()
                    if not args.fixP3: w_tmp.var("deco_eig3").setConstant()
                background_deco.getParameters(rooDataHist).Print("v")
                print "##################### original pdf"
                background.Print()
                print "##################### decorrelated pdf"
                background_deco.Print()
                # release signal normalization
                signal_norm.setConstant(kFALSE)
                # set the background normalization range to +/- 5 sigma
                bkg_val = background_norm.getVal()
                bkg_error = background_norm.getError()
                background_norm.setMin(bkg_val-5*bkg_error)
                background_norm.setMax(bkg_val+5*bkg_error)
                background_norm.Print()
                # change background PDF names
                background.SetName("background_old")
                background_deco.SetName("background")

        # needed if want to evaluate limits without background systematics
        if args.fixBkg:
            background_norm.setConstant()
            p1.setConstant()
            p2.setConstant()
            p3.setConstant()

        # -----------------------------------------
        # dictionaries holding systematic variations of the signal shape
        hSig_Syst = {}
        hSig_Syst_DataHist = {}
        sigCDF = TGraph(hSig.GetNbinsX()+1)

        # JES and JER uncertainties
        if args.jesUnc != None or args.jerUnc != None:

            sigCDF.SetPoint(0,0.,0.)
            integral = 0.
            for i in range(1, hSig.GetNbinsX()+1):
                x = hSig.GetXaxis().GetBinLowEdge(i+1)
                integral = integral + hSig.GetBinContent(i)
                sigCDF.SetPoint(i,x,integral)

        if args.jesUnc != None:
            hSig_Syst['JESUp'] = copy.deepcopy(hSig)
            hSig_Syst['JESDown'] = copy.deepcopy(hSig)

        if args.jerUnc != None:
            hSig_Syst['JERUp'] = copy.deepcopy(hSig)
            hSig_Syst['JERDown'] = copy.deepcopy(hSig)

        # reset signal histograms
        for key in hSig_Syst.keys():
            hSig_Syst[key].Reset()
            hSig_Syst[key].SetName(hSig_Syst[key].GetName() + '_' + key)

        # produce JES signal shapes
        if args.jesUnc != None:
            for i in range(1, hSig.GetNbinsX()+1):
                xLow = hSig.GetXaxis().GetBinLowEdge(i)
                xUp = hSig.GetXaxis().GetBinLowEdge(i+1)
                jes = 1. - args.jesUnc
                xLowPrime = jes*xLow
                xUpPrime = jes*xUp
                hSig_Syst['JESUp'].SetBinContent(i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime))
                jes = 1. + args.jesUnc
                xLowPrime = jes*xLow
                xUpPrime = jes*xUp
                hSig_Syst['JESDown'].SetBinContent(i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime))
            hSig_Syst_DataHist['JESUp'] = RooDataHist('hSig_JESUp','hSig_JESUp',RooArgList(mjj),hSig_Syst['JESUp'])
            hSig_Syst_DataHist['JESDown'] = RooDataHist('hSig_JESDown','hSig_JESDown',RooArgList(mjj),hSig_Syst['JESDown'])
	    
	    if args.jyes:
		c2 = TCanvas("c2","c2",800,800)
	    	mframe2 = mjj.frame(ROOT.RooFit.Title("JES One Sigma Shifts"))
	    	mframe2.SetAxisRange(525.,1200.)
		hSig_Syst_DataHist['JESUp'].plotOn(mframe2, ROOT.RooFit.Name("JESUP"),ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kRed), ROOT.RooFit.LineColor(ROOT.EColor.kRed))
	    	hSig_Syst_DataHist['JESDown'].plotOn(mframe2,ROOT.RooFit.Name("JESDOWN"),ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kBlue), ROOT.RooFit.LineColor(ROOT.EColor.kBlue))
	    	rooSigHist.plotOn(mframe2, ROOT.RooFit.DataError(2),ROOT.RooFit.Name("SIG"),ROOT.RooFit.DrawOption("L"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kGreen), ROOT.RooFit.LineColor(ROOT.EColor.kGreen))
	    	mframe2.Draw()
		mframe2.GetXaxis().SetTitle("Dijet Mass (GeV)")
		leg = TLegend(0.7,0.8,0.9,0.9)
		leg.AddEntry(mframe2.findObject("SIG"),"Signal Model","l")
		leg.AddEntry(mframe2.findObject("JESUP"),"+1 Sigma","l")
		leg.AddEntry(mframe2.findObject("JESDOWN"),"-1 Sigma","l")
		leg.Draw()
	    	jesname = args.pdir+'/jes_m'+str(mass)+fstr+'.pdf'
	    	c2.SaveAs(jesname)

        # produce JER signal shapes
        if args.jesUnc != None:
            for i in range(1, hSig.GetNbinsX()+1):
                xLow = hSig.GetXaxis().GetBinLowEdge(i)
                xUp = hSig.GetXaxis().GetBinLowEdge(i+1)
                jer = 1. - args.jerUnc
                xLowPrime = jer*(xLow-float(mass))+float(mass)
                xUpPrime = jer*(xUp-float(mass))+float(mass)
                hSig_Syst['JERUp'].SetBinContent(i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime))
                jer = 1. + args.jerUnc
                xLowPrime = jer*(xLow-float(mass))+float(mass)
                xUpPrime = jer*(xUp-float(mass))+float(mass)
                hSig_Syst['JERDown'].SetBinContent(i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime))
            hSig_Syst_DataHist['JERUp'] = RooDataHist('hSig_JERUp','hSig_JERUp',RooArgList(mjj),hSig_Syst['JERUp'])
            hSig_Syst_DataHist['JERDown'] = RooDataHist('hSig_JERDown','hSig_JERDown',RooArgList(mjj),hSig_Syst['JERDown'])

	    if args.jyes:
	    	c3 = TCanvas("c3","c3",800,800)
            	mframe3 = mjj.frame(ROOT.RooFit.Title("JER One Sigma Shifts"))
	    	mframe3.SetAxisRange(525.,1200.)
		hSig_Syst_DataHist['JERUp'].plotOn(mframe3,ROOT.RooFit.Name("JERUP"),ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kRed), ROOT.RooFit.LineColor(ROOT.EColor.kRed))
            	hSig_Syst_DataHist['JERDown'].plotOn(mframe3,ROOT.RooFit.Name("JERDOWN"),ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kBlue), ROOT.RooFit.LineColor(ROOT.EColor.kBlue))
            	rooSigHist.plotOn(mframe3,ROOT.RooFit.DrawOption("L"),ROOT.RooFit.Name("SIG"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kGreen), ROOT.RooFit.LineColor(ROOT.EColor.kGreen))
            	mframe3.Draw()
	    	mframe3.GetXaxis().SetTitle("Dijet Mass (GeV)")
		leg = TLegend(0.7,0.8,0.9,0.9)
                leg.AddEntry(mframe3.findObject("SIG"),"Signal Model","l")
                leg.AddEntry(mframe3.findObject("JERUP"),"+1 Sigma","l")
                leg.AddEntry(mframe3.findObject("JERDOWN"),"-1 Sigma","l")
                leg.Draw()	
		jername = args.pdir+'/jer_m'+str(mass)+fstr+'.pdf'
           	c3.SaveAs(jername)


        # -----------------------------------------
        # create a datacard and corresponding workspace
        postfix = (('_' + args.postfix) if args.postfix != '' else '')
        dcName = 'datacard_' + args.final_state + '_m' + str(mass) + postfix + '.txt'
        wsName = 'workspace_' + args.final_state + '_m' + str(mass) + postfix + '.root'

        w = RooWorkspace('w','workspace')
        getattr(w,'import')(rooSigHist,RooFit.Rename("signal"))
        if args.jesUnc != None:
            getattr(w,'import')(hSig_Syst_DataHist['JESUp'],RooFit.Rename("signal__JESUp"))
            getattr(w,'import')(hSig_Syst_DataHist['JESDown'],RooFit.Rename("signal__JESDown"))
        if args.jerUnc != None:
            getattr(w,'import')(hSig_Syst_DataHist['JERUp'],RooFit.Rename("signal__JERUp"))
            getattr(w,'import')(hSig_Syst_DataHist['JERDown'],RooFit.Rename("signal__JERDown"))
        if args.decoBkg:
            getattr(w,'import')(background_deco,ROOT.RooCmdArg())
        else:
            getattr(w,'import')(background,ROOT.RooCmdArg(),RooFit.Rename("background"))

	#if use different fits for shape uncertainties
	#getattr(w,'import')(,ROOT.RooCmdArg(),RooFit.Rename("background__bkgUp"))
	#getattr(w,'import')(,ROOT.RooCmdArg(),RooFit.Rename("background__bkgDown"))
	
	getattr(w,'import')(background_norm,ROOT.RooCmdArg())
        getattr(w,'import')(rooDataHist,RooFit.Rename("data_obs"))
        w.Print()
        w.writeToFile(os.path.join(args.output_path,wsName))

	beffUnc = 0.3
	boffUnc = 0.06

        datacard = open(os.path.join(args.output_path,dcName),'w')
        datacard.write('imax 1\n')
        datacard.write('jmax 1\n')
        datacard.write('kmax *\n')
        datacard.write('---------------\n')
        if args.jesUnc != None or args.jerUnc != None:
            datacard.write('shapes * * '+wsName+' w:$PROCESS w:$PROCESS__$SYSTEMATIC\n')
        else:
            datacard.write('shapes * * '+wsName+' w:$PROCESS\n')
        datacard.write('---------------\n')
        datacard.write('bin 1\n')
        datacard.write('observation -1\n')
        datacard.write('------------------------------\n')
        datacard.write('bin          1          1\n')
        datacard.write('process      signal     background\n')
        datacard.write('process      0          1\n')
        datacard.write('rate         -1         1\n')
        datacard.write('------------------------------\n')
        datacard.write('lumi  lnN    %f         -\n'%(1.+args.lumiUnc))
	datacard.write('beff  lnN    %f         -\n'%(1.+beffUnc))
	datacard.write('boff  lnN    %f         -\n'%(1.+boffUnc))
	datacard.write('bkg   lnN     -         1.03\n')
        if args.jesUnc != None:
            datacard.write('JES  shape   1          -\n')
        if args.jerUnc != None:
            datacard.write('JER  shape   1          -\n')
        # flat parameters --- flat prior
        datacard.write('background_norm  flatParam\n')
        if args.decoBkg:
            datacard.write('deco_eig1  flatParam\n')
            datacard.write('deco_eig2  flatParam\n')
            if not args.fixP3: datacard.write('deco_eig3  flatParam\n')
        else:
            datacard.write('p1  flatParam\n')
            datacard.write('p2  flatParam\n')
            if not args.fixP3: datacard.write('p3  flatParam\n')
        datacard.close()


    print '>> Datacards and workspaces created and stored in %s/'%( os.path.join(os.getcwd(),args.output_path) )
コード例 #9
0
dataHist_data=RooDataHist("RooDataHist","RooDataHist",RooArgList(x),hDat)

if fitSig: 

    # define parameters for signal fit
    m = RooRealVar('mean','mean',float(mass),float(mass)-200,float(mass)+200)
    s = RooRealVar('sigma','sigma',0.1*float(mass),0,10000)
    a = RooRealVar('alpha','alpha',1,-10,10)
    n = RooRealVar('n','n',1,0,100)
    sig = RooCBShape('sig','sig',x,m,s,a,n)        

    p  = RooRealVar('p','p',1,0,5)
    x0 = RooRealVar('x0','x0',1000,100,5000)

    bkg = RooGenericPdf('bkg','1/(exp(pow(@0/@1,@2))+1)',RooArgList(x,x0,p))

    fsig= RooRealVar('fsig','fsig',0.5,0.,1.)
    signal = RooAddPdf('signal','signal',sig,bkg,fsig)

    # -----------------------------------------
    # fit signal
    canSname = 'can_Mjj'+str(mass)
    canS = TCanvas(canSname,canSname,900,600)
    gPad.SetLogy() 

    roohistSig = RooDataHist('roohist','roohist',RooArgList(x),hSig)

    roohistSig.Print() 
    res_sig = signal.fitTo(roohistSig, RooFit.Save(ROOT.kTRUE))
    res_sig.Print()
コード例 #10
0
fit_max = 1.04
#First Gaussian PDF
Mkk = RooRealVar("Mkk", "Mkk", fit_min, fit_max)
mean1 = RooRealVar("mean1", "Mean of Gaussian 1", 1.01944, 1.01, 1.03)
sigma1 = RooRealVar("sigma1", "Width of Gaussian 1", 0.00222, 0.0001, 0.01)
gauss1 = RooGaussian("gauss1", "gauss1(Mkk,mean1,sigma1)", Mkk, mean1, sigma1)

# Second Gaussian PDF
mean2 = RooRealVar("mean2", "Mean of Gaussian 2", 1.02052, 1.0, 1.1)
sigma2 = RooRealVar("sigma2", "Width of Gaussian 2", 0.0072, 0.001, 1)

gauss2 = RooGaussian("gauss2", "gauss1(Mkk,mean2,sigma2)", Mkk, mean2, sigma2)
r2 = RooRealVar("r2", "ratio of width of gaussian 2", 3.2, 0, 10)

customGaussR = RooGenericPdf(
    "customGaussR", "custom PDF build",
    "1/(sigma1*r2) * exp(- (Mkk - mean2)**2 / (2 * (sigma1*r2) ** 2))",
    RooArgList(Mkk, mean2, sigma1, r2))

# faster method:
r_sigma2 = RooFormulaVar("r_sigma2", "sigma1 * r2", RooArgList(sigma1, r2))
gauss2R = RooGaussian("gauss2R", "gauss1(Mkk,mean2,sigma2)", Mkk, mean2,
                      r_sigma2)

toyDataCustom = customGaussR.generate(RooArgSet(Mkk), 100000)
toyData = gauss2.generate(RooArgSet(Mkk), 100000)
toyDataR = gauss2R.generate(RooArgSet(Mkk), 100000)

c = TCanvas("c", "c", 800, 800)
frame1 = Mkk.frame(RooFit.Bins(50), RooFit.Title("Comparison of PDFs"))

# Plot all data tagged as passed sample
コード例 #11
0
##p2mod     = 4.99989      +/-  3.9569    (limited)
##p3mod     = 11.9997      +/-  0.529866  (limited)
##p4mod     = 2.02636      +/-  0.360492  (limited)
##p5mod     = 0.220746     +/-  0.0842075 (limited)

## dijet mass function
f_var = RooFormulaVar('f_var', 'f_var', '@0/13000.', RooArgList(J_Mass))

p1mod = RooRealVar('p1mod', 'p1mod', 0., 4000)
p2mod = RooRealVar('p2mod', 'p2mod', -2000., 2000.)
p3mod = RooRealVar('p3mod', 'p3mod', -1000, 1000.)
p4mod = RooRealVar('p4mod', 'p4mod', -100., 100.)
p5mod = RooRealVar('p5mod', 'p5mod', -200., 200.)
p6mod = RooRealVar('p6mod', 'p6mod', -10, 10.)

diJetMass = RooGenericPdf('diJetMass', "pow(1-@0,@2)/pow(@0, @1+@3*log(@0))",
                          RooArgList(f_var, p4mod, p2mod, p3mod))
diJetMass_2 = RooGenericPdf('diJetMass_2', "1.0/pow(@0,@1)",
                            RooArgList(f_var, p3mod))
diJetMass_3 = RooGenericPdf('diJetMass_3', "pow(1-@0,@1)/pow(@0,@2)",
                            RooArgList(f_var, p2mod, p3mod))
diJetMass_4 = RooGenericPdf('diJetMass_4',
                            "pow(1-@0,@1)/pow(@0, @2+@3*log(@0))",
                            RooArgList(f_var, p2mod, p3mod, p4mod))
diJetMass_5 = RooGenericPdf(
    'diJetMass_5', "pow(1-@0,@1)/pow(@0, @2+@3*log(@0)+@4*pow(log(@0),2))",
    RooArgList(J_Mass, p2mod, p3mod, p4mod, p5mod))

##polynomial of order 5
#diJetMass_5 = RooGenericPdf('diJetMass_5', "@1+@2*pow(@0,1)+@3*pow(@0,2)+@4*pow(@0,3)+@5*pow(@0,4)+@6*pow(@0,5)",RooArgList(J_Mass,p1mod,p2mod,p3mod,p4mod,p5mod,p6mod))
#diJetMass_5 = RooGenericPdf('diJetMass_5', "@1*pow(@0,1)+@2*pow(@0,2)+@3*pow(@0,3)+@4*pow(@0,4)+@5*pow(@0,5)",RooArgList(J_Mass,p2mod,p3mod,p4mod,p5mod,p6mod))
#x= RooRealVar("x","x", 500,1500)
コード例 #12
0
# 3. How to get variable binning (wider bins for longer lifetimes)? 

