コード例 #1
0
ファイル: clean_wip.py プロジェクト: gagabi2/StrategyIA
    def reshape_path(self, path, player: OurPlayer):
        self.dist_from_path = 50  # mm
        self.path = path
        self.player = player
        self.player_id = player.id
        cmd = self.player.ai_command
        vel_cruise = cmd.cruise_speed * 1000
        # print(vel_cruise)
        point_list = [self.path.start]
        speed_list = [0]
        radius_at_const_speed = (vel_cruise**2) / self.player.max_acc
        p1 = self.path.points[0].conv_2_np()
        for idx, point in enumerate(self.path.points[1:-1]):
            idx += 1
            p2 = point.conv_2_np()
            p3 = self.path.points[idx + 1].conv_2_np()
            theta = np.math.atan2(p3[1] - p2[1],
                                  p3[0] - p2[0]) - np.math.atan2(
                                      p1[1] - p2[1], p1[0] - p2[0])
            radius = abs(self.dist_from_path * np.sin(theta / 2) /
                         (1 - np.sin(theta / 2)))
            if radius > radius_at_const_speed:
                radius = radius_at_const_speed
                self.dist_from_path = -radius + radius / abs(
                    np.math.sin(theta / 2))
            if np.linalg.norm(p1 - p2) < 0.001 or np.linalg.norm(
                    p2 - p3) < 0.001 or np.linalg.norm(p1 - p3) < 0.001:
                # on traite tout le cas ou le problème dégènere
                point_list += [p2]
                speed_list += [vel_cruise / 1000]
            else:
                p4 = p2 + np.sqrt(np.square(self.dist_from_path + radius) - radius ** 2) * \
                          (p1 - p2)/np.linalg.norm(p1-p2)
                p5 = p2 + np.sqrt(np.square(self.dist_from_path + radius) - radius ** 2) * \
                    (p3 - p2) / np.linalg.norm(p3 - p2)
                if np.linalg.norm(p4 - p5) > np.linalg.norm(p3 - p1):
                    point_list += [point]
                    speed_list += [vel_cruise / 1000]
                else:
                    point_list += [Position.from_np(p4), Position.from_np(p5)]
                    speed_list += [
                        np.sqrt(radius / (self.player.max_acc * 1000)),
                        np.sqrt(radius / (self.player.max_acc * 1000))
                    ]
            p1 = point_list[-1][:]

        speed_list += [0]
        point_list += [self.path.goal]
        # print(point_list)
        # print(speed_list)

        return Path().generate_path_from_points(point_list, speed_list)
コード例 #2
0
 def verify_sub_target(self, sub_target):
     for pose_obs in self.pose_obstacle:
         dist_sub_2_obs = get_distance(Position.from_np(pose_obs),
                                       sub_target)
         if dist_sub_2_obs < self.gap_proxy:
             return True
     return False
コード例 #3
0
    def find_closest_obstacle(self, point, path):

        dist_point_obs = np.inf
        closest_obs = None
        closest_player = self.players_obstacles[0].pose.position.conv_2_np()
        if get_distance(path.start, path.goal) < 0.001:
            return [closest_obs, dist_point_obs, closest_player]
        if point == path.start:
            return [closest_obs, dist_point_obs, closest_player]
        pose_start = path.start.conv_2_np()
        direction = (point.conv_2_np() - pose_start
                     ) / np.linalg.norm(point.conv_2_np() - pose_start)