## Acceptance
# Note: Using a PDF to represent an acceptance is not rigorously
# correct, but it is acceptable in this context since we only want to
# determine the shape, which is to be later included in the PDF for
# the fit as a function.
if accfn == 'powerlaw':
    # Condition to ensure acceptance function is always +ve definite.
    # The first condition protects against the undefined nature of the
    # function for times less than 0. Whereas the second condition
    # ensures the 0.2 ps selection cut present in the sample is
    # incorporated into the model.
    acc_cond = '((@1-@2)<0 || @1<0.0002)'
    expr = '(1.-1./(1.+(@0*(@1-@2))**3))'
    PDF = RooGenericPdf('PDF', '%s ? 0 : %s' % (acc_cond, expr),
                               RooArgList(turnon, time, offset))
elif accfn == 'arctan':
    acc_cond = '(@0<0.0002)'
    expr = '(atan(@0*exp(@1*@0-@2)))'
    PDF = RooGenericPdf('PDF', '%s ? 0 : %s' % (acc_cond, expr),
                               RooArgList(time, turnon, offset))
elif accfn == 'erf':
    acc_cond = '(@1<0.0002)'
    expr = '(0.5*(TMath::Erf((@1-@2)/@0)+1))'
    PDF = RooGenericPdf('PDF', '%s ? 0 : %s' % (acc_cond, expr),
                               RooArgList(turnon, time, offset))
else:
    print 'Unknown acceptance type. Aborting'
    assert(False)

# Dataset to fit to
コード例 #13
0
ファイル: fits.py プロジェクト: anpicci/Stat
class fitFunc(object):
    pass

fitParam = {}

mT = RooRealVar(  "m_T",    "m_{T}",          1500., 3900., "GeV")





fitBDT0_2016 = fitFunc()
fitBDT0_2016.p1 = RooRealVar("CMS2016_BDT0_p1", "p1", -18.0947, -1000., 1000.)
fitBDT0_2016.p2 = RooRealVar("CMS2016_BDT0_p2", "p2", 22.8504, -10., 10.)
fitBDT0_2016.p3 = RooRealVar("CMS2016_BDT0_p3", "p3", 3.72973, -10., 10.)
fitBDT0_2016.modelBkg = RooGenericPdf("Bkg", "Bkg. fit (3 par.)", "pow(1 - @0/13000, @1) / pow(@0/13000, @2+@3*log(@0/13000))", RooArgList(mT, fitBDT0_2016.p1, fitBDT0_2016.p2, fitBDT0_2016.p3))

fitParam["BDT0_2016"] = fitBDT0_2016

fitBDT1_2016 = fitFunc()
fitBDT1_2016.p1 = RooRealVar("CMS2016_BDT1_p1", "p1",-13.1451, -1000., 1000.) 
fitBDT1_2016.p2 = RooRealVar("CMS2016_BDT1_p2", "p2", 13.1451, -10., 10.) 
fitBDT1_2016.p3 = RooRealVar("CMS2016_BDT1_p3", "p3", 2.91787, -10., 10.)
fitBDT1_2016.modelBkg = RooGenericPdf("Bkg", "Bkg. fit (3 par.)", "pow(1 - @0/13000, @1) / pow(@0/13000, @2+@3*log(@0/13000))", RooArgList(mT, fitBDT1_2016.p1, fitBDT1_2016.p2, fitBDT1_2016.p3))

fitParam["BDT1_2016"] = fitBDT1_2016

fitBDT2_2016 = fitFunc()
fitBDT2_2016.p1 = RooRealVar("CMS2016_BDT2_p1", "p1", 12.5899, -1000., 1000.)
fitBDT2_2016.p2 = RooRealVar("CMS2016_BDT2_p2", "p2", 6.71091, -10., 10.)
fitBDT2_2016.p3 = RooRealVar("CMS2016_BDT2_p3", "p3", 0.265957, -10., 10.)
コード例 #14
0
def fitChicSpectrum(dataset, binname):
    """ Fit chic spectrum"""

    x = RooRealVar('Qvalue', 'Q', 9.7, 10.1)
    x.setBins(80)

    mean_1 = RooRealVar("mean_1", "mean ChiB1", 9.892, 9, 10, "GeV")
    sigma_1 = RooRealVar("sigma_1", "sigma ChiB1", 0.0058, 'GeV')
    a1_1 = RooRealVar('#alpha1_1', '#alpha1_1', 0.748)
    n1_1 = RooRealVar('n1_1', 'n1_1', 2.8)
    a2_1 = RooRealVar('#alpha2_1', '#alpha2_1', 1.739)
    n2_1 = RooRealVar('n2_1', 'n2_1', 3.0)

    deltam = RooRealVar('deltam', 'deltam', 0.01943)

    mean_2 = RooFormulaVar("mean_2", "@0+@1", RooArgList(mean_1, deltam))
    sigma_2 = RooRealVar("sigma_2", "sigma ChiB2", 0.0059, 'GeV')
    a1_2 = RooRealVar('#alpha1_2', '#alpha1_2', 0.738)
    n1_2 = RooRealVar('n1_2', 'n1_2', 2.8)
    a2_2 = RooRealVar('#alpha2_2', '#alpha2_2', 1.699)
    n2_2 = RooRealVar('n2_2', 'n2_2', 3.0)

    parameters = RooArgSet()

    parameters.add(RooArgSet(sigma_1, sigma_2))
    parameters = RooArgSet(a1_1, a2_1, n1_1, n2_1)
    parameters.add(RooArgSet(a1_2, a2_2, n1_2, n2_2))

    chib1_pdf = My_double_CB('chib1', 'chib1', x, mean_1, sigma_1, a1_1, n1_1,
                             a2_1, n2_1)
    chib2_pdf = My_double_CB('chib2', 'chib2', x, mean_2, sigma_2, a1_2, n1_2,
                             a2_2, n2_2)

    #background
    q01S_Start = 9.5
    alpha = RooRealVar("#alpha", "#alpha", 1.5, -1, 3.5)  #0.2 anziche' 1
    beta = RooRealVar("#beta", "#beta", -2.5, -7., 0.)
    q0 = RooRealVar("q0", "q0", q01S_Start)  #,9.5,9.7)
    delta = RooFormulaVar("delta", "TMath::Abs(@0-@1)", RooArgList(x, q0))
    b1 = RooFormulaVar("b1", "@0*(@1-@2)", RooArgList(beta, x, q0))
    signum1 = RooFormulaVar("signum1", "( TMath::Sign( -1.,@0-@1 )+1 )/2.",
                            RooArgList(x, q0))

    background = RooGenericPdf("background", "Background",
                               "signum1*pow(delta,#alpha)*exp(b1)",
                               RooArgList(signum1, delta, alpha, b1))

    parameters.add(RooArgSet(alpha, beta, q0))

    #together
    chibs = RooArgList(chib1_pdf, chib2_pdf, background)

    n_chib = RooRealVar("n_chib", "n_chib", 2075, 0, 100000)
    ratio_21 = RooRealVar("ratio_21", "ratio_21", 0.5, 0, 1)
    n_chib1 = RooFormulaVar("n_chib1", "@0/(1+@1)",
                            RooArgList(n_chib, ratio_21))
    n_chib2 = RooFormulaVar("n_chib2", "@0/(1+1/@1)",
                            RooArgList(n_chib, ratio_21))
    n_background = RooRealVar('n_background', 'n_background', 4550, 0, 50000)
    ratio_list = RooArgList(n_chib1, n_chib2, n_background)

    modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list)

    frame = x.frame(RooFit.Title('m'))
    range = x.setRange('range', 9.7, 10.1)
    result = modelPdf.fitTo(dataset, RooFit.Save(), RooFit.Range('range'))
    dataset.plotOn(frame, RooFit.MarkerSize(0.7))

    modelPdf.plotOn(frame, RooFit.LineWidth(2))

    #plotting
    canvas = TCanvas('fit', "", 1400, 700)
    canvas.Divide(1)
    canvas.cd(1)
    gPad.SetRightMargin(0.3)
    gPad.SetFillColor(10)
    modelPdf.paramOn(frame, RooFit.Layout(0.725, 0.9875, 0.9))
    frame.Draw()
    canvas.SaveAs('out-' + binname + '.png')
コード例 #15
0
ファイル: chibFit3S.py プロジェクト: emanueleusai/usercode
def dofit(roodataset, hname):

    mass_chib = 10.5103  # from PES uncorrected mass measurement

    deltaM = 0.0105  #  MeV theoretical expectations
    ratio21 = 0.45  # same as chic2/chic1 and chib2/chib1

    # the following numbers are from an old 3P gun simulation
    # that needs to be re-done

    sigma1 = 0.003  #0.0031
    sigma2 = 0.003  #0.0035

    alpha1 = 0.95
    alpha2 = 1.12

    n = 2.5

    mass1_v = RooRealVar('mchi1', 'm_{#chi1}', mass_chib)
    deltaM_v = RooRealVar('deltaM', '#Delta_{m}', deltaM, 0.005, 0.015)
    mass2_v = RooFormulaVar('mchi2', '@0+@1', RooArgList(mass1_v, deltaM_v))
    sigma1_v = RooRealVar('sigma1', '#sigma_1', sigma1)
    sigma2_v = RooRealVar('sigma2', '#sigma_2', sigma2)

    alpha1_v = RooRealVar('alpha1', '#alpha_1', alpha1)
    alpha2_v = RooRealVar('alpha2', '#alpha_2', alpha2)

    n_v = RooRealVar('n', 'n', n)

    ratio21_v = RooRealVar('ratio21', 'r_{21}', ratio21)

    x = RooRealVar("invm3S", "#chi_{b} Data", 10.4, 10.7)

    # choose here binning of mass plot
    x.setBins(150)

    #signal pdf
    chib1 = RooCBShape('chib1', 'chib1', x, mass1_v, sigma1_v, alpha1_v, n_v)
    chib2 = RooCBShape('chib2', 'chib2', x, mass2_v, sigma2_v, alpha2_v, n_v)

    # define background
    q01S_Start = 10.4
    alpha = RooRealVar("#alpha", "#alpha", 1.5, 0.2, 3.5)
    beta = RooRealVar("#beta", "#beta", -2.5, -7., 0.)
    #q0   =      RooRealVar("q0","q0",q01S_Start,q01S_Start-0.05,q01S_Start+0.05)
    q0 = RooRealVar("q0", "q0", q01S_Start)
    delta = RooFormulaVar("delta", "TMath::Abs(@0-@1)", RooArgList(x, q0))
    b1 = RooFormulaVar("b1", "@0*(@1-@2)", RooArgList(beta, x, q0))
    signum1 = RooFormulaVar("signum1", "( TMath::Sign( -1.,@0-@1 )+1 )/2.",
                            RooArgList(x, q0))

    background = RooGenericPdf("background", "Background",
                               "signum1*pow(delta,#alpha)*exp(b1)",
                               RooArgList(signum1, delta, alpha, b1))

    n_evts_1 = RooRealVar('N_{3P_{1}}', 'N_{3P_{1}}', 50, 30, 1000)
    n_evts_2 = RooFormulaVar('N_{3P_{2}}', '@0*@1',
                             RooArgList(n_evts_1, ratio21_v))
    n_bck = RooRealVar('nbkg', 'n_{bkg}', 500, 0, 100000)

    #build final pdf
    modelPdf = RooAddPdf('ModelPdf', 'ModelPdf',
                         RooArgList(chib1, chib2, background),
                         RooArgList(n_evts_1, n_evts_2, n_bck))

    # fit
    low_cut = x.setRange("low_cut", 10.4, 10.7)
    result = modelPdf.fitTo(roodataset, RooFit.Save(), RooFit.Range("low_cut"))

    frame = x.frame(RooFit.Title("m(#chi_{b}(3P))"))
    roodataset.plotOn(frame, RooFit.MarkerSize(0.7))
    modelPdf.plotOn(frame, RooFit.LineWidth(1))

    modelPdf.plotOn(frame, RooFit.LineWidth(2))

    frame.GetXaxis().SetTitle(
        'm_{#gamma #mu^{+} #mu^{-}} - m_{#mu^{+} #mu^{-}} + m^{PDG}_{#Upsilon(3S)}  [GeV/c^{2}]'
    )
    #frame.GetYaxis().SetTitle( "Events/15.0 MeV " )
    frame.GetXaxis().SetTitleSize(0.04)
    frame.GetYaxis().SetTitleSize(0.04)
    frame.GetXaxis().SetTitleOffset(1.1)
    frame.GetXaxis().SetLabelSize(0.04)
    frame.GetYaxis().SetLabelSize(0.04)

    frame.SetLineWidth(1)
    frame.SetName("fit_resonance")

    chi2 = frame.chiSquare()
    chi2 = round(chi2, 2)
    leg = TLegend(0.50, 0.7, 0.60, 0.8)
    leg.AddEntry(0, '#chi^{2} =' + str(chi2), '')
    leg.SetBorderSize(0)
    leg.SetFillColor(0)
    leg.SetTextSize(0.06)

    gROOT.SetStyle("Plain")

    frame.SaveAs(str(hname) + '.root')

    #   param_set = RooArgSet(n_evts_Roo4, m_chib[1][3],alpha, beta, q0)

    canvas = TCanvas('fit', "", 1400, 700)
    canvas.Divide(1)
    canvas.cd(1)
    gPad.SetRightMargin(0.3)
    gPad.SetFillColor(10)
    #   modelPdf.paramOn(frame, RooFit.Layout(0.725,0.9875,0.9), RooFit.Parameters(param_set))
    modelPdf.paramOn(frame, RooFit.Layout(0.725, 0.9875, 0.9))
    frame.Draw()
    leg.Draw("same")
    canvas.SaveAs(str(hname) + '.png')
コード例 #16
0
# J/psi PDF mass for m0 taken as TDatabasePDG::Instance()->GetParticle( 443 )->Mass()
m0 = RooRealVar("m0", "mass", 3.09692, 3., 3.15)
n = RooRealVar("n", "n", 2, 0., 20.)
sig = RooRealVar("sig", "resolution", 0.1, 0.001, 0.2)
alpha = RooRealVar("alpha", "alpha", 0.3, 0.1, 4.1)
cb = RooCBShape("cb", "Crystal Ball PDF", m, m0, sig, alpha, n)

#_____________________________________________________________________________
#Background function
lam = RooRealVar("lambda", "Exponent", -0.6, -10., 0.)
c1 = RooRealVar("c1", "c1", 1.5, 0.5, 2.5)
c2 = RooRealVar("c2", "c2", 0.04, -1., 1.)
bkg_func = "TMath::Abs(jRecM-c1)*TMath::Exp(lambda*(jRecM-c1)*(jRecM-c1)+c2*(jRecM-c1)*(jRecM-c1)*(jRecM-c1))"
#bkg_func = "TMath::Abs(jRecM-c1)*TMath::Exp(lambda*(jRecM-c1)*(jRecM-c1)+c2*jRecM*jRecM*jRecM)"
#abs() is to prevent error messages about negative values below the fit range
bkgd = RooGenericPdf("Background", bkg_func, RooArgList(m, lam, c1, c2))
#version for plotting with fixed parameters
lamF = RooRealVar("lambdaF", "lambdaF", -2.422)
c1f = RooRealVar("c1f", "c1f", 1.227)
c2f = RooRealVar("c2f", "c2f", 0.240)
bkg_func_f = "TMath::Abs(jRecM-c1f)*TMath::Exp(lambdaF*(jRecM-c1f)*(jRecM-c1f)+c2f*(jRecM-c1f)*(jRecM-c1f)*(jRecM-c1f))"
#bkg_func_f = "TMath::Abs(jRecM-c1f)*TMath::Exp(lambdaF*(jRecM-c1f)*(jRecM-c1f)+c2f*jRecM*jRecM*jRecM)"
bkgd_f = RooGenericPdf("Background_f", bkg_func_f, RooArgList(m, lamF, c1f, c2f))







コード例 #17
0
def shapeCards(datahistosFile, histosFile, signalFile, signalSample, hist,
               signalMass, minMass, maxMass, outputName, outputFileTheta):
    """function to run Roofit and save workspace for RooStats"""
    warnings.filterwarnings(
        action='ignore',
        category=RuntimeWarning,
        message='.*class stack<RooAbsArg\*,deque<RooAbsArg\*> >')

    ############################################################# DATA
    #hData = histosFile.Get('massAve_deltaEtaDijet_QCDPtAll')
    #hData = datahistosFile.Get('massAve_prunedMassAsymVsdeltaEtaDijet_DATA_ABCDProj')
    dataFile = TFile(datahistosFile)
    hData = dataFile.Get(hist + '_DATA')
    hData.Rebin(args.reBin)
    #hData = hData.Rebin( len( boostedMassAveBins )-1, hData.GetName(), boostedMassAveBins )
    #hData = histosFile.Get(hist+'_QCDPtAll_A')
    #hData.Add(htmpSignal)
    #hData.Scale(1/hData.Integral())
    #maxMass = boostedMassAveBins[ hData.FindLastBinAbove( 0, 1) ]
    #minMass = signalMass-30
    #maxMass = signalMass+30
    massAve = RooRealVar('massAve', 'massAve', minMass, maxMass)
    #massAveData = RooRealVar( 'massAveData', 'massAveData', minMass, maxMass  )
    rooDataHist = RooDataHist('rooDatahist', 'rooDatahist',
                              RooArgList(massAve),
                              hData)  # if isData else hPseudo )
    rooDataHist.Print()
    ############################################################################################

    ####################### Signal
    if 'gaus' in args.job:
        hSignal = TH1F('massAve_RPVStop', 'massAve_RPVStop',
                       maxMass / args.reBin, minMass, maxMass)
        for q in range(hSignal.GetNbinsX() + 1):
            gausEval = signalFile.Eval(hSignal.GetXaxis().GetBinCenter(q))
            hSignal.SetBinContent(q, gausEval)

        #meanSig = RooRealVar( 'meanSig', 'mean of signal', sigGaus.GetParameter( 1 ) )
        #sigmaSig = RooRealVar( 'sigmaSig', 'sigma of signal', sigGaus.GetParameter( 2 ) )
        #signalPdf = RooGaussian( 'signal', 'signal', massAve, meanSig, sigmaSig )
        #signalPdf.Print()
    else:
        signalHistosFile = TFile(signalFile)
        hSignal = signalHistosFile.Get(hist + '_' + signalSample)
        hSignal.Rebin(args.reBin)
    hSignal.Scale(twoProngSF)

    signalXS = search(dictXS, 'RPVStopStopToJets_UDD312_M-' + str(signalMass))
    rooSigHist = RooDataHist('rooSigHist', 'rooSigHist', RooArgList(massAve),
                             hSignal)
    sigAcc = rooSigHist.sumEntries(
    )  #round(hSignal.Integral( hSignal.GetXaxis().FindBin( minMass ), hSignal.GetXaxis().FindBin( maxMass )), 2)
    rooSigHist.Print()

    #signal = RooHistPdf('signal','signal',RooArgSet(massAve),rooSigHist)
    #signal.Print()
    #signal_norm = RooRealVar('signal_norm','signal_norm',0,-1e+04,1e+04)
    #if args.fitBonly: signal_norm.setConstant()
    #signal_norm.Print()

    #####################################################################
    hSigSyst = signalUnc(hSignal, signalMass)
    hSigSystDataHist = {}
    if args.jesUnc:
        hSigSystDataHist['JESUp'] = RooDataHist('hSignalJESUp', 'hSignalJESUp',
                                                RooArgList(massAve),
                                                hSigSyst['JESUp'])
        hSigSystDataHist['JESDown'] = RooDataHist('hSignalJESDown',
                                                  'hSignalJESDown',
                                                  RooArgList(massAve),
                                                  hSigSyst['JESDown'])

    if args.jerUnc:
        hSigSystDataHist['JERUp'] = RooDataHist('hSignalJERUp', 'hSignalJERUp',
                                                RooArgList(massAve),
                                                hSigSyst['JERUp'])
        hSigSystDataHist['JERDown'] = RooDataHist('hSignalJERDown',
                                                  'hSignalJERDown',
                                                  RooArgList(massAve),
                                                  hSigSyst['JERDown'])

    #################################### Background
    if args.altBkg:
        newBkgHistoFile = datahistosFile.replace('DATA', 'DATA_ABCDBkg')
        newBkgFile = TFile(newBkgHistoFile)
        htmpBkg = newBkgFile.Get(
            'massAve_prunedMassAsymVsdeltaEtaDijet_DATA_ABCDProj')
        if (htmpBkg.GetBinWidth(1) != args.reBin):
            print '|----- Bin size in DATA_C histogram is different than rest.'
            sys.exit(0)
    else:
        htmpBkg = dataFile.Get(
            'massAve_prunedMassAsymVsdeltaEtaDijet_DATA_ABCDProj')
        htmpBkg.Rebin(args.reBin)
    #hBkg = histosFile.Get('massAve_prunedMassAsymVsdeltaEtaDijet_QCDPtAll_ABCDProj')
    #hBkg = histosFile.Get(hist+'_QCDPtAll_BCD')
    #htmpBkg = htmpBkg.Rebin( len( boostedMassAveBins )-1, htmpBkg.GetName(), boostedMassAveBins )
    hBkg = htmpBkg.Clone()
    hBkg.Reset()
    for ibin in range(htmpBkg.GetNbinsX()):
        binCont = htmpBkg.GetBinContent(ibin)
        binErr = htmpBkg.GetBinError(ibin)
        if binCont == 0:
            hBkg.SetBinContent(ibin, 0)
            hBkg.SetBinError(ibin, 1.8)
        else:
            hBkg.SetBinContent(ibin, binCont)
            hBkg.SetBinError(ibin, binErr)
    #hBkg.Scale(1/hBkg.Integral())

    hPseudo = createPseudoExperiment(hBkg, bkgAcc)

    ###### Adding statistical uncertanty
    hBkgStatUncUp = hBkg.Clone()
    hBkgStatUncUp.Reset()
    hBkgStatUncDown = hBkg.Clone()
    hBkgStatUncDown.Reset()
    for i in range(hBkg.GetNbinsX() + 1):
        cont = hBkg.GetBinContent(i)
        contErr = hBkg.GetBinError(i)
        hBkgStatUncUp.SetBinContent(i, cont + (1 * contErr))
        hBkgStatUncDown.SetBinContent(i, cont - (1 * contErr))
    hBkgStatUncUpDataHist = RooDataHist('hBkgStatUncUp', 'hBkgStatUncUp',
                                        RooArgList(massAve), hBkgStatUncUp)
    hBkgStatUncDownDataHist = RooDataHist('hBkgStatUncDown', 'hBkgStatUncDown',
                                          RooArgList(massAve), hBkgStatUncDown)

    if 'template' in args.job:
        rooBkgHist = RooDataHist('rooBkgHist', 'rooBkgHist',
                                 RooArgList(massAve), hBkg)
        bkgAcc = rooBkgHist.sumEntries()
        rooBkgHist.Print()
        background = RooHistPdf('background', 'background', RooArgSet(massAve),
                                rooBkgHist)
        background.Print()

    else:
        massAveBkg = RooRealVar('massAveBkg', 'massAveBkg', minMass, maxMass)
        p1 = RooRealVar('p1', 'p1', 1, 0., 100.)
        p2 = RooRealVar('p2', 'p2', 1, 0., 60.)
        p3 = RooRealVar('p3', 'p3', 1, -10., 10.)

        bkgAcc = round(
            hBkg.Integral(hBkg.GetXaxis().FindBin(minMass),
                          hBkg.GetXaxis().FindBin(maxMass)), 2)
        background = RooGenericPdf(
            'background',
            '(pow(1-@0/%.1f,@1)/pow(@0/%.1f,@2+@3*log(@0/%.1f)))' %
            (1300, 1300, 1300), RooArgList(massAveBkg, p1, p2, p3))
        background.Print()

    hBkgSyst = {}
    hBkgSystDataHist = {}

    if args.bkgUnc:
        print ' |---> Adding bkg unc'
        hBkgSyst['BkgUncUp'] = hBkg.Clone()
        hBkgSyst['BkgUncDown'] = hBkg.Clone()

        for key in hBkgSyst:
            hBkgSyst[key].Reset()
            hBkgSyst[key].SetName(hBkgSyst[key].GetName() + '_' + key)

        for q in range(0, hBkg.GetNbinsX()):
            binCont = hBkg.GetBinContent(q)
            bkgUncUp = 1. + (args.bkgUncValue / 100.)
            hBkgSyst['BkgUncUp'].SetBinContent(q, binCont * bkgUncUp)
            bkgUncDown = 1. - (args.bkgUncValue / 100.)
            hBkgSyst['BkgUncDown'].SetBinContent(q, binCont * bkgUncDown)
        hBkgSystDataHist['BkgUncUp'] = RooDataHist('hBkgBkgUncUp',
                                                   'hBkgBkgUncUp',
                                                   RooArgList(massAve),
                                                   hBkgSyst['BkgUncUp'])
        hBkgSystDataHist['BkgUncDown'] = RooDataHist('hBkgBkgUncDown',
                                                     'hBkgBkgUncDown',
                                                     RooArgList(massAve),
                                                     hBkgSyst['BkgUncDown'])

    ############################################################################################

    #model = RooAddPdf("model","s+b",RooArgList(background,signal),RooArgList(background_norm,signal_norm))
    #res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(0))
    #res.Print()

    ############################ Create Workspace
    myWS = RooWorkspace("myWS")
    getattr(myWS, 'import')(rooBkgHist, RooFit.Rename("background"))
    #getattr(myWS,'import')(background,RooFit.Rename("background"))
    #getattr(myWS,'import')(signal_norm)
    #getattr(myWS,'import')(background_norm)
    '''
	if 'gaus' in args.job: 
		getattr(myWS,'import')(signalPdf,RooFit.Rename("signal")) 
		if args.jesUnc:
			getattr(myWS,'import')(signalPdfJESUp,RooFit.Rename("signal__JESUp")) 
			getattr(myWS,'import')(signalPdfJESDown,RooFit.Rename("signal__JESDown")) 
	else: 
	'''
    getattr(myWS, 'import')(rooSigHist, RooFit.Rename("signal"))
    if args.jesUnc:
        getattr(myWS, 'import')(hSigSystDataHist['JESUp'],
                                RooFit.Rename("signal__JESUp"))
        getattr(myWS, 'import')(hSigSystDataHist['JESDown'],
                                RooFit.Rename("signal__JESDown"))
    if args.jerUnc:
        getattr(myWS, 'import')(hSigSystDataHist['JERUp'],
                                RooFit.Rename("signal__JERUp"))
        getattr(myWS, 'import')(hSigSystDataHist['JERDown'],
                                RooFit.Rename("signal__JERDown"))
    if args.bkgUnc:
        getattr(myWS, 'import')(hBkgSystDataHist['BkgUncUp'],
                                RooFit.Rename("background__BkgUncUp"))
        getattr(myWS, 'import')(hBkgSystDataHist['BkgUncDown'],
                                RooFit.Rename("background__BkgUncDown"))
    getattr(myWS, 'import')(hBkgStatUncUpDataHist,
                            RooFit.Rename("background__BkgStatUncUp"))
    getattr(myWS, 'import')(hBkgStatUncDownDataHist,
                            RooFit.Rename("background__BkgStatUncDown"))
    getattr(myWS, 'import')(rooDataHist, RooFit.Rename("data_obs"))
    myWS.Print()
    outputRootFile = currentDir + '/Rootfiles/workspace_' + outputName + '.root'
    myWS.writeToFile(outputRootFile, True)
    print ' |----> Workspace created in root file:\n', outputRootFile
    '''
	c1 = TCanvas('c1', 'c1',  10, 10, 750, 500 )
#	c1.SetLogy()
	xframe = myWS.var("massAve").frame()
	signalPdf.plotOn( xframe )
	xframe.Draw()
	c1.SaveAs('test.png')
	del c1
	'''
    ############################################################################################

    ######################### write a datacard

    dataCardName = currentDir + '/Datacards/datacard_' + outputName + '.txt'
    datacard = open(dataCardName, 'w')
    datacard.write('imax 1\n')
    datacard.write('jmax 1\n')
    datacard.write('kmax *\n')
    datacard.write('---------------\n')
    if args.jesUnc or args.jerUnc or args.lumiUnc or args.bkgUnc or args.unc:
        datacard.write('shapes * * ' + outputRootFile +
                       ' myWS:$PROCESS myWS:$PROCESS__$SYSTEMATIC\n')
    else:
        datacard.write("shapes * * " + outputRootFile + " myWS:$PROCESS \n")
    datacard.write('---------------\n')
    datacard.write('bin ' + signalSample + '\n')
    datacard.write('observation -1\n')
    datacard.write('------------------------------\n')
    datacard.write('bin          ' + signalSample + '          ' +
                   signalSample + '\n')
    datacard.write('process      signal     background\n')
    datacard.write('process      0          1\n')
    #datacard.write('rate         -1         -1\n')
    datacard.write('rate         ' + str(sigAcc) + '         ' + str(bkgAcc) +
                   '\n')
    datacard.write('------------------------------\n')
    if args.lumiUnc:
        datacard.write('lumi  lnN    %f         -\n' % (lumiValue))
    if args.puUnc: datacard.write('pu  lnN    %f         -\n' % (puValue))
    if args.jesUnc: datacard.write('JES  shape   1          -\n')
    if args.jerUnc: datacard.write('JER  shape   1          -\n')
    #flat parameters --- flat prior
    #if args.bkgUnc: datacard.write('BkgUnc  shape   -	   '+str( round( 1/ (args.bkgUncValue/34.1), 2 ) )+'\n')
    if args.bkgUnc: datacard.write('BkgUnc  shape   -	   1 \n')
    #NcombineUnc = ( 1 / TMath.Sqrt( args.bkgUncValue / 100. ) ) - 1
    #datacard.write('background_norm  gmN '+str(int(round(NcombineUnc)))+'  -  '+str( round(bkgAcc/NcombineUnc,2) )+'\n')
    #datacard.write('p1  flatParam\n')
    datacard.write('BkgStatUnc  shape   -	   1 \n')
    datacard.close()
    print ' |----> Datacard created:\n', dataCardName
    ############################################################################################

    ########## Theta
    if args.theta:
        print ' |----> Creating Theta file\n', outputFileTheta
        outFile = TFile(outputFileTheta, 'update')
        tmpName = 'rpvstopjj' + str(signalMass)
        hSignal.SetName('massAve__' + tmpName)
        hSignal.Write()
        hSigSyst['JESDown'].SetName('massAve__' + tmpName + '__jes__down')
        hSigSyst['JESDown'].Write()
        hSigSyst['JESUp'].SetName('massAve__' + tmpName + '__jes__up')
        hSigSyst['JESUp'].Write()
        hSigSyst['JERDown'].SetName('massAve__' + tmpName + '__jer__down')
        hSigSyst['JERDown'].Write()
        hSigSyst['JERUp'].SetName('massAve__' + tmpName + '__jer__up')
        hSigSyst['JERUp'].Write()
        if (signalMass == 100):  #or (signalMass == 170):
            hBkg.SetName('massAve__background')
            hBkg.Write()
            hBkgSyst['BkgUncDown'].SetName('massAve__background__unc__down')
            hBkgSyst['BkgUncDown'].Write()
            hBkgSyst['BkgUncUp'].SetName('massAve__background__unc__up')
            hBkgSyst['BkgUncUp'].Write()
            hData.SetName('massAve__DATA')
            hData.Write()
        outFile.Close()
コード例 #18
0
ファイル: FitData.py プロジェクト: nhanvtran/cmsdas2014
setTDRStyle()
gROOT.ForceStyle()
gROOT.SetStyle('tdrStyle')

filename = 'dijetHisto_data_signal.root'

inf = TFile.Open(filename)
h   = inf.Get('h_mjj')

x = RooRealVar('mjj','mjj',900,4500)
NBINS = 180
p1 = RooRealVar('p1','p1',5,0,20)
p2 = RooRealVar('p2','p2',5,0,20)
p3 = RooRealVar('p3','p3',0.1,0,1)

model = RooGenericPdf('model','pow(1-@0/8000,@1)/pow(@0/8000,@2+@3*log(@0/8000))',RooArgList(x,p1,p2,p3))
roohist = RooDataHist('roohist','roohist',RooArgList(x),h)
res = model.fitTo(roohist)


can = TCanvas('can_Mjj_Data','can_Mjj_Data',900,600)
gPad.SetLogy() 
can.cd(1).SetBottomMargin(0.4);

frame1 = x.frame()
frame2 = x.frame();
roohist.plotOn(frame1,RooFit.Binning(NBINS))
model.plotOn(frame1)
hpull = frame1.pullHist();
frame2.addPlotable(hpull,'p');
コード例 #19
0
        bin_cut = "((Lb_M23*Lb_M23 > {}) && (Lb_M23*Lb_M23 < {}))".format(
            qsq_bin_min, qsq_bin_max)
        pt_cut = "((mum_PT > {}) && (mup_PT > {}) && (pplus_PT > {}) && (Kminus_PT > {}))".format(
            cut_mum_PT, cut_mup_PT, cut_pplus_PT, cut_Kminus_PT)
        tot_cut = "{} && {}".format(bin_cut, pt_cut)

        data_selected = data_all.reduce(tot_cut)
        data_all.Print()
        data_selected.Print()
        data_selected.get(49).Print("cosTheta_lepton")

        # ----------------------------------------------
        # define the PDFs
        # ----------------------------------------------

        Legendre_Lep = RooGenericPdf ("Legendre_Lep", Legendre_Lep_even,\
                       RooArgList (cosTheta_lepton, cLep2, cLep4,cLep6))

        Legendre_Lambda = RooGenericPdf ("Legendre_Lambda", Legendre_Lambda_all, \
                          RooArgList (cosTheta_Lst,cLambda1, cLambda2,cLambda3, cLambda4, cLambda5))
        # ----------------------------------------------
        # Make the fit
        # ----------------------------------------------

        fit_results_RooFit_Lep = Legendre_Lep.fitTo(data_selected,
                                                    ROOT.RooFit.Save())
        fit_results_RooFit_Lambda = Legendre_Lambda.fitTo(
            data_selected, ROOT.RooFit.Save())
        #write the the numbers that we need in a text file for the toys later
        results.write("----\n")
        results.write("----\n")
        results.write(
コード例 #20
0
# define observable
x = RooRealVar('mjj','mjj',900,4500)

if fitSig: 

    # define parameters for signal fit
    m = RooRealVar('mean','mean',float(mass),float(mass)-200,float(mass)+200)
    s = RooRealVar('sigma','sigma',0.1*float(mass),0,10000)
    a = RooRealVar('alpha','alpha',1,-10,10)
    n = RooRealVar('n','n',1,0,100)
    sig = RooCBShape('sig','sig',x,m,s,a,n)        

    p  = RooRealVar('p','p',1,0,5)
    x0 = RooRealVar('x0','x0',1000,100,5000)

    bkg = RooGenericPdf('bkg','1/(exp(pow(@0/@1,@2))+1)',RooArgList(x,x0,p))

    fsig= RooRealVar('fsig','fsig',0.5,0.,1.)
    signal = RooAddPdf('signal','signal',sig,bkg,fsig)

    # -----------------------------------------
    # fit signal
    canSname = 'can_Mjj'+str(mass)
    if useSub:
      canSname = 'can_Sub_Mjj'+str(mass)
    canS = TCanvas(canSname,canSname,900,600)
    #gPad.SetLogy() 

    roohistSig = RooDataHist('roohist','roohist',RooArgList(x),hSig)

    signal.fitTo(roohistSig)
コード例 #21
0
def buildPdf(ws, p):

    mass = RooRealVar("mass", "mass", p.minMass, p.maxMass)
    # ws.import(mass)
    getattr(ws,'import')(mass)

    # Construct signal pdf
    mean = RooRealVar("mean", "mean", 60, 0, 130)
    width = RooRealVar("width", "width", 10, 1, 40)
#    alpha = RooRealVar("alpha", "#alpha", -0.1, -10.0, -0.1)
#    npow = RooRealVar("npow", "n_{CB}", 2.3, 0.1, 10.)
#    width.setConstant(ROOT.kTRUE)
    sigma = RooRealVar("sigma", "sigma", 1.2, 0.2, 40)
#    minusMass = RooFormulaVar("minusMass", "@0*-1", RooArgList(mass))
#    signalAll = RooCBShape("signalAll", "signalAll", mass, mean, width, alpha, npow);
    signalAll = RooVoigtian("signalAll", "signalAll", mass, mean, width, sigma)
 