        for idx, pose_obs in enumerate(self.pose_obstacle):
            vec_robot_2_obs_temp = pose_obs - pose_start
            dist_from_path_temp = np.linalg.norm(
                np.cross(direction, vec_robot_2_obs_temp))
            if self.gap_proxy > dist_from_path_temp and self.is_path_collide(
                    path, [pose_obs]):
                obstacle_pos = Position.from_np(pose_obs)
                dist = get_distance(path.start, obstacle_pos)
                if dist < dist_point_obs:
                    dist_point_obs = dist
                    closest_obs = obstacle_pos
                    closest_player = self.players_obstacles[idx]
        return [closest_obs, dist_point_obs, closest_player]
コード例 #4
0
    def go_between_ball_and_target(self):
        self.status_flag = Flags.WIP
        ball = self.game_state.get_ball_position()
        ball_velocity = self.game_state.get_ball_velocity().conv_2_np()
        if np.linalg.norm(ball_velocity) > 50:
            self.target = Pose(
                Position.from_np(ball.conv_2_np() - ball_velocity), 0)
            dist_behind = np.linalg.norm(ball_velocity) + 1 / np.sqrt(
                np.linalg.norm(ball_velocity))
        else:
            self.target = None
            dist_behind = 250
        if self.target is None:
            if self.game_state.get_our_team_color() == 0:  # yellow
                self.target = Pose(
                    self.game_state.const["FIELD_GOAL_BLUE_MID_GOAL"], 0)
            else:
                self.target = Pose(
                    self.game_state.const["FIELD_GOAL_YELLOW_MID_GOAL"], 0)
        if self._is_player_towards_ball_and_target():
            self.next_state = self.grab_ball
        else:
            self.next_state = self.go_between_ball_and_target

        return GoBehind(self.game_state, self.player, ball,
                        self.target.position, dist_behind)
コード例 #5
0
 def exec(self):
     ball = self.game_state.get_ball_position().conv_2_np()
     player = self.player.pose.position.conv_2_np()
     player_to_ball = ball - player
     player_to_ball = 0.3 * player_to_ball / np.linalg.norm(player_to_ball)
     speed_pose = Pose(Position.from_np(player_to_ball))
     return AICommand(self.player, AICommandType.MOVE, **{"pose_goal": speed_pose, "speed_flag": True})
コード例 #6
0
ファイル: clean_wip.py プロジェクト: gagabi2/StrategyIA
    def find_closest_obstacle(self, point, path):

        dist_point_obs = np.inf
        closest_obs = None
        closest_player = self.players_obstacles[0].pose.position.conv_2_np()
        if get_distance(path.start, path.goal) < 0.001:
            return closest_obs, dist_point_obs, closest_player
        if point == path.start:
            return closest_obs, dist_point_obs, closest_player
        pose_start = path.start.conv_2_np()
        direction = (point.conv_2_np() - pose_start
                     ) / np.linalg.norm(point.conv_2_np() - pose_start)

        for idx, pose_obs in enumerate(self.pose_obstacle):
            vec_robot_2_obs_temp = pose_obs - pose_start
            len_along_path_temp = np.dot(vec_robot_2_obs_temp, direction)
            dist_from_path_temp = np.sqrt(
                np.linalg.norm(vec_robot_2_obs_temp)**2 -
                len_along_path_temp**2)
            if self.gap_proxy > dist_from_path_temp and len_along_path_temp > 0:
                obstacle_pos = Position.from_np(pose_obs)
                dist = get_distance(path.start, obstacle_pos)
                if dist < dist_point_obs:
                    dist_point_obs = dist
                    closest_obs = obstacle_pos
                    # print(len(self.players_obstacles), "  ->  ", idx)
                    closest_player = self.players_obstacles[idx]
        return closest_obs, dist_point_obs, closest_player
コード例 #7
0
ファイル: rotate_around.py プロジェクト: gagabi2/StrategyIA
 def generate_destination(self):
     player = self.player.pose.position.conv_2_np()
     target = self.target.position.conv_2_np()
     player_to_target_orientation = np.arctan2(target[1] - player[1], target[0] - player[0])
     target_orientation = self.target.orientation
     delta_theta = player_to_target_orientation - target_orientation
     delta_theta = min(abs(delta_theta), np.pi/6) * np.sign(delta_theta)
     rotation_matrix = np.array([[np.cos(delta_theta), np.sin(delta_theta)], [-np.sin(delta_theta), np.cos(delta_theta)]])
     player_to_ball_rot = np.dot(rotation_matrix, player - target)
     translation = player_to_ball_rot / np.linalg.norm(player_to_ball_rot) * self.rayon
     destination = translation + target
     orientation = target_orientation
     return Pose(Position.from_np(destination), orientation)
コード例 #8
0
 def exec(self):
     if self.check_success():
         self.status_flag = Flags.SUCCESS
     else:
         self.status_flag = Flags.WIP
     ball = self.game_state.get_ball_position().conv_2_np()
     target = self.target.position.conv_2_np()
     ball_to_target = target - ball
     orientation = np.arctan2(ball_to_target[1], ball_to_target[0])
     next_action = RotateAround(self.game_state, self.player,
                                Pose(Position.from_np(ball), orientation),
                                90)
     return next_action.exec()
コード例 #9
0
    def get_behind_ball(self):
        self.status_flag = Flags.WIP
        player = self.player.pose.position.conv_2_np()
        ball = self.game_state.get_ball_position().conv_2_np()
        target = self.game_state.get_player_position(self.target_id, True).conv_2_np()