   # Construct background pdf
    # a0_all = RooRealVar("a0_all","a0_all",-0.1,-1,1)
    # a1_all = RooRealVar("a1_all","a1_all",0.004,-1,1)
    # backgroundAll = RooChebychev("backgroundAll","backgroundAll",mass,RooArgList(a0_all,a1_all))

    turnOnAll = RooRealVar("turnOnAll","turnOnAll", 80., 40., 150.)
    widthAll_bkg = RooRealVar("widthAll","widthAll", 2., 0., 50.)
    decayAll_bkg = RooRealVar("decayAll","decayAll", 80., 20., 150.)
    meanB = RooRealVar("meanB", "meanB", 90, 60, 130)
    sigmaB = RooRealVar("sigmaB", "sigmaB", 10, 1, 20)
    bkg_a1 = RooRealVar("bkg_a1", "bkg_a1", 0., -2., 2.)
    bkg_a2 = RooRealVar("bkg_a2", "bkg_a2", 0., -2., 2.)
    #backgroundAll = RooChebychev("backgroundAll", "backgroundAll", mass, RooArgList(bkg_a1, bkg_a2))
    #backgroundAll = RooGenericPdf("backgroundAll","backgroundAll", "exp(-@0/@3)*(TMath::Erf((@0-@1)/@2)+1)", RooArgList(mass, turnOnAll, widthAll_bkg, decayAll_bkg))
    backgroundAll = RooGenericPdf("backgroundAll","backgroundAll","exp(-@0/@1)",RooArgList(mass, decayAll_bkg))
    #backgroundAll = RooGaussian("backgroundAll", "backgroundAll", mass, meanB, sigmaB)

    # Construct composite pdf
    sigAll = RooRealVar("sigAll", "sigAll", 2000, 0, 10000000)
    bkgAll = RooRealVar("bkgAll", "bkgAll", 100, 0, 1000000)
    modelAll = RooAddPdf("modelAll", "modelAll", RooArgList(signalAll, backgroundAll), RooArgList(sigAll, bkgAll))
    if p.NoBkgd:
        modelAll = RooAddPdf("modelAll", "modelAll", RooArgList(signalAll), RooArgList(sigAll))

    # Define pdf for all probes

    # Construct signal pdf.
    # NOTE that sigma is shared with the signal sample model
    signalPass = RooVoigtian("signalPass","signalPass",mass,mean,width,sigma)
#    signalPass = RooCBShape("signalPass", "signalPass", mass, mean, width, alpha, npow);
    # Construct the background pdf
    # a0_pass = RooRealVar("a0_pass","a0_pass",-0.1,-1,1)
    # a1_pass = RooRealVar("a1_pass","a1_pass",0.5,-0.1,1)
    # backgroundPass = RooChebychev("backgroundPass","backgroundPass",mass,RooArgList(a0_pass,a1_pass))

    # turnOnPass = RooRealVar("turnOnPass","turnOnPass", 80., 50., 150.)
    # widthPass_bkg = RooRealVar("widthPass","widthPass", 2., 0., 50.)
    decayPass_bkg = RooRealVar("decayPass","decayPass", 80., 20., 150.)
    #backgroundPass = RooChebychev("backgroundPass", "backgroundPass", mass, RooArgList(bkg_a1, bkg_a2))
    #backgroundPass = RooGenericPdf("backgroundPass","backgroundPass", "exp(-@0/@3)*(TMath::Erf((@0-@1)/@2)+1)", RooArgList(mass, turnOnPass, widthPass_bkg, decayPass_bkg));
    #backgroundPass = RooGenericPdf("backgroundPass","backgroundPass", "exp(-@0/@3)*(TMath::Erf((@0-@1)/@2)+1)", RooArgList(mass, turnOnAll, widthAll_bkg, decayAll_bkg));
    backgroundPass = RooGenericPdf("backgroundPass","backgroundPass","exp(-@0/@1)",RooArgList(mass, decayPass_bkg))
    #backgroundPass = RooGaussian("backgroundPass", "backgroundPass", mass, meanB, sigmaB)

    # Construct the composite model
    efficiency = RooRealVar("efficiency","efficiency",0.9,0.1,1.)
    # Use it only analyzing the data prescaling value set to be 20
    sigPass = RooFormulaVar("sigPass", "@0*@1*"+str(p.scaleFactor), RooArgList(sigAll, efficiency))
    bkgPass = RooRealVar("bkgPass", "bkgPass", 100, 0, 1000000)
    # bkgPass = RooFormulaVar("bkgPass", "@0*@1", RooArgList(bkgAll, efficiency))
    modelPass = RooAddPdf("modelPass", "modelPass", RooArgList(signalPass, backgroundPass), RooArgList(sigPass, bkgPass))
    if p.NoBkgd:
        modelPass = RooAddPdf("modelPass", "modelPass", RooArgList(signalPass), RooArgList(sigPass))

    frac = RooRealVar("frac", "frac", 0.8, 0., 1.)

    # Define combined pdf for simultaneous fit

    # Define category to distinguish physics and control samples events
    sample = RooCategory("sample","sample")
    sample.defineType("all")
    sample.defineType("pass")

    simPdf = RooSimultaneous("simPdf","simultaneous pdf",sample)

    # Associate model with the physics state and model_ctl with the control state
    simPdf.addPdf(modelAll,"all")
    simPdf.addPdf(modelPass,"pass")
    # ws.import(simPdf)
    getattr(ws,'import')(simPdf)
コード例 #22
0
ファイル: Draw3.py プロジェクト: graag/LHCb
        "resolution",
        x,
        mean,
        sigma1
        )
decay = RooDecay(
    "exp",
    "exp",
    x,
    tau,
    r1,
    RooDecay.DoubleSided)

p1 = decay
p2 = bw
p1 = RooGenericPdf("pdf","exp(-abs(x)/tau)",RooArgList(x,tau)) ;
p2 = RooGenericPdf("pdf","exp(-abs(x)/tau2)",RooArgList(x,tau2)) ;


#pdf = RooNumConvPdf("pdf", 'convolution', x, p1, p2)
#x.setBins(10000,"fft") ;
#pdf = RooFFTConvPdf("pdf", 'convolution', x, p1, p2)
#pdf.setBufferFraction(50.0)

#pdf = RooGenericPdf("pdf","abs(x)>m0?exp(-abs(x)/tau)+exp(-m0/tau2)-exp(-m0/tau):exp(-abs(x)/tau2)",RooArgList(x,m0,tau,tau2)) ;
#pdf = RooGenericPdf("pdf","abs(x)>m0?exp(-abs(x)/tau2):exp(-abs(x)/tau)+exp(-m0/tau2)-exp(-m0/tau)",RooArgList(x,m0,tau,tau2)) ;
pdf = RooGenericPdf("pdf","exp(-abs(x)/tau2)/tau2>exp(-abs(x)/tau)/tau?exp(-abs(x)/tau2)/tau2:exp(-abs(x)/tau)/tau",RooArgList(x,tau,tau2)) ;
#pdf = RooGenericPdf("pdf","exp(-abs(x)/tau)+1000",RooArgList(x,m0,tau,tau2)) ;
# Plot PDF
canvas = TCanvas("c1","",1200,480);
canvas.Divide(3,1);
コード例 #23
0
def shapeCards( process, isData, datahistosFile, histosFile, signalHistosFile, signalSample, hist, signalMass, minMass, maxMass, jesValue, jerValue, lumiUnc, outputName ):
	"""function to run Roofit and save workspace for RooStats"""
	warnings.filterwarnings( action='ignore', category=RuntimeWarning, message='.*class stack<RooAbsArg\*,deque<RooAbsArg\*> >' )
	
	hSignal = signalHistosFile.Get(hist+'_'+signalSample)
	hSignal.Rebin(10)
	htmpSignal = hSignal.Clone()
	#htmpSignal.Scale(100)
	signalXS = search(dictXS, 'RPVStopStopToJets_UDD312_M-'+str(signalMass) )
	#hSignal.Scale( lumi*signalXS / hSignal.Integral())

	massAve = RooRealVar( 'massAve', 'massAve', minMass, maxMass  )
	rooSigHist = RooDataHist( 'rooSigHist', 'rooSigHist', RooArgList(massAve), hSignal )
	rooSigHist.Print()

	signal = RooHistPdf('signal','signal',RooArgSet(massAve),rooSigHist)
        signal.Print()
        signal_norm = RooRealVar('signal_norm','signal_norm',0,-1e+04,1e+04)
        #if args.fitBonly: signal_norm.setConstant()
        signal_norm.Print()

	hBkg = datahistosFile.Get('massAve_prunedMassAsymVsdeltaEtaDijet_DATA_ABCDProj')
	#hBkg = histosFile.Get(hist+'_QCDPtAll_BCD')
	bkgAcc = round(hBkg.Integral( hBkg.GetXaxis().FindBin( minMass ), hBkg.GetXaxis().FindBin( maxMass )))
	#hBkg.Scale(1/hBkg.Integral())
	hPseudo = hBkg.Clone()
	hPseudo.Reset()
        #background_norm = RooRealVar('background_norm','background_norm',bkgAcc,0.,1e+07)
        background_norm = RooRealVar('background_norm','background_norm',1.,0.,1e+07)
        background_norm.Print()

	if 'template' in process:
		rooBkgHist = RooDataHist( 'rooBkgHist', 'rooBkgHist', RooArgList(massAve), hBkg )
		rooBkgHist.Print()
		background = RooHistPdf('background','background',RooArgSet(massAve),rooBkgHist)
		background.Print()

	else:
		p1 = RooRealVar('p1','p1', 1 ,0.,100.)
		p2 = RooRealVar('p2','p2', 1 ,0.,60.)
		p3 = RooRealVar('p3','p3', 1 , -10.,10.)

		background = RooGenericPdf('background','(pow(1-@0/%.1f,@1)/pow(@0/%.1f,@2+@3*log(@0/%.1f)))'%(1300,1300,1300),RooArgList(massAve,p1,p2,p3))
		background.Print()
		### S+B model

	if not isData:
		newNumEvents = random.randint( bkgAcc-round(TMath.Sqrt(bkgAcc)), bkgAcc+round(TMath.Sqrt(bkgAcc)) )
		print 'Events in MC:', bkgAcc, ', in PseudoExperiment:', newNumEvents
		hPseudo.FillRandom( hBkg, newNumEvents ) 
		#hPseudo.Scale(1/hPseudo.Integral())

	#hData = histosFile.Get('massAve_prunedMassAsymVsdeltaEtaDijet_ABCDProj')
	hData = datahistosFile.Get('massAve_prunedMassAsymVsdeltaEtaDijet_DATA_ABCDProj')
	#hData = histosFile.Get(hist+'_QCDPtAll_A')
	#hData.Add(htmpSignal)
	#hData.Scale(1/hData.Integral())
        rooDataHist = RooDataHist('rooDatahist','rooDatahist',RooArgList(massAve), hData if isData else hPseudo )
        rooDataHist.Print()

	#model = RooAddPdf("model","s+b",RooArgList(background,signal),RooArgList(background_norm,signal_norm))
	#res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(0))
	#res.Print()

	############# JES and JER uncertainties
        hSigSyst = {}
        hSigSystDataHist = {}
        signalCDF = TGraph(hSignal.GetNbinsX()+1)

        # JES and JER uncertainties
	if args.jesUnc or args.jerUnc:
		signalCDF.SetPoint(0,0.,0.)
		integral = 0.
		for i in range(1, hSignal.GetNbinsX()+1):
			x = hSignal.GetXaxis().GetBinLowEdge(i+1)
			integral = integral + hSignal.GetBinContent(i)
			signalCDF.SetPoint(i,x,integral)

		if args.jesUnc:
			print ' |---> Adding JES'
			hSigSyst['JESUp'] = hSignal.Clone()
			hSigSyst['JESDown'] = hSignal.Clone()

		if args.jerUnc:
			print ' |---> Adding JER'
			hSigSyst['JERUp'] = hSignal.Clone()
			hSigSyst['JERDown'] = hSignal.Clone()

        # reset signal histograms
        for key in hSigSyst:
		hSigSyst[key].Reset()
		hSigSyst[key].SetName(hSigSyst[key].GetName() + '_' + key)

        # produce JES signal shapes
        if args.jesUnc:
		for q in range(1, hSignal.GetNbinsX()+1):
			xLow = hSignal.GetXaxis().GetBinLowEdge(q)
			xUp = hSignal.GetXaxis().GetBinLowEdge(q+1)
			jes = 1. - jesValue
			xLowPrime = jes*xLow
			xUpPrime = jes*xUp
			hSigSyst['JESUp'].SetBinContent(q, signalCDF.Eval(xUpPrime) - signalCDF.Eval(xLowPrime))
			jes = 1. + jesValue
			xLowPrime = jes*xLow
			xUpPrime = jes*xUp
			hSigSyst['JESDown'].SetBinContent(q, signalCDF.Eval(xUpPrime) - signalCDF.Eval(xLowPrime))
		hSigSystDataHist['JESUp'] = RooDataHist('hSignalJESUp','hSignalJESUp',RooArgList(massAve),hSigSyst['JESUp'])
		hSigSystDataHist['JESDown'] = RooDataHist('hSignalJESDown','hSignalJESDown',RooArgList(massAve),hSigSyst['JESDown'])

        # produce JER signal shapes
	if args.jerUnc:
		for i in range(1, hSignal.GetNbinsX()+1):
			xLow = hSignal.GetXaxis().GetBinLowEdge(i)
			xUp = hSignal.GetXaxis().GetBinLowEdge(i+1)
			jer = 1. - jerValue
			xLowPrime = jer*(xLow-float(signalMass))+float(signalMass)
			xUpPrime = jer*(xUp-float(signalMass))+float(signalMass)
			hSigSyst['JERUp'].SetBinContent(i, signalCDF.Eval(xUpPrime) - signalCDF.Eval(xLowPrime))
			jer = 1. + jerValue
			xLowPrime = jer*(xLow-float(signalMass))+float(signalMass)
			xUpPrime = jer*(xUp-float(signalMass))+float(signalMass)
			hSigSyst['JERDown'].SetBinContent(i, signalCDF.Eval(xUpPrime) - signalCDF.Eval(xLowPrime))
		hSigSystDataHist['JERUp'] = RooDataHist('hSignalJERUp','hSignalJERUp',RooArgList(massAve),hSigSyst['JERUp'])
		hSigSystDataHist['JERDown'] = RooDataHist('hSignalJERDown','hSignalJERDown',RooArgList(massAve),hSigSyst['JERDown'])

	myWS = RooWorkspace("myWS")
	getattr(myWS,'import')(rooSigHist,RooFit.Rename("signal"))
        getattr(myWS,'import')(rooBkgHist,RooFit.Rename("background"))
        #getattr(myWS,'import')(signal_norm)
        getattr(myWS,'import')(background_norm)
        if args.jesUnc:
		getattr(myWS,'import')(hSigSystDataHist['JESUp'],RooFit.Rename("signal__JESUp"))
		getattr(myWS,'import')(hSigSystDataHist['JESDown'],RooFit.Rename("signal__JESDown"))
        if args.jerUnc:
		getattr(myWS,'import')(hSigSystDataHist['JERUp'],RooFit.Rename("signal__JERUp"))
		getattr(myWS,'import')(hSigSystDataHist['JERDown'],RooFit.Rename("signal__JERDown"))
        getattr(myWS,'import')(rooDataHist,RooFit.Rename("data_obs"))
        myWS.Print()
	outputRootFile = currentDir+'/Rootfiles/workspace_'+outputName+'.root'
        myWS.writeToFile(outputRootFile, True)
	print ' |----> Workspace created in root file:\n', outputRootFile
 # -----------------------------------------
        # write a datacard

	dataCardName = currentDir+'/Datacards/datacard_'+outputName+'.txt'
        datacard = open( dataCardName ,'w')
        datacard.write('imax 1\n')
        datacard.write('jmax 1\n')
        datacard.write('kmax *\n')
        datacard.write('---------------\n')
        if args.jesUnc or args.jerUnc or args.lumiUnc or args.normUnc or args.unc: 
		datacard.write('shapes * * '+outputRootFile+' myWS:$PROCESS myWS:$PROCESS__$SYSTEMATIC\n')
	else: datacard.write("shapes * * "+outputRootFile+" myWS:$PROCESS \n")
        datacard.write('---------------\n')
        datacard.write('bin 1\n')
        datacard.write('observation -1\n')
        datacard.write('------------------------------\n')
        datacard.write('bin          1          1\n')
        datacard.write('process      signal     background\n')
        datacard.write('process      0          1\n')
        datacard.write('rate         -1         -1\n')
        datacard.write('------------------------------\n')
	if args.lumiUnc: datacard.write('lumi  lnN    %f         -\n'%(lumiUnc))
        if args.jesUnc: datacard.write('JES  shape   1          -\n')
	if args.jerUnc: datacard.write('JER  shape   1          -\n')
        #flat parameters --- flat prior
	if args.normUnc: datacard.write('background_norm  flatParam\n')
        #datacard.write('p1  flatParam\n')
        datacard.close()
	print ' |----> Datacard created:\n', dataCardName
コード例 #24
0




#background parameters

q01S_Start = 9.62
alphabkg1S =    RooRealVar("#alpha1S","#alpha1S",1.5,0.2,10)
beta =     RooRealVar("#beta1S","#beta1S",-2.5,-7.,0.)
q01S   =      RooRealVar("q01S","q01S",q01S_Start)
delta1S =     RooFormulaVar("delta1S","TMath::Abs(@0-@1)",RooArgList(x,q01S))
b11S =        RooFormulaVar("b11S","@0*(@1-@2)",RooArgList(beta,x,q01S))
signum11S =   RooFormulaVar( "signum11S","( TMath::Sign( -1.,@0-@1 )+1 )/2.", RooArgList(x,q01S) )

background1S = RooGenericPdf("background","Background", "signum11S*pow(delta1S,#alpha1S)*exp(b11S)", RooArgList(signum11S,delta1S,alphabkg1S,b11S) )


q02S_Start = 10.0
alphabkg2S = RooRealVar("#alpha2S","#alpha2S",1.5,0.2,3.5)
beta2S =     RooRealVar("#beta2S","#beta2S",-2.5,-7.,0.)
q02S   =     RooRealVar("q02S","q02S",q02S_Start,q02S_Start-0.05,q02S_Start+0.05)
delta2S =     RooFormulaVar("delta2S","TMath::Abs(@0-@1)",RooArgList(x,q02S))
b12S =        RooFormulaVar("b12S","@0*(@1-@2)",RooArgList(beta2S,x,q02S))
signum12S =   RooFormulaVar( "signum12S","( TMath::Sign( -1.,@0-@1 )+1 )/2.", RooArgList(x,q02S) )

background2S = RooGenericPdf("background","Background", "signum12S*pow(delta2S,#alpha2S)*exp(b12S)", RooArgList(signum12S,delta2S,alphabkg2S,b12S) )



# define background
コード例 #25
0
class CouplingsFitter2(object):
    def __init__(self):
        self.poiLabels = []
        self.BR = dict(b=0.577,
                       tau=0.063,
                       mu=2.2e-4,
                       c=2.91e-2,
                       g=8.57e-2,
                       gamma=3.82e-3,
                       W=0.215,
                       Z=0.0264,
                       t=0.0)

        self.poi = dict()
        self.poilabels = dict()
        self.constraint = dict()
        self.canvases = dict()
        self._keep = []

    def addPOI(self, poi, label='', minimum=-0.3, maximum=0.3):
        '''Add a parameter of interest.

        Example:
        
        addPOI('Z','Z',-0.05,0.05)
        ->
        Z[0,-0.05,0.05]
        # adds variable Z with value 0,
        # allow it to scale between -0.05 and 0.05
        '''
        self.poi[poi] = ROOT.RooRealVar(poi, poi, 0, minimum, maximum)
        if label == '':
            label = poi
        self.poilabels[poi] = label

    def createWidthDeviation(self):
        '''Compute the width deviation (denoted \kappa_H^2 by M.Peskin in arxiv 1312.4974).
        
        Note that we fit an additive modification of the coupling: (1 + dx)
        is therefore equal to kappa_x
        '''
        expr = '0'
        sumBR = sum(self.BR.values())
        pwidths = []
        for dcoupling, br in self.BR.iteritems():
            pwidth = None
            if dcoupling in self.poi:
                pwidth = str(
                    br /
                    sumBR) + "*(1+" + dcoupling + ")*(1+" + dcoupling + ")"
            else:
                # using sm partial width
                pwidth = str(br / sumBR)
            pwidths.append(pwidth)
        expr = '+'.join(pwidths)
        if 'inv' in self.poi:
            expr = '(' + expr + ')/(1.0-inv)'
        else:
            # setting invisible width to 0.
            expr = '(' + expr + ')'
        dependentlist = RooArgList()
        for dep in self.poi.values():
            dependentlist.add(dep)
        self.width = RooGenericPdf('width', 'width', expr, dependentlist)

    def addConstraint(self, name, expr, deplist, mean, sigma):
        '''Add a constraint on one of the observables
        
        For example, for ZH inclusive: 
        
        f.addConstraint('Zh','(1+Z)*(1+Z)','Z',1,0.004)  

        Z is an additive modification of the gZ coupling w/r to the standard model,
        so 1+Z = \kappa_Z
        
        Zh is the pdf of the ratio of the yield w/r to the one expected in the standard model.
        This pdf depends on Z, as (1+Z)*(1+Z).
        
        ZhObs is the measured value, here 1 so we assume that the SM yield is observed.
        
        The fit varies the parameter of interest Z, thus modifying the pdf,
        while ZhObs is fixed at 1. The likelihood of each value of Z is evaluated at ZhObs on the pdf.
        '''
        print 'constraint:', name
        print expr
        print deplist
        print mean, '+/-', sigma
        deps = self._getdeps(deplist)
        self.constraint[name] = GaussianConstraint(name, expr, deps, mean,
                                                   sigma)

    def _getdeps(self, deplist):
        depnames = deplist
        try:
            depnames = deplist.split(',')
        except:
            pass
        deps = []
        for dep in depnames:
            if dep == 'width':
                deps.append(self.width)
            else:
                deps.append(self.poi[dep])
        return deps

    def addChannel(self, name, mean, sigma, prod, decay=None):
        expr_prod = '(1+{prod})*(1+{prod})'.format(prod=prod)
        expr = expr_prod
        variables = [prod]
        if decay:
            if isinstance(decay, basestring):
                expr_decay = '(1+{decay})*(1+{decay})'.format(decay=decay)
                variables.append(decay)
            else:
                decay_exprs = []
                for decay, fraction in decay:
                    n = mean * fraction
                    decay_expr = '{n}*(1+{decay})*(1+{decay})'.format(
                        n=n, decay=decay)
                    decay_exprs.append(decay_expr)
                    variables.append(decay)
                expr_decay = ' + '.join(decay_exprs)
            expr = '{expr_prod}*({expr_decay})/width'.format(
                expr_prod=expr_prod,
                expr_decay=expr_decay,
            )
            variables.append('width')
        variables = list(set(variables))
        deplist = ','.join(variables)
        self.addConstraint(name, expr, deplist, mean, sigma)

    def addUniformConstraint(self, name, expr):
        '''Adds a uniform constraint with pdf name, and expression expr.
        
        For example:
        
        f.addPOI('inv','inv', 0, 0.01)
        f.addUniformConstraint('Zhinv','inv') ####->Means free floating

        inv (the invisible BR) is free to float between 0 and 1%
        '''
        deps = self._getdeps([expr])
        self.constraint[name] = UniformConstraint(name, expr, deps)

    def info(self):
        for name, constraint in sorted(self.constraint.iteritems()):
            constraint.info()

    def fit(self):
        pdfs = RooArgList()
        obsvars = RooArgSet('set')
        for constraint in self.constraint.values():
            pdfs.add(constraint.pdf_constraint)
            if hasattr(constraint, 'var_obs'):
                obsvars.add(constraint.var_obs)
        self.model = RooProdPdf('model', 'model', pdfs)
        self.data = RooDataSet('data', 'data', obsvars)
        self.data.add(obsvars)
        self.data.Print()
        self.fit_result = self.model.fitTo(self.data,
                                           ROOT.RooFit.PrintLevel(3),
                                           ROOT.RooFit.Optimize(1),
                                           ROOT.RooFit.Hesse(1),
                                           ROOT.RooFit.Minos(1),
                                           ROOT.RooFit.Strategy(2),
                                           ROOT.RooFit.Save(1))

    def canvas(self, name, *args):
        canvas = self.canvases.setdefault(name,
                                          ROOT.TCanvas(name, name, *args))
        canvas.cd()
        return canvas

    def keep(self, obj):
        self._keep.append(obj)
        return obj

    def createSummary(self):
        #sample the covariance matrix for the width
        # ROOT.gStyle.SetOptTitle(0)
        ROOT.gStyle.SetStatW(0.4)
        ROOT.gStyle.SetStatH(0.4)

        self.graph_couplings = ROOT.TGraphAsymmErrors(len(self.poi) + 2)

        order_BR = ['Z', 'W', 'b', 'c', 'g', 'tau', 'mu', 'gamma', 'inv']

        for br in order_BR:
            if not self.poi.get(br, None):
                order_BR.remove(br)

        for i, poiname in enumerate(order_BR):
            poi = self.poi.get(poiname)
            self.graph_couplings.SetPoint(i, i + 0.5, poi.getVal())
            self.graph_couplings.SetPointError(i, 0.0, 0.0,
                                               -poi.getAsymErrorLo(),
                                               poi.getAsymErrorHi())

        print 'Sampling the covariance matrix to propagate error on width'

        self.h_width = ROOT.TH1F('h_width', 'width', 1000, 0.5, 1.5)
        ntoys = 10000
        for i in range(ntoys):
            randomizedPars = self.fit_result.randomizePars()
            for j in range(0, randomizedPars.getSize()):
                self.poi[randomizedPars.at(j).GetName()].setVal(
                    randomizedPars.at(j).getVal())
            self.h_width.Fill(self.width.getVal())
            for cstr in self.constraint.values():
                cstr.fill_pull()
        self.graph_couplings.SetMarkerStyle(20)
        self.graph_couplings.SetLineWidth(3)
        can_couplings = self.canvas('couplings')
        self.graph_couplings.Draw("AP")
        self.graph_couplings.GetYaxis().SetTitle("68% CL on d(A) ")
        self.graph_couplings.GetXaxis().SetNdivisions(0)
        l = self.keep(ROOT.TLine())
        l.SetLineColor(ROOT.kRed)
        l.SetLineWidth(3)
        l.DrawLine(0.0, 0.0, len(self.poi) + 1.5, 0)

        self.graph_couplings.SetPoint(len(self.poi), len(self.poi) + 0.5, 0.0)
        self.graph_couplings.SetPointError(
            len(self.poi), 0.0, 0.0,
            self.h_width.GetRMS() / self.h_width.GetMean(),
            self.h_width.GetRMS() / self.h_width.GetMean())

        for i, poiname in enumerate(order_BR + ['#Gamma_{T}']):
            label = self.poilabels.get(poiname, poiname)
            tex = self.keep(
                ROOT.TLatex(i + 0.5,
                            0.95 * self.graph_couplings.GetYaxis().GetXmin(),
                            label))
            tex.Draw()

        print """
###############################################################
###############################################################
###############################################################
                         RESULTS
###############################################################
###############################################################
############################################################### 
              """

        print 'RESULTS FOR THE CONFIDENCE INTERVALS------>'
        for name in order_BR:
            poi = self.poi[name]
            poiLabel = self.poilabels.get(name, name)
            mind = poi.getAsymErrorLo() * 100
            maxd = poi.getAsymErrorHi() * 100
            avd = abs(maxd - mind) / 2.
            # print poiLabel+':   ('+str(poi.getAsymErrorLo())+','+str(poi.getAsymErrorHi())+'), ' + str(avd)
            print '{label:10}:\t{mind:5.3f}%\t{maxd:5.3f}%\t{avd:5.3f}%'.format(
                label=poiLabel, mind=mind, maxd=maxd, avd=avd)

        can_gamma = self.canvas('gamma')
        self.h_width.GetXaxis().SetTitle("#Gamma_{T}")
        self.h_width.GetYaxis().SetTitle("N toys")
        self.h_width.Draw()
        print 'Relative error on the total width ', self.h_width.GetRMS(
        ) / self.h_width.GetMean()
        print 'Please check the histogram to see that the dist is Gaussian. If not the fit is biased'
        print 'The fit can be biased when floating the width sometimes.'

        can_pulls = self.canvas('pulls', 1000, 1000)
        npulls = len(self.constraint)
        nxy = int(math.ceil(math.sqrt(npulls)))
        can_pulls.Divide(nxy, nxy)
        for i, c in enumerate(self.constraint.values()):
            can_pulls.cd(i + 1)
            c.pulls.Draw()
コード例 #26
0
                                 hSig)
        rooSigHist.Print()
        signal = RooHistPdf('signal', 'signal', RooArgSet(mjj), rooSigHist)
        signal.Print()
        signal_norm = RooRealVar('signal_norm', 'signal_norm', 0, -1e+05,
                                 1e+05)
        if args.fitBonly: signal_norm.setConstant()
        signal_norm.Print()

        p1 = RooRealVar('p1', 'p1', args.p1, 0., 100.)
        p2 = RooRealVar('p2', 'p2', args.p2, 0., 60.)
        p3 = RooRealVar('p3', 'p3', args.p3, -10., 10.)
        if args.fixP3: p3.setConstant()

        background = RooGenericPdf(
            'background',
            '(pow(1-@0/%.1f,@1)/pow(@0/%.1f,@2+@3*log(@0/%.1f)))' %
            (sqrtS, sqrtS, sqrtS), RooArgList(mjj, p1, p2, p3))
        background.Print()
        dataInt = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),
                                 hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm = RooRealVar('background_norm', 'background_norm',
                                     dataInt, 0., 1e+08)
        background_norm.Print()

        # S+B model
        model = RooAddPdf("model", "s+b", RooArgList(background, signal),
                          RooArgList(background_norm, signal_norm))

        rooDataHist = RooDataHist('rooDatahist', 'rooDathist', RooArgList(mjj),
                                  hData)
        rooDataHist.Print()
コード例 #27
0
def fit():

    #fit to log_10(pT^2) with components and plot of plain pT^2

    #range in log_10(pT^2)
    ptbin = 0.12
    ptmin = -5.
    ptmax = 0.99  # 1.01

    #range in pT^2
    ptsq_bin = 0.03
    ptsq_min = 1e-5
    ptsq_max = 1

    mmin = 2.8
    mmax = 3.2

    #range for incoherent fit
    fitran = [-0.9, 0.1]

    #number of gamma-gamma events
    ngg = 131

    #number of psi' events
    npsiP = 20

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    data_all = RooDataSet("data", "data", tree, RooArgSet(pT, m))
    #select for mass range
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = data_all.reduce(strsel)

    #create log(pT^2) from pT
    ptsq_draw = "jRecPt*jRecPt"  # will be used for pT^2
    logPtSq_draw = "TMath::Log10(" + ptsq_draw + ")"
    logPtSq_form = RooFormulaVar("logPtSq", "logPtSq", logPtSq_draw,
                                 RooArgList(pT))
    logPtSq = data.addColumn(logPtSq_form)
    logPtSq.setRange("fitran", fitran[0], fitran[1])

    #bins and range for the plot
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    logPtSq.setMin(ptmin)
    logPtSq.setMax(ptmax)
    logPtSq.setRange("plotran", ptmin, ptmax)

    #range for pT^2
    ptsq_nbins, ptsq_max = ut.get_nbins(ptsq_bin, ptsq_min, ptsq_max)

    #incoherent parametrization
    bval = RooRealVar("bval", "bval", 3.3, 0, 10)
    inc_form = "log(10.)*pow(10.,logPtSq)*exp(-bval*pow(10.,logPtSq))"
    incpdf = RooGenericPdf("incpdf", inc_form, RooArgList(logPtSq, bval))

    #make the incoherent fit
    res = incpdf.fitTo(data, rf.Range("fitran"), rf.Save())

    #get incoherent norm to the number of events
    lset = RooArgSet(logPtSq)
    iinc = incpdf.createIntegral(lset, rf.NormSet(lset), rf.Range("fitran"))
    inc_nevt = data.sumEntries("logPtSq", "fitran")
    incpdf.setNormRange("fitran")
    aval = RooRealVar("aval", "aval", inc_nevt / incpdf.getNorm(lset))
    #print "A =", aval.getVal()
    #print "b =", bval.getVal()

    #incoherent distribution from log_10(pT^2) function for the sum with gamma-gamma
    hIncPdf = ut.prepare_TH1D_n("hGG", nbins, ptmin, ptmax)
    func_incoh_logPt2 = TF1("func_incoh_logPt2",
                            "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))",
                            -10., 10.)
    func_incoh_logPt2.SetNpx(1000)
    func_incoh_logPt2.SetLineColor(rt.kMagenta)
    func_incoh_logPt2.SetParameters(
        aval.getVal(),
        bval.getVal())  # 4.9 from incoherent mc, 3.3 from data fit
    ut.fill_h1_tf(hIncPdf, func_incoh_logPt2, rt.kMagenta)

    #gamma-gamma contribution
    hGG = ut.prepare_TH1D_n("hGG", nbins, ptmin, ptmax)
    tree_gg.Draw(logPtSq_draw + " >> hGG", strsel)
    ut.norm_to_num(hGG, ngg, rt.kGreen + 1)

    #sum of incoherent distribution and gamma-gamma
    hSumIncGG = ut.prepare_TH1D_n("hSumIncGG", nbins, ptmin, ptmax)
    hSumIncGG.Add(hIncPdf)
    hSumIncGG.Add(hGG)
    ut.line_h1(hSumIncGG, rt.kMagenta)

    #gamma-gamma in pT^2
    hGG_ptsq = ut.prepare_TH1D_n("hGG_ptsq", ptsq_nbins, ptsq_min, ptsq_max)
    tree_gg.Draw(ptsq_draw + " >> hGG_ptsq", strsel)
    ut.norm_to_num(hGG_ptsq, ngg, rt.kGreen + 1)

    #psi' contribution
    psiP_file = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP_file.Get("jRecTree")
    hPsiP = ut.prepare_TH1D_n("hPsiP", nbins, ptmin, ptmax)
    psiP_tree.Draw(logPtSq_draw + " >> hPsiP", strsel)
    ut.norm_to_num(hPsiP, npsiP, rt.kViolet)

    #psi' in pT^2
    hPsiP_ptsq = ut.prepare_TH1D_n("hPsiP_ptsq", ptsq_nbins, ptsq_min,
                                   ptsq_max)
    psiP_tree.Draw(ptsq_draw + " >> hPsiP_ptsq", strsel)
    ut.norm_to_num(hPsiP_ptsq, npsiP, rt.kViolet)

    #create canvas frame
    gStyle.SetPadTickY(1)
    can = ut.box_canvas(1086, 543)  # square area is still 768^2
    can.SetMargin(0, 0, 0, 0)
    can.Divide(2, 1, 0, 0)
    gStyle.SetLineWidth(1)

    can.cd(1)
    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0)

    frame = logPtSq.frame(rf.Bins(nbins))
    frame.SetTitle("")
    frame.SetMaximum(80)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")
    frame.SetXTitle("log_{10}( #it{p}_{T}^{2} ) (GeV^{2})")

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.6)

    #plot the data
    data.plotOn(frame, rf.Name("data"), rf.LineWidth(2))

    #incoherent parametrization
    incpdf.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                  rf.Name("incpdf"), rf.LineWidth(2))
    incpdf.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                  rf.Name("incpdf_full"), rf.LineStyle(rt.kDashed),
                  rf.LineWidth(2))

    frame.Draw()