        vector_player_2_ball = ball - player
        vector_player_2_ball /= np.linalg.norm(vector_player_2_ball)

        if self._is_player_towards_ball_and_target():
            self.next_state = self.grab_ball
        else:
            self.next_state = self.get_behind_ball
        return GoBehind(self.game_state, self.player, self.game_state.get_ball_position(),
                        Position.from_np(target), 120, pathfinder_on=True)
コード例 #10
0
ファイル: Kick.py プロジェクト: gagabi2/StrategyIA
 def exec(self):
     """
     Execute le kick
     """
     target = self.target.position.conv_2_np()
     player = self.player.pose.position.conv_2_np()
     player_to_target = target - player
     player_to_target = 0.3 * player_to_target / np.linalg.norm(
         player_to_target)
     self.speed_pose = Pose(Position.from_np(player_to_target))
     return AICommand(
         self.player, AICommandType.MOVE, **{
             "pose_goal": self.speed_pose,
             "speed_flag": True,
             "kick": True,
             "kick_strength": self.force
         })
コード例 #11
0
 def push_ball(self):
     # self.debug.add_log(1, "Grab ball called")
     # self.debug.add_log(1, "vector player 2 ball : {} mm".format(self.vector_norm))
     if get_distance(self.last_ball_position, self.player.pose.position) < 40:
         self.next_state = self.halt
         self.last_time = time.time()
     elif self._is_player_opposing_ball_and_target(-0.9):
         self.next_state = self.push_ball
     else:
         self.next_state = self.get_behind_ball
     # self.debug.add_log(1, "orientation go get ball {}".format(self.last_angle))
     target = self.target.position.conv_2_np()
     player = self.player.pose.position.conv_2_np()
     player_to_target = target - player
     player_to_target = 0.5 * player_to_target / np.linalg.norm(player_to_target)
     speed_pose = Pose(Position.from_np(player_to_target))
     return Move(self.game_state, self.player, speed_pose)
コード例 #12
0
ファイル: mark.py プロジェクト: gagabi2/StrategyIA
 def move_to_enemy(self):
     if self._is_player_between_ball_and_enemy():
         self.next_state = self.move_to_enemy
         self.status_flag = Flags.SUCCESS
     else:
         self.next_state = self.go_between_ball_and_enemy
         self.status_flag = Flags.WIP
     player = self.player.pose.position.conv_2_np()
     enemy = self.player.pose.position.conv_2_np()
     ball = self.game_state.get_ball_position().conv_2_np()
     ball_to_enemy = enemy - ball
     player_to_ball = ball - player
     destination = enemy - 300 * ball_to_enemy / np.linalg.norm(
         ball_to_enemy)
     destination_orientation = np.arctan2(player_to_ball[1],
                                          player_to_ball[0])
     return MoveToPosition(
         self.game_state, self.player,
         Pose(Position.from_np(destination), destination_orientation))
コード例 #13
0
    def get_destination(self) -> Pose:
        """
        Calcul le point le plus proche du robot sur la droite entre les deux positions
        :return: Un tuple (Pose, kick) où Pose est la destination du joueur et kick est nul (on ne botte pas)
        """
        player = self.player.pose.position.conv_2_np()
        pt1 = self.position1.conv_2_np()
        pt2 = self.position2.conv_2_np()
        delta = self.minimum_distance * (pt2 - pt1) / np.linalg.norm(pt2 - pt1)
        pt1 = pt1 + delta
        pt2 = pt2 - delta