    #add gamma-gamma contribution
    hGG.Draw("same")

    #sum of incoherent distribution and gamma-gamma
    #hSumIncGG.Draw("same")

    #add psi'
    #hPsiP.Draw("same")

    #legend for log_10(pT^2)
    leg = ut.prepare_leg(0.15, 0.77, 0.28, 0.19, 0.035)
    hxl = ut.prepare_TH1D("hxl", 1, 0, 1)
    hxl.Draw("same")
    ilin = ut.col_lin(rt.kRed, 2)
    ilin2 = ut.col_lin(rt.kRed, 2)
    ilin2.SetLineStyle(rt.kDashed)
    leg.AddEntry(ilin, "Incoherent parametrization, fit region", "l")
    leg.AddEntry(ilin2, "Incoherent parametrization, extrapolation region",
                 "l")
    leg.AddEntry(hGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    #leg.AddEntry(hxl, "Data", "lp")
    leg.AddEntry(hxl, "Data, log_{10}( #it{p}_{T}^{2} )", "lp")
    leg.Draw("same")

    #----- plot pT^2 on the right -----

    #pT^2 variable from pT
    ptsq_form = RooFormulaVar("ptsq", "ptsq", ptsq_draw, RooArgList(pT))
    ptsq = data.addColumn(ptsq_form)

    #range for pT^2 plot
    ptsq.setMin(ptsq_min)
    ptsq.setMax(ptsq_max)

    #make the pT^2 plot
    can.cd(2)
    gPad.SetLogy()
    #gPad.SetLineWidth(3)
    #gPad.SetFrameLineWidth(1)
    ut.set_margin_lbtr(gPad, 0, 0.1, 0.01, 0.15)

    ptsq_frame = ptsq.frame(rf.Bins(ptsq_nbins), rf.Title(""))

    #print type(ptsq_frame), type(ptsq)

    ptsq_frame.SetTitle("")

    ptsq_frame.SetXTitle("#it{p}_{T}^{2} (GeV^{2})")
    ptsq_frame.GetXaxis().SetTitleOffset(1.2)

    data.plotOn(ptsq_frame, rf.Name("data"), rf.LineWidth(2))

    ptsq_frame.SetMaximum(9e2)
    ptsq_frame.SetMinimum(0.8)  # 0.101

    ptsq_frame.Draw()

    #incoherent parametrization in pT^2 over the fit region, scaled to the plot
    inc_ptsq = TF1("inc_ptsq", "[0]*exp(-[1]*x)", 10**fitran[0], 10**fitran[1])
    inc_ptsq.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())

    #incoherent parametrization in the extrapolation region, below and above the fit region
    inc_ptsq_ext1 = TF1("inc_ptsq_ext1", "[0]*exp(-[1]*x)", 0., 10**fitran[0])
    inc_ptsq_ext2 = TF1("inc_ptsq_ext2", "[0]*exp(-[1]*x)", 10**fitran[1], 10)
    inc_ptsq_ext1.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())
    inc_ptsq_ext1.SetLineStyle(rt.kDashed)
    inc_ptsq_ext2.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())
    inc_ptsq_ext2.SetLineStyle(rt.kDashed)

    inc_ptsq.Draw("same")
    inc_ptsq_ext1.Draw("same")
    inc_ptsq_ext2.Draw("same")

    #add gamma-gamma in pT^2
    hGG_ptsq.Draw("same")

    #add psi' in pT^2
    #hPsiP_ptsq.Draw("same")

    #redraw the frame
    #ptsq_frame.Draw("same")

    ptsq_frame.GetXaxis().SetLimits(-9e-3, ptsq_frame.GetXaxis().GetXmax())

    #vertical axis for pT^2 plot
    xpos = ptsq_frame.GetXaxis().GetXmax()
    ypos = ptsq_frame.GetMaximum()
    ymin = ptsq_frame.GetMinimum()

    ptsq_axis = TGaxis(xpos, 0, xpos, ypos, ymin, ypos, 510, "+GL")
    ut.set_axis(ptsq_axis)
    ptsq_axis.SetMoreLogLabels()

    ptsq_axis.SetTitle("Events / ({0:.3f}".format(ptsq_bin) + " GeV^{2})")
    ptsq_axis.SetTitleOffset(2.2)

    ptsq_axis.Draw()

    #legend for input data
    #dleg = ut.prepare_leg(0.4, 0.77, 0.14, 0.18, 0.035)
    dleg = ut.prepare_leg(0.4, 0.71, 0.16, 0.24, 0.035)
    dleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(dleg, mmin, mmax)
    dleg.AddEntry(None, "AuAu@200 GeV", "")
    dleg.AddEntry(None, "UPC sample", "")
    dleg.AddEntry(hxl, "Data, #it{p}_{T}^{2}", "lp")
    dleg.Draw("same")

    #ut.invert_col_can(can)
    can.SaveAs("01fig.pdf")
コード例 #28
0
def pdf_logPt2_prelim():

    #PDF fit to log_10(pT^2) for preliminary figure

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar(
        "x", "Dielectron log_{10}( #it{p}_{T}^{2} ) ((GeV/c)^{2})", draw,
        RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.SetLineWidth(2)
    #fill in binned data
    tree_in.Draw(draw + " >> hPt", strsel)
    tree_coh.Draw(draw + " >> hPtCoh", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    print "a =", a

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen + 1)

    print "Int GG:", hPtGG.Integral()

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    hSum.Add(hPtCoh)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")

    frame.SetYTitle("J/#psi candidates / ({0:.3f}".format(ptbin) +
                    " (GeV/c)^{2})")

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.6)

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    leg = ut.prepare_leg(0.61, 0.77, 0.16, 0.19, 0.03)
    #ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed, 2)
    leg.AddEntry(hx, "Data", "p")
    leg.AddEntry(hSum, "Sum", "l")
    leg.AddEntry(hPtCoh, "Coherent J/#psi", "l")
    leg.AddEntry(ln, "Incoherent parametrization", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    pleg = ut.prepare_leg(0.12, 0.75, 0.14, 0.22, 0.03)
    pleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(pleg, mmin, mmax)
    pleg.AddEntry(None, "STAR Preliminary", "")
    pleg.AddEntry(None, "AuAu@200 GeV", "")
    pleg.AddEntry(None, "UPC sample", "")
    pleg.Draw("same")

    desc = pdesc(frame, 0.14, 0.9, 0.057)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    #desc.draw()

    #put the sum
    hSum.Draw("same")

    frame.Draw("same")

    #put gamma-gamma and coherent J/psi
    hPtGG.Draw("same")
    hPtCoh.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
コード例 #29
0
def main():
    # usage description
    usage = "Example: ./scripts/createDatacards.py --inputData inputs/rawhistV7_Run2015D_scoutingPFHT_UNBLINDED_649_838_JEC_HLTplusV7_Mjj_cor_smooth.root --dataHistname mjj_mjjcor_gev --inputSig inputs/ResonanceShapes_gg_13TeV_Scouting_Spring15.root -f gg -o datacards -l 1866 --lumiUnc 0.027 --massrange 1000 1500 50 --runFit --p1 5 --p2 7 --p3 0.4 --massMin 838 --massMax 2037 --fitStrategy 2"

    # input parameters
    parser = ArgumentParser(
        description=
        'Script that creates combine datacards and corresponding RooFit workspaces',
        epilog=usage)

    parser.add_argument("--inputData",
                        dest="inputData",
                        required=True,
                        help="Input data spectrum",
                        metavar="INPUT_DATA")

    parser.add_argument("--dataHistname",
                        dest="dataHistname",
                        required=True,
                        help="Data histogram name",
                        metavar="DATA_HISTNAME")

    parser.add_argument("--inputSig",
                        dest="inputSig",
                        required=True,
                        help="Input signal shapes",
                        metavar="INPUT_SIGNAL")

    parser.add_argument("-f",
                        "--final_state",
                        dest="final_state",
                        required=True,
                        help="Final state (e.g. qq, qg, gg)",
                        metavar="FINAL_STATE")

    parser.add_argument("-f2",
                        "--type",
                        dest="atype",
                        required=True,
                        help="Type (e.g. hG, lG, hR, lR)")

    parser.add_argument(
        "-o",
        "--output_path",
        dest="output_path",
        required=True,
        help="Output path where datacards and workspaces will be stored",
        metavar="OUTPUT_PATH")

    parser.add_argument(
        "-l",
        "--lumi",
        dest="lumi",
        required=True,
        default=1000.,
        type=float,
        help="Integrated luminosity in pb-1 (default: %(default).1f)",
        metavar="LUMI")

    parser.add_argument(
        "--massMin",
        dest="massMin",
        default=500,
        type=int,
        help=
        "Lower bound of the mass range used for fitting (default: %(default)s)",
        metavar="MASS_MIN")

    parser.add_argument(
        "--massMax",
        dest="massMax",
        default=1200,
        type=int,
        help=
        "Upper bound of the mass range used for fitting (default: %(default)s)",
        metavar="MASS_MAX")

    parser.add_argument(
        "--p1",
        dest="p1",
        default=5.0000e-03,
        type=float,
        help="Fit function p1 parameter (default: %(default)e)",
        metavar="P1")

    parser.add_argument(
        "--p2",
        dest="p2",
        default=9.1000e+00,
        type=float,
        help="Fit function p2 parameter (default: %(default)e)",
        metavar="P2")

    parser.add_argument(
        "--p3",
        dest="p3",
        default=5.0000e-01,
        type=float,
        help="Fit function p3 parameter (default: %(default)e)",
        metavar="P3")

    parser.add_argument(
        "--lumiUnc",
        dest="lumiUnc",
        required=True,
        type=float,
        help="Relative uncertainty in the integrated luminosity",
        metavar="LUMI_UNC")

    parser.add_argument("--jesUnc",
                        dest="jesUnc",
                        type=float,
                        help="Relative uncertainty in the jet energy scale",
                        metavar="JES_UNC")

    parser.add_argument(
        "--jerUnc",
        dest="jerUnc",
        type=float,
        help="Relative uncertainty in the jet energy resolution",
        metavar="JER_UNC")

    parser.add_argument(
        "--sqrtS",
        dest="sqrtS",
        default=13000.,
        type=float,
        help="Collision center-of-mass energy (default: %(default).1f)",
        metavar="SQRTS")

    parser.add_argument("--fixP3",
                        dest="fixP3",
                        default=False,
                        action="store_true",
                        help="Fix the fit function p3 parameter")

    parser.add_argument("--runFit",
                        dest="runFit",
                        default=False,
                        action="store_true",
                        help="Run the fit")

    parser.add_argument("--fitBonly",
                        dest="fitBonly",
                        default=False,
                        action="store_true",
                        help="Run B-only fit")

    parser.add_argument("--fixBkg",
                        dest="fixBkg",
                        default=False,
                        action="store_true",
                        help="Fix all background parameters")

    parser.add_argument("--decoBkg",
                        dest="decoBkg",
                        default=False,
                        action="store_true",
                        help="Decorrelate background parameters")

    parser.add_argument("--fitStrategy",
                        dest="fitStrategy",
                        type=int,
                        default=1,
                        help="Fit strategy (default: %(default).1f)")

    parser.add_argument("--debug",
                        dest="debug",
                        default=False,
                        action="store_true",
                        help="Debug printout")

    parser.add_argument(
        "--postfix",
        dest="postfix",
        default='',
        help="Postfix for the output file names (default: %(default)s)")

    parser.add_argument("--pyes",
                        dest="pyes",
                        default=False,
                        action="store_true",
                        help="Make files for plots")

    parser.add_argument("--jyes",
                        dest="jyes",
                        default=False,
                        action="store_true",
                        help="Make files for JES/JER plots")

    parser.add_argument(
        "--pdir",
        dest="pdir",
        default='testarea',
        help="Name a directory for the plots (default: %(default)s)")

    parser.add_argument("--chi2",
                        dest="chi2",
                        default=False,
                        action="store_true",
                        help="Compute chi squared")

    parser.add_argument("--widefit",
                        dest="widefit",
                        default=False,
                        action="store_true",
                        help="Fit with wide bin hist")

    mass_group = parser.add_mutually_exclusive_group(required=True)
    mass_group.add_argument(
        "--mass",
        type=int,
        nargs='*',
        default=1000,
        help=
        "Mass can be specified as a single value or a whitespace separated list (default: %(default)i)"
    )
    mass_group.add_argument(
        "--massrange",
        type=int,
        nargs=3,
        help="Define a range of masses to be produced. Format: min max step",
        metavar=('MIN', 'MAX', 'STEP'))
    mass_group.add_argument("--masslist",
                            help="List containing mass information")

    args = parser.parse_args()

    if args.atype == 'hG':
        fstr = "bbhGGBB"
        in2 = 'bcorrbin/binmodh.root'
    elif args.atype == 'hR':
        fstr = "bbhRS"
        in2 = 'bcorrbin/binmodh.root'
    elif args.atype == 'lG':
        fstr = "bblGGBB"
        in2 = 'bcorrbin/binmodl.root'
    else:
        fstr = "bblRS"
        in2 = 'bcorrbin/binmodl.root'

    # check if the output directory exists
    if not os.path.isdir(os.path.join(os.getcwd(), args.output_path)):
        os.mkdir(os.path.join(os.getcwd(), args.output_path))

    # mass points for which resonance shapes will be produced
    masses = []

    if args.massrange != None:
        MIN, MAX, STEP = args.massrange
        masses = range(MIN, MAX + STEP, STEP)
    elif args.masslist != None:
        # A mass list was provided
        print "Will create mass list according to", args.masslist
        masslist = __import__(args.masslist.replace(".py", ""))
        masses = masslist.masses
    else:
        masses = args.mass

    # sort masses
    masses.sort()

    # import ROOT stuff
    from ROOT import gStyle, TFile, TH1F, TH1D, TGraph, kTRUE, kFALSE, TCanvas, TLegend, TPad, TLine
    from ROOT import RooHist, RooRealVar, RooDataHist, RooArgList, RooArgSet, RooAddPdf, RooFit, RooGenericPdf, RooWorkspace, RooMsgService, RooHistPdf, RooExtendPdf

    if not args.debug:
        RooMsgService.instance().setSilentMode(kTRUE)
        RooMsgService.instance().setStreamStatus(0, kFALSE)
        RooMsgService.instance().setStreamStatus(1, kFALSE)

    # input data file
    inputData = TFile(args.inputData)
    # input data histogram
    hData = inputData.Get(args.dataHistname)

    inData2 = TFile(in2)
    hData2 = inData2.Get('h_data')

    # input sig file
    inputSig = TFile(args.inputSig)

    sqrtS = args.sqrtS

    # mass variable
    mjj = RooRealVar('mjj', 'mjj', float(args.massMin), float(args.massMax))

    # integrated luminosity and signal cross section
    lumi = args.lumi
    signalCrossSection = 1.  # set to 1. so that the limit on r can be interpreted as a limit on the signal cross section

    for mass in masses:

        print ">> Creating datacard and workspace for %s resonance with m = %i GeV..." % (
            args.final_state, int(mass))

        # get signal shape
        hSig = inputSig.Get("h_" + args.final_state + "_" + str(int(mass)))
        # normalize signal shape to the expected event yield (works even if input shapes are not normalized to unity)
        hSig.Scale(
            signalCrossSection * lumi / hSig.Integral()
        )  # divide by a number that provides roughly an r value of 1-10
        rooSigHist = RooDataHist('rooSigHist', 'rooSigHist', RooArgList(mjj),
                                 hSig)
        print 'Signal acceptance:', (rooSigHist.sumEntries() / hSig.Integral())
        signal = RooHistPdf('signal', 'signal', RooArgSet(mjj), rooSigHist)
        signal_norm = RooRealVar('signal_norm', 'signal_norm', 0, -1e+05,
                                 1e+05)
        signal_norm2 = RooRealVar('signal_norm2', 'signal_norm2', 0, -1e+05,
                                  1e+05)
        signal_norm3 = RooRealVar('signal_norm3', 'signal_norm3', 0, -1e+05,
                                  1e+05)
        signal_norm4 = RooRealVar('signal_norm4', 'signal_norm4', 0, -1e+05,
                                  1e+05)
        signal_norm5 = RooRealVar('signal_norm5', 'signal_norm5', 0, -1e+05,
                                  1e+05)

        if args.fitBonly:
            signal_norm.setConstant()
            signal_norm2.setConstant()
            signal_norm3.setConstant()
            signal_norm4.setConstant()
            signal_norm5.setConstant()

        p1 = RooRealVar('p1', 'p1', args.p1, 0., 100.)
        p2 = RooRealVar('p2', 'p2', args.p2, 0., 60.)
        p3 = RooRealVar('p3', 'p3', args.p3, -10., 10.)
        p4 = RooRealVar('p4', 'p4', 5.6, -50., 50.)
        p5 = RooRealVar('p5', 'p5', 10., -50., 50.)
        p6 = RooRealVar('p6', 'p6', .016, -50., 50.)
        p7 = RooRealVar('p7', 'p7', 8., -50., 50.)
        p8 = RooRealVar('p8', 'p8', .22, -50., 50.)
        p9 = RooRealVar('p9', 'p9', 14.1, -50., 50.)
        p10 = RooRealVar('p10', 'p10', 8., -50., 50.)
        p11 = RooRealVar('p11', 'p11', 4.8, -50., 50.)
        p12 = RooRealVar('p12', 'p12', 7., -50., 50.)
        p13 = RooRealVar('p13', 'p13', 7., -50., 50.)
        p14 = RooRealVar('p14', 'p14', 7., -50., 50.)
        p15 = RooRealVar('p15', 'p15', 1., -50., 50.)
        p16 = RooRealVar('p16', 'p16', 9., -50., 50.)
        p17 = RooRealVar('p17', 'p17', 0.6, -50., 50.)

        if args.fixP3: p3.setConstant()

        background = RooGenericPdf(
            'background',
            '(pow(1-@0/%.1f,@1)/pow(@0/%.1f,@2+@3*log(@0/%.1f)))' %
            (sqrtS, sqrtS, sqrtS), RooArgList(mjj, p1, p2, p3))
        dataInt = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),
                                 hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm = RooRealVar('background_norm', 'background_norm',
                                     dataInt, 0., 1e+08)

        background2 = RooGenericPdf(
            'background2',
            '(pow(@0/%.1f,-@1)*pow(1-@0/%.1f,@2))' % (sqrtS, sqrtS),
            RooArgList(mjj, p4, p5))
        dataInt2 = hData.Integral(
            hData.GetXaxis().FindBin(float(args.massMin)),
            hData.GetXaxis().FindBin(float(args.massMax)))
        background2_norm = RooRealVar('background2_norm', 'background2_norm',
                                      dataInt2, 0., 1e+08)

        background3 = RooGenericPdf('background3',
                                    '(1/pow(@1+@0/%.1f,@2))' % (sqrtS),
                                    RooArgList(mjj, p6, p7))
        dataInt3 = hData.Integral(
            hData.GetXaxis().FindBin(float(args.massMin)),
            hData.GetXaxis().FindBin(float(args.massMax)))
        background3_norm = RooRealVar('background3_norm', 'background3_norm',
                                      dataInt3, 0., 1e+08)

        background4 = RooGenericPdf(
            'background4',
            '(1/pow(@1+@2*@0/%.1f+pow(@0/%.1f,2),@3))' % (sqrtS, sqrtS),
            RooArgList(mjj, p8, p9, p10))
        dataInt4 = hData.Integral(
            hData.GetXaxis().FindBin(float(args.massMin)),
            hData.GetXaxis().FindBin(float(args.massMax)))
        background4_norm = RooRealVar('background4_norm', 'background4_norm',
                                      dataInt4, 0., 1e+08)

        background5 = RooGenericPdf(
            'background5',
            '(pow(@0/%.1f,-@1)*pow(1-pow(@0/%.1f,1/3),@2))' % (sqrtS, sqrtS),
            RooArgList(mjj, p11, p12))
        dataInt5 = hData.Integral(
            hData.GetXaxis().FindBin(float(args.massMin)),
            hData.GetXaxis().FindBin(float(args.massMax)))
        background5_norm = RooRealVar('background5_norm', 'background5_norm',
                                      dataInt5, 0., 1e+08)

        background6 = RooGenericPdf(
            'background6', '(pow(@0/%.1f,2)+@1*@0/%.1f+@2)' % (sqrtS, sqrtS),
            RooArgList(mjj, p13, p14))
        dataInt6 = hData.Integral(
            hData.GetXaxis().FindBin(float(args.massMin)),
            hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm6 = RooRealVar('background_norm6', 'background_norm6',
                                      dataInt6, 0., 1e+08)

        background7 = RooGenericPdf(
            'background7',
            '((-1+@1*@0/%.1f)*pow(@0/%.1f,@2+@3*log(@0/%.1f)))' %
            (sqrtS, sqrtS, sqrtS), RooArgList(mjj, p15, p16, p17))
        dataInt7 = hData.Integral(
            hData.GetXaxis().FindBin(float(args.massMin)),
            hData.GetXaxis().FindBin(float(args.massMax)))
        background_norm7 = RooRealVar('background_norm7', 'background_norm7',
                                      dataInt7, 0., 1e+08)

        #Extend PDFs

        exts = RooExtendPdf('extsignal', 'Extended Signal Pdf', signal,
                            signal_norm)
        extb = RooExtendPdf('extbackground', 'Extended Background Pdf',
                            background, background_norm)
        exts2 = RooExtendPdf('extsignal2', 'Extended Signal Pdf2', signal,
                             signal_norm2)
        extb2 = RooExtendPdf('extbackground2', 'Extended Background Pdf2',
                             background2, background2_norm)
        exts3 = RooExtendPdf('extsignal3', 'Extended Signal Pdf3', signal,
                             signal_norm3)
        extb3 = RooExtendPdf('extbackground3', 'Extended Background Pdf3',
                             background3, background3_norm)
        exts4 = RooExtendPdf('extsignal4', 'Extended Signal Pdf4', signal,
                             signal_norm4)
        extb4 = RooExtendPdf('extbackground4', 'Extended Background Pdf4',
                             background4, background4_norm)
        exts5 = RooExtendPdf('extsignal5', 'Extended Signal Pdf5', signal,
                             signal_norm5)
        extb5 = RooExtendPdf('extbackground5', 'Extended Background Pdf5',
                             background5, background5_norm)

        # S+B model
        model = RooAddPdf("model", "s+b", RooArgList(extb, exts))
        model2 = RooAddPdf("model2", "s+b2", RooArgList(extb2, exts2))
        model3 = RooAddPdf("model3", "s+b3", RooArgList(extb3, exts3))
        model4 = RooAddPdf("model4", "s+b4", RooArgList(extb4, exts4))
        model5 = RooAddPdf("model5", "s+b5", RooArgList(extb5, exts5))

        #model6 = RooAddPdf("model6","s+b6",RooArgList(background6,signal),RooArgList(background_norm6,signal_norm))
        #model7 = RooAddPdf("model7","s+b7",RooArgList(background7,signal),RooArgList(background_norm7,signal_norm))

        rooDataHist = RooDataHist('rooDatahist', 'rooDathist', RooArgList(mjj),
                                  hData)

        if args.runFit:
            mframe = mjj.frame()
            rooDataHist.plotOn(mframe, ROOT.RooFit.Name("setonedata"))
            res = model.fitTo(rooDataHist, RooFit.Save(kTRUE),
                              RooFit.Extended(kTRUE),
                              RooFit.Strategy(args.fitStrategy))
            model.plotOn(mframe, ROOT.RooFit.Name("model1"),
                         ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1),
                         ROOT.RooFit.LineColor(ROOT.EColor.kRed))
            res2 = model2.fitTo(rooDataHist, RooFit.Save(kTRUE),
                                RooFit.Extended(kTRUE),
                                RooFit.Strategy(args.fitStrategy))
            #            model2.plotOn(mframe, ROOT.RooFit.Name("model2"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kOrange))
            res3 = model3.fitTo(rooDataHist, RooFit.Save(kTRUE),
                                RooFit.Extended(kTRUE),
                                RooFit.Strategy(args.fitStrategy))
            #            model3.plotOn(mframe, ROOT.RooFit.Name("model3"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kGreen))
            res4 = model4.fitTo(rooDataHist, RooFit.Save(kTRUE),
                                RooFit.Extended(kTRUE),
                                RooFit.Strategy(args.fitStrategy))
            #            model4.plotOn(mframe, ROOT.RooFit.Name("model4"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kBlue))
            res5 = model5.fitTo(rooDataHist, RooFit.Save(kTRUE),
                                RooFit.Extended(kTRUE),
                                RooFit.Strategy(args.fitStrategy))
            #            model5.plotOn(mframe, ROOT.RooFit.Name("model5"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kViolet))
            #	    res6 = model6.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            #           model6.plotOn(mframe, ROOT.RooFit.Name("model6"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kPink))
            #	    res7 = model7.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
            #           model7.plotOn(mframe, ROOT.RooFit.Name("model7"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kAzure))

            rooDataHist2 = RooDataHist('rooDatahist2', 'rooDathist2',
                                       RooArgList(mjj), hData2)
            #	    rooDataHist2.plotOn(mframe, ROOT.RooFit.Name("data"))

            if args.pyes:
                c = TCanvas("c", "c", 800, 800)
                mframe.SetAxisRange(300., 1300.)
                c.SetLogy()
                #	    	mframe.SetMaximum(10)
                #	    	mframe.SetMinimum(1)
                mframe.Draw()
                fitname = args.pdir + '/5funcfit_m' + str(mass) + fstr + '.pdf'
                c.SaveAs(fitname)

#	        cpull = TCanvas("cpull","cpull",800,800)
#	    	pulls = mframe.pullHist("data","model1")
#	    	pulls.Draw("ABX")
#	   	pullname = args.pdir+'/pull_m'+str(mass)+fstr+'.pdf'
#	    	cpull.SaveAs(pullname)

#		cpull2 = TCanvas("cpull2","cpull2",800,800)
#               pulls2 = mframe.pullHist("setonedata","model1")
#              pulls2.Draw("ABX")
#             pull2name = args.pdir+'/pull2_m'+str(mass)+fstr+'.pdf'
#            cpull2.SaveAs(pull2name)

            if args.widefit:
                mframew = mjj.frame()
                rooDataHist2.plotOn(mframew, ROOT.RooFit.Name("data"))
                res6 = model.fitTo(rooDataHist2, RooFit.Save(kTRUE),
                                   RooFit.Strategy(args.fitStrategy))
                model.plotOn(mframew, ROOT.RooFit.Name("model1"),
                             ROOT.RooFit.LineStyle(1),
                             ROOT.RooFit.LineWidth(1),
                             ROOT.RooFit.LineColor(ROOT.EColor.kRed))
                res7 = model2.fitTo(rooDataHist2, RooFit.Save(kTRUE),
                                    RooFit.Strategy(args.fitStrategy))
                model2.plotOn(mframew, ROOT.RooFit.Name("model2"),
                              ROOT.RooFit.LineStyle(1),
                              ROOT.RooFit.LineWidth(1),
                              ROOT.RooFit.LineColor(ROOT.EColor.kOrange))
                res8 = model3.fitTo(rooDataHist2, RooFit.Save(kTRUE),
                                    RooFit.Strategy(args.fitStrategy))
                model3.plotOn(mframew, ROOT.RooFit.Name("model3"),
                              ROOT.RooFit.LineStyle(1),
                              ROOT.RooFit.LineWidth(1),
                              ROOT.RooFit.LineColor(ROOT.EColor.kGreen))
                res9 = model4.fitTo(rooDataHist2, RooFit.Save(kTRUE),
                                    RooFit.Strategy(args.fitStrategy))
                model4.plotOn(mframew, ROOT.RooFit.Name("model4"),
                              ROOT.RooFit.LineStyle(1),
                              ROOT.RooFit.LineWidth(1),
                              ROOT.RooFit.LineColor(ROOT.EColor.kBlue))
                res10 = model5.fitTo(rooDataHist2, RooFit.Save(kTRUE),
                                     RooFit.Strategy(args.fitStrategy))
                model5.plotOn(mframew, ROOT.RooFit.Name("model5"),
                              ROOT.RooFit.LineStyle(1),
                              ROOT.RooFit.LineWidth(1),
                              ROOT.RooFit.LineColor(ROOT.EColor.kViolet))

                if args.pyes:
                    c = TCanvas("c", "c", 800, 800)
                    mframew.SetAxisRange(300., 1300.)
                    c.SetLogy()
                    #                   mframew.SetMaximum(10)
                    #                   mframew.SetMinimum(1)
                    mframew.Draw()
                    fitname = args.pdir + '/5funcfittowide_m' + str(
                        mass) + fstr + '.pdf'
                    c.SaveAs(fitname)

                    cpull = TCanvas("cpull", "cpull", 800, 800)
                    pulls = mframew.pullHist("data", "model1")
                    pulls.Draw("ABX")
                    pullname = args.pdir + '/pullwidefit_m' + str(
                        mass) + fstr + '.pdf'
                    cpull.SaveAs(pullname)

            if args.chi2:
                fullInt = model.createIntegral(RooArgSet(mjj))
                norm = dataInt / fullInt.getVal()
                chi1 = 0.
                fullInt2 = model2.createIntegral(RooArgSet(mjj))
                norm2 = dataInt2 / fullInt2.getVal()
                chi2 = 0.
                fullInt3 = model3.createIntegral(RooArgSet(mjj))
                norm3 = dataInt3 / fullInt3.getVal()
                chi3 = 0.
                fullInt4 = model4.createIntegral(RooArgSet(mjj))
                norm4 = dataInt4 / fullInt4.getVal()
                chi4 = 0.
                fullInt5 = model5.createIntegral(RooArgSet(mjj))
                norm5 = dataInt5 / fullInt5.getVal()
                chi5 = 0.
                for i in range(args.massMin, args.massMax):
                    new = 0
                    new2 = 0
                    new3 = 0
                    new4 = 0
                    new5 = 0
                    height = hData.GetBinContent(i)
                    xLow = hData.GetXaxis().GetBinLowEdge(i)
                    xUp = hData.GetXaxis().GetBinLowEdge(i + 1)
                    obs = height * (xUp - xLow)
                    mjj.setRange("intrange", xLow, xUp)
                    integ = model.createIntegral(
                        RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)),
                        ROOT.RooFit.Range("intrange"))
                    exp = integ.getVal() * norm
                    new = pow(exp - obs, 2) / exp
                    chi1 = chi1 + new
                    integ2 = model2.createIntegral(
                        RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)),
                        ROOT.RooFit.Range("intrange"))
                    exp2 = integ2.getVal() * norm2
                    new2 = pow(exp2 - obs, 2) / exp2
                    chi2 = chi2 + new2
                    integ3 = model3.createIntegral(
                        RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)),
                        ROOT.RooFit.Range("intrange"))
                    exp3 = integ3.getVal() * norm3
                    new3 = pow(exp3 - obs, 2) / exp3
                    chi3 = chi3 + new3
                    integ4 = model4.createIntegral(
                        RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)),
                        ROOT.RooFit.Range("intrange"))
                    exp4 = integ4.getVal() * norm4
                    if exp4 != 0:
                        new4 = pow(exp4 - obs, 2) / exp4
                    else:
                        new4 = 0
                    chi4 = chi4 + new4
                    integ5 = model5.createIntegral(
                        RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)),
                        ROOT.RooFit.Range("intrange"))
                    exp5 = integ5.getVal() * norm5
                    new5 = pow(exp5 - obs, 2) / exp5
                    chi5 = chi5 + new5
                print "chi1 %d " % (chi1)
                print "chi2 %d " % (chi2)
                print "chi3 %d " % (chi3)
                print "chi4 %d " % (chi4)
                print "chi5 %d " % (chi5)

            if not args.decoBkg:
                print " "
                res.Print()
                res2.Print()
                res3.Print()
                res4.Print()
                res5.Print()


#		res6.Print()
#		res7.Print()

# decorrelated background parameters for Bayesian limits
            if args.decoBkg:
                signal_norm.setConstant()
                res = model.fitTo(rooDataHist, RooFit.Save(kTRUE),
                                  RooFit.Strategy(args.fitStrategy))
                res.Print()
                ## temp workspace for the PDF diagonalizer
                w_tmp = RooWorkspace("w_tmp")
                deco = PdfDiagonalizer("deco", w_tmp, res)
                # here diagonalizing only the shape parameters since the overall normalization is already decorrelated
                background_deco = deco.diagonalize(background)
                print "##################### workspace for decorrelation"
                w_tmp.Print("v")
                print "##################### original parameters"
                background.getParameters(rooDataHist).Print("v")
                print "##################### decorrelated parameters"
                # needed if want to evaluate limits without background systematics
                if args.fixBkg:
                    w_tmp.var("deco_eig1").setConstant()
                    w_tmp.var("deco_eig2").setConstant()
                    if not args.fixP3: w_tmp.var("deco_eig3").setConstant()
                background_deco.getParameters(rooDataHist).Print("v")
                print "##################### original pdf"
                background.Print()
                print "##################### decorrelated pdf"
                background_deco.Print()
                # release signal normalization
                signal_norm.setConstant(kFALSE)
                # set the background normalization range to +/- 5 sigma
                bkg_val = background_norm.getVal()
                bkg_error = background_norm.getError()
                background_norm.setMin(bkg_val - 5 * bkg_error)
                background_norm.setMax(bkg_val + 5 * bkg_error)
                background_norm.Print()
                # change background PDF names
                background.SetName("background_old")
                background_deco.SetName("background")

        # needed if want to evaluate limits without background systematics
        if args.fixBkg:
            background_norm.setConstant()
            p1.setConstant()
            p2.setConstant()
            p3.setConstant()

        # -----------------------------------------
        # dictionaries holding systematic variations of the signal shape
        hSig_Syst = {}
        hSig_Syst_DataHist = {}
        sigCDF = TGraph(hSig.GetNbinsX() + 1)

        # JES and JER uncertainties
        if args.jesUnc != None or args.jerUnc != None:

            sigCDF.SetPoint(0, 0., 0.)
            integral = 0.
            for i in range(1, hSig.GetNbinsX() + 1):
                x = hSig.GetXaxis().GetBinLowEdge(i + 1)
                integral = integral + hSig.GetBinContent(i)
                sigCDF.SetPoint(i, x, integral)

        if args.jesUnc != None:
            hSig_Syst['JESUp'] = copy.deepcopy(hSig)
            hSig_Syst['JESDown'] = copy.deepcopy(hSig)

        if args.jerUnc != None:
            hSig_Syst['JERUp'] = copy.deepcopy(hSig)
            hSig_Syst['JERDown'] = copy.deepcopy(hSig)

        # reset signal histograms
        for key in hSig_Syst.keys():
            hSig_Syst[key].Reset()
            hSig_Syst[key].SetName(hSig_Syst[key].GetName() + '_' + key)