        pt1_to_player = player - pt1
        pt2_to_player = player - pt2
        pt1_to_pt2 = pt2 - pt1

        destination = np.cross(
            pt1_to_player, pt1_to_pt2) / np.linalg.norm(pt1_to_pt2) + player
        outside_x = (destination[0] > pt1[0] and destination[0] > pt2[0]) or \
                    (destination[0] < pt1[0] and destination[0] < pt2[0])
        outside_y = (destination[1] > pt1[1] and destination[1] > pt2[1]) or \
                    (destination[1] < pt1[1] and destination[1] < pt2[1])
        if outside_x or outside_y:
            if np.linalg.norm(pt1_to_player) > np.linalg.norm(pt2_to_player):
                destination = pt1
            else:
                destination = pt2
        target = self.target.conv_2_np()
        player_to_target = target - player
        destination_orientation = np.arctan2(player_to_target[1],
                                             player_to_target[0])

        # TODO remove MGL 2017/05/23
        '''
        delta_x = self.position2.x - self.position1.x
        delta_y = self.position2.y - self.position1.y

        if delta_x != 0 and delta_y != 0:   # droite quelconque
            # Équation de la droite reliant les deux positions
            a1 = delta_y / delta_x                                  # pente
            b1 = self.position1.y - a1*self.position1.x             # ordonnée à l'origine

            # Équation de la droite perpendiculaire
            a2 = -1/a1                                              # pente perpendiculaire à a1
            b2 = robot_position.y - a2*robot_position.x             # ordonnée à l'origine

            # Calcul des coordonnées de la destination
            x = (b2 - b1)/(a1 - a2)                                 # a1*x + b1 = a2*x + b2
            y = a1*x + b1
        elif delta_x == 0:  # droite verticale
            x = self.position1.x
            y = robot_position.y
        elif delta_y == 0: # droite horizontale
            x = robot_position.x
            y = self.position1.y

        destination_position = Position(x, y)

        # Vérification que destination_position se trouve entre position1 et position2
        distance_positions = math.sqrt(delta_x**2 + delta_y**2)
        distance_dest_pos1 = get_distance(self.position1, destination_position)
        distance_dest_pos2 = get_distance(self.position2, destination_position)

        if distance_dest_pos1 >= distance_positions and distance_dest_pos1 > distance_dest_pos2:
            # Si position2 est entre position1 et destination_position
            new_x = self.position2.x - self.minimum_distance * delta_x / distance_positions
            new_y = self.position2.y - self.minimum_distance * delta_y / distance_positions
            destination_position = Position(new_x, new_y)
        elif distance_dest_pos2 >= distance_positions and distance_dest_pos2 > distance_dest_pos1:
            # Si position1 est entre position2 et destination_position
            new_x = self.position1.x + self.minimum_distance * delta_x / distance_positions
            new_y = self.position1.y + self.minimum_distance * delta_y / distance_positions
            destination_position = Position(new_x, new_y)

        # Vérification que destination_position respecte la distance minimale
        if distance_dest_pos1 <= distance_dest_pos2:
            destination_position = stayOutsideCircle(destination_position, self.position1, self.minimum_distance)
        else:
            destination_position = stayOutsideCircle(destination_position, self.position2, self.minimum_distance)

        # Calcul de l'orientation de la pose de destination
        destination_orientation = get_angle(destination_position, self.target)

        destination_pose = {"pose_goal": Pose(destination_position, destination_orientation)}
        kick_strength = 0
        '''
        return Pose(Position.from_np(destination), destination_orientation)