        # produce JES signal shapes
        if args.jesUnc != None:
            for i in range(1, hSig.GetNbinsX() + 1):
                xLow = hSig.GetXaxis().GetBinLowEdge(i)
                xUp = hSig.GetXaxis().GetBinLowEdge(i + 1)
                jes = 1. - args.jesUnc
                xLowPrime = jes * xLow
                xUpPrime = jes * xUp
                hSig_Syst['JESUp'].SetBinContent(
                    i,
                    sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime))
                jes = 1. + args.jesUnc
                xLowPrime = jes * xLow
                xUpPrime = jes * xUp
                hSig_Syst['JESDown'].SetBinContent(
                    i,
                    sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime))
            hSig_Syst_DataHist['JESUp'] = RooDataHist('hSig_JESUp',
                                                      'hSig_JESUp',
                                                      RooArgList(mjj),
                                                      hSig_Syst['JESUp'])
            hSig_Syst_DataHist['JESDown'] = RooDataHist(
                'hSig_JESDown', 'hSig_JESDown', RooArgList(mjj),
                hSig_Syst['JESDown'])

            if args.jyes:
                c2 = TCanvas("c2", "c2", 800, 800)
                mframe2 = mjj.frame(ROOT.RooFit.Title("JES One Sigma Shifts"))
                mframe2.SetAxisRange(args.massMin, args.massMax)
                hSig_Syst_DataHist['JESUp'].plotOn(
                    mframe2, ROOT.RooFit.Name("JESUP"),
                    ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2),
                    ROOT.RooFit.LineStyle(1),
                    ROOT.RooFit.MarkerColor(ROOT.EColor.kRed),
                    ROOT.RooFit.LineColor(ROOT.EColor.kRed))
                hSig_Syst_DataHist['JESDown'].plotOn(
                    mframe2, ROOT.RooFit.Name("JESDOWN"),
                    ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2),
                    ROOT.RooFit.LineStyle(1),
                    ROOT.RooFit.MarkerColor(ROOT.EColor.kBlue),
                    ROOT.RooFit.LineColor(ROOT.EColor.kBlue))
                rooSigHist.plotOn(mframe2, ROOT.RooFit.DataError(2),
                                  ROOT.RooFit.Name("SIG"),
                                  ROOT.RooFit.DrawOption("L"),
                                  ROOT.RooFit.LineStyle(1),
                                  ROOT.RooFit.MarkerColor(ROOT.EColor.kGreen),
                                  ROOT.RooFit.LineColor(ROOT.EColor.kGreen))
                mframe2.Draw()
                mframe2.GetXaxis().SetTitle("Dijet Mass (GeV)")
                leg = TLegend(0.7, 0.8, 0.9, 0.9)
                leg.SetFillColor(0)
                leg.AddEntry(mframe2.findObject("SIG"), "Signal Model", "l")
                leg.AddEntry(mframe2.findObject("JESUP"), "+1 Sigma", "l")
                leg.AddEntry(mframe2.findObject("JESDOWN"), "-1 Sigma", "l")
                leg.Draw()
                jesname = args.pdir + '/jes_m' + str(mass) + fstr + '.pdf'
                c2.SaveAs(jesname)

        # produce JER signal shapes
        if args.jesUnc != None:
            for i in range(1, hSig.GetNbinsX() + 1):
                xLow = hSig.GetXaxis().GetBinLowEdge(i)
                xUp = hSig.GetXaxis().GetBinLowEdge(i + 1)
                jer = 1. - args.jerUnc
                xLowPrime = jer * (xLow - float(mass)) + float(mass)
                xUpPrime = jer * (xUp - float(mass)) + float(mass)
                hSig_Syst['JERUp'].SetBinContent(
                    i,
                    sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime))
                jer = 1. + args.jerUnc
                xLowPrime = jer * (xLow - float(mass)) + float(mass)
                xUpPrime = jer * (xUp - float(mass)) + float(mass)
                hSig_Syst['JERDown'].SetBinContent(
                    i,
                    sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime))
            hSig_Syst_DataHist['JERUp'] = RooDataHist('hSig_JERUp',
                                                      'hSig_JERUp',
                                                      RooArgList(mjj),
                                                      hSig_Syst['JERUp'])
            hSig_Syst_DataHist['JERDown'] = RooDataHist(
                'hSig_JERDown', 'hSig_JERDown', RooArgList(mjj),
                hSig_Syst['JERDown'])

            if args.jyes:
                c3 = TCanvas("c3", "c3", 800, 800)
                mframe3 = mjj.frame(ROOT.RooFit.Title("JER One Sigma Shifts"))
                mframe3.SetAxisRange(args.massMin, args.massMax)
                hSig_Syst_DataHist['JERUp'].plotOn(
                    mframe3, ROOT.RooFit.Name("JERUP"),
                    ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2),
                    ROOT.RooFit.LineStyle(1),
                    ROOT.RooFit.MarkerColor(ROOT.EColor.kRed),
                    ROOT.RooFit.LineColor(ROOT.EColor.kRed))
                hSig_Syst_DataHist['JERDown'].plotOn(
                    mframe3, ROOT.RooFit.Name("JERDOWN"),
                    ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2),
                    ROOT.RooFit.LineStyle(1),
                    ROOT.RooFit.MarkerColor(ROOT.EColor.kBlue),
                    ROOT.RooFit.LineColor(ROOT.EColor.kBlue))
                rooSigHist.plotOn(mframe3, ROOT.RooFit.DrawOption("L"),
                                  ROOT.RooFit.Name("SIG"),
                                  ROOT.RooFit.DataError(2),
                                  ROOT.RooFit.LineStyle(1),
                                  ROOT.RooFit.MarkerColor(ROOT.EColor.kGreen),
                                  ROOT.RooFit.LineColor(ROOT.EColor.kGreen))
                mframe3.Draw()
                mframe3.GetXaxis().SetTitle("Dijet Mass (GeV)")
                leg = TLegend(0.7, 0.8, 0.9, 0.9)
                leg.SetFillColor(0)
                leg.AddEntry(mframe3.findObject("SIG"), "Signal Model", "l")
                leg.AddEntry(mframe3.findObject("JERUP"), "+1 Sigma", "l")
                leg.AddEntry(mframe3.findObject("JERDOWN"), "-1 Sigma", "l")
                leg.Draw()
                jername = args.pdir + '/jer_m' + str(mass) + fstr + '.pdf'
                c3.SaveAs(jername)

        # -----------------------------------------
        # create a datacard and corresponding workspace
        postfix = (('_' + args.postfix) if args.postfix != '' else '')
        dcName = 'datacard_' + args.final_state + '_m' + str(
            mass) + postfix + '.txt'
        wsName = 'workspace_' + args.final_state + '_m' + str(
            mass) + postfix + '.root'

        w = RooWorkspace('w', 'workspace')
        getattr(w, 'import')(rooSigHist, RooFit.Rename("signal"))
        if args.jesUnc != None:
            getattr(w, 'import')(hSig_Syst_DataHist['JESUp'],
                                 RooFit.Rename("signal__JESUp"))
            getattr(w, 'import')(hSig_Syst_DataHist['JESDown'],
                                 RooFit.Rename("signal__JESDown"))
        if args.jerUnc != None:
            getattr(w, 'import')(hSig_Syst_DataHist['JERUp'],
                                 RooFit.Rename("signal__JERUp"))
            getattr(w, 'import')(hSig_Syst_DataHist['JERDown'],
                                 RooFit.Rename("signal__JERDown"))
        if args.decoBkg:
            getattr(w, 'import')(background_deco, ROOT.RooCmdArg())
        else:
            getattr(w, 'import')(background, ROOT.RooCmdArg(),
                                 RooFit.Rename("background"))
            getattr(w, 'import')(background2, ROOT.RooCmdArg(),
                                 RooFit.Rename("background2"))
            getattr(w, 'import')(background3, ROOT.RooCmdArg(),
                                 RooFit.Rename("background3"))
            getattr(w, 'import')(background4, ROOT.RooCmdArg(),
                                 RooFit.Rename("background4"))
            getattr(w, 'import')(background5, ROOT.RooCmdArg(),
                                 RooFit.Rename("background5"))
            getattr(w, 'import')(background_norm, ROOT.RooCmdArg(),
                                 RooFit.Rename("background_norm"))
            getattr(w, 'import')(background2_norm, ROOT.RooCmdArg(),
                                 RooFit.Rename("background2_norm"))
            getattr(w, 'import')(background3_norm, ROOT.RooCmdArg(),
                                 RooFit.Rename("background3_norm"))
            getattr(w, 'import')(background4_norm, ROOT.RooCmdArg(),
                                 RooFit.Rename("background4_norm"))
            getattr(w, 'import')(background5_norm, ROOT.RooCmdArg(),
                                 RooFit.Rename("background5_norm"))

        getattr(w, 'import')(res)
        getattr(w, 'import')(res2)
        getattr(w, 'import')(res3)
        getattr(w, 'import')(res4)
        getattr(w, 'import')(res5)
        getattr(w, 'import')(background_norm, ROOT.RooCmdArg())
        getattr(w, 'import')(signal_norm, ROOT.RooCmdArg())
        getattr(w, 'import')(rooDataHist, RooFit.Rename("data_obs"))
        w.Print()
        w.writeToFile(os.path.join(args.output_path, wsName))

        beffUnc = 0.3
        boffUnc = 0.06

        datacard = open(os.path.join(args.output_path, dcName), 'w')
        datacard.write('imax 1\n')
        datacard.write('jmax 1\n')
        datacard.write('kmax *\n')
        datacard.write('---------------\n')
        if args.jesUnc != None or args.jerUnc != None:
            datacard.write('shapes * * ' + wsName +
                           ' w:$PROCESS w:$PROCESS__$SYSTEMATIC\n')
        else:
            datacard.write('shapes * * ' + wsName + ' w:$PROCESS\n')
        datacard.write('---------------\n')
        datacard.write('bin 1\n')
        datacard.write('observation -1\n')
        datacard.write('------------------------------\n')
        datacard.write('bin          1          1\n')
        datacard.write('process      signal     background\n')
        datacard.write('process      0          1\n')
        datacard.write('rate         -1         1\n')
        datacard.write('------------------------------\n')
        datacard.write('lumi  lnN    %f         -\n' % (1. + args.lumiUnc))
        datacard.write('beff  lnN    %f         -\n' % (1. + beffUnc))
        datacard.write('boff  lnN    %f         -\n' % (1. + boffUnc))
        datacard.write('bkg   lnN     -         1.03\n')
        if args.jesUnc != None:
            datacard.write('JES  shape   1          -\n')
        if args.jerUnc != None:
            datacard.write('JER  shape   1          -\n')
        # flat parameters --- flat prior
        datacard.write('background_norm  flatParam\n')
        if args.decoBkg:
            datacard.write('deco_eig1  flatParam\n')
            datacard.write('deco_eig2  flatParam\n')
            if not args.fixP3: datacard.write('deco_eig3  flatParam\n')
        else:
            datacard.write('p1  flatParam\n')
            datacard.write('p2  flatParam\n')
            if not args.fixP3: datacard.write('p3  flatParam\n')
        datacard.close()

    print '>> Datacards and workspaces created and stored in %s/' % (
        os.path.join(os.getcwd(), args.output_path))
コード例 #30
0
if fitSig:

    # define parameters for signal fit
    m = RooRealVar('mean', 'mean', float(mass),
                   float(mass) - 200,
                   float(mass) + 200)
    s = RooRealVar('sigma', 'sigma', 0.1 * float(mass), 0, 10000)
    a = RooRealVar('alpha', 'alpha', 1, -10, 10)
    n = RooRealVar('n', 'n', 1, 0, 100)
    sig = RooCBShape('sig', 'sig', x, m, s, a, n)

    p = RooRealVar('p', 'p', 1, 0, 5)
    x0 = RooRealVar('x0', 'x0', 1000, 100, 5000)

    bkg = RooGenericPdf('bkg', '1/(exp(pow(@0/@1,@2))+1)',
                        RooArgList(x, x0, p))

    fsig = RooRealVar('fsig', 'fsig', 0.5, 0., 1.)
    signal = RooAddPdf('signal', 'signal', sig, bkg, fsig)

    # -----------------------------------------
    # fit signal
    canSname = 'can_Mjj' + str(mass)
    canS = TCanvas(canSname, canSname, 900, 600)
    gPad.SetLogy()

    roohistSig = RooDataHist('roohist', 'roohist', RooArgList(x), hSig)

    roohistSig.Print()
    res_sig = signal.fitTo(roohistSig, RooFit.Save(ROOT.kTRUE))
    res_sig.Print()
コード例 #31
0
class fitFunc(object):
    pass


fitParam = {}

mT = RooRealVar("m_T", "m_{T}", 1500., 3900., "GeV")

fitBDT0_2016 = fitFunc()
fitBDT0_2016.p1 = RooRealVar("CMS2016_BDT0_p1", "p1", -18.0947, -1000., 1000.)
fitBDT0_2016.p2 = RooRealVar("CMS2016_BDT0_p2", "p2", 22.8504, -10., 10.)
fitBDT0_2016.p3 = RooRealVar("CMS2016_BDT0_p3", "p3", 3.72973, -10., 10.)
fitBDT0_2016.p4 = RooRealVar("CMS2016_BDT0_p3", "p4", 0, -1000., 1000.)

fitBDT0_2016.modelBkg = RooGenericPdf(
    "BkgOrg", "Bkg. fit (3 par.)",
    "pow(1 - @0/13000, @1) / pow(@0/13000, @2+@3*log(@0/13000))",
    RooArgList(mT, fitBDT0_2016.p1, fitBDT0_2016.p2, fitBDT0_2016.p3))
fitBDT0_2016.modelBkg2 = RooGenericPdf(
    "Bkg2", "Bkg. fit (2 par.)", "pow(1 - @0/13000, @1) / pow(@0/13000, @2)",
    RooArgList(mT, fitBDT0_2016.p1, fitBDT0_2016.p2))
fitBDT0_2016.modelBkg3 = RooGenericPdf(
    "Bkg3", "Bkg. fit (3 par.)",
    "pow(1 - @0/13000, @1) / pow(@0/13000, @2+@3*log(@0/13000))",
    RooArgList(mT, fitBDT0_2016.p1, fitBDT0_2016.p2, fitBDT0_2016.p3))
fitBDT0_2016.modelBkg4 = RooGenericPdf(
    "Bkg", "Bkg. fit (4 par.)",
    "pow(1 - @0/13000, @1) / pow(@0/13000, @2+@3*log(@0/13000)+@4*pow(log(@0/13000),2))",
    RooArgList(mT, fitBDT0_2016.p1, fitBDT0_2016.p2, fitBDT0_2016.p3,
               fitBDT0_2016.p4))

fitParam["BDT0_2016"] = fitBDT0_2016
コード例 #32
0
ファイル: bkgfit_das.py プロジェクト: TENorbert/SUSY-TOOLS
        aset[func].add(pars[func, ipar])

    # DAS_EX_2.6
    # Define RooGenericPdf for each "func" from function string in the fitFuncs dictionary
    # and RooArgSet.  Make sure PDF name, title are uniqe

    # Get function string from fitFuncs dictionary
    funcStr = fitFuncs[func, "str"]

    # Make sure to use this name and title when defining the PDF
    name = "bkgpdf_" + func
    title = "bkgpdf_" + func

    # Define pdf
    # pdfs[func] =
    pdfs[func] = RooGenericPdf(name, title, funcStr, RooArgList(aset[func]))

######################
# Do Fit
######################

roores = {}
for func in ["f2", "f1", "f3"]:
    # DAS_EX_2.7
    # Using the fitTo() method of the PDF, fit the data with each function
    # Pass the option RooFit.Save(True) to the fitTo method, and save each result in the roores dictionary:
    roores[func] = pdfs[func].fitTo(rdata, RooFit.Save(True))

#########################
# Make Plots
#########################
コード例 #33
0
ファイル: xsPlotBu.py プロジェクト: vjmastra/JPsiPhiAnalysis
jpsik         = RooRealVar("jpsik_m_ref","jpsik_m",0.0,1000.0)


theSet = RooArgSet(mass_ref_c_kkk,dimuonditrk_m_rf_c,dimuonditrk_charge,kkk,jpsik)
   #RooArgSet(RooArgSet(mass_ref_c_kkk,dimuonditrk_m_rf_c,dimuonditrk_ctauPV,dimuonditrk_ctauErrPV,dimuon_pt),RooArgSet(ditrak_pt,mass_ref_c_kkk,dimuonditrk_charge,ditrak_m,dimuon_m))

DATA = RooDataSet("alldata","alldata",xTuple,theSet)

splotData = RooDataSet("alldata_sig","alldata_sig",DATA,theSet,"dimuonditrk_charge==0")
#splotBkgData = RooDataSet("alldata_bkg","alldata_bkg",DATA,theSet,"dimuonditrk_charge!=0 && dimuonditrk_m_rf_c<5.0 && dimuonditrk_m_rf_c>4.0")

print "Tree entries %d"%(splotData.numEntries())

print "PHSP fit"

BkgTotalMPdf = RooGenericPdf("BkgPdf","BkgPdf","sqrt( pow(dimuonditrk_m_rf_c,4) + pow(3.0967,4) + pow(1.01946,4) - 2*pow(dimuonditrk_m_rf_c,2)*pow(3.0967,2) - 2*pow(3.0967,2)*pow(1.01946,2) - 2*pow(dimuonditrk_m_rf_c,2)*pow(1.01946,2) ) * sqrt( pow(5.279,4) + pow(dimuonditrk_m_rf_c,4) + pow(0.493677,4) - 2*pow(5.279,2)*pow(dimuonditrk_m_rf_c,2) - 2*pow(5.279,2)*pow(0.493677,2) - 2*pow(dimuonditrk_m_rf_c,2)*pow(0.493677,2) ) / (dimuonditrk_m_rf_c)", RooArgList(dimuonditrk_m_rf_c));

dimuonditrk_m_rf_c.setBins(80)
dimuonditrk_m_rf_c.setRange("baserange",4.0,5.0)
s = BkgTotalMPdf.createIntegral(RooArgSet(dimuonditrk_m_rf_c),"baserange").getVal()

#bkgFit = BkgTotalMPdf.fitTo(splotBkgData,Range(4.0,5.0),RooFit.NumCPU(args.ncpu),RooFit.Verbose(False))

cb = TCanvas("canvas_b","canvas_b",1200,800) 
print s
mumukkFrame = dimuonditrk_m_rf_c.frame(Title("Phase Space Fit"),Range(4.0,5.0),Normalization(1.0))
splotData.plotOn(mumukkFrame)

BkgTotalMPdf.plotOn(mumukkFrame,Normalization(1.65))

mumukkFrame.Draw()