def test_get_next_data_instant(): for filename in filename_list: my_reader = Reader(filename) # opens up a new instance of the Reader [array_1, array_2] = my_reader.get_next_data_instant() assert len(array_1) == len(array_2) assert array_1 == array_2
def __init__(self, ParrentScreenManager, Data_Source, Doc_Source, Scroll_TargetHeight="Bottom"): if Scroll_TargetHeight == "Bottom": Screen.__init__(self, name='Scr_View_Hidden') else: Screen.__init__(self, name='Scr_View') self.ParrentScreenManager = ParrentScreenManager self.Data_Source = Data_Source self.Doc_Source = Doc_Source #Reader ######################## self.Reader = Reader( Doc_Source=self.Doc_Source, Scroll_TargetHeight=Scroll_TargetHeight, on_DoubleClick=self.ParrentScreenManager.Swich_Screen) self.Reader.Update() #Slider ######################## self.View_Slider = View_Slider(self.Data_Source, self.Reader.Update) self.Layout = BoxLayout(orientation='vertical') self.Layout.add_widget(self.Reader) self.Layout.add_widget(self.View_Slider) self.add_widget(self.Layout) #绑定事件 self.bind(on_pre_enter=self.on_pre_enter)
class Test_Reader(unittest.TestCase): """ Test case for generic reader functionality. """ def test_get_reader_extension(self): """ Getting a reader by extension should provide the correct reader. """ self.assertTrue(isinstance(get_reader(extension = ".v"), CoqReader)) self.assertTrue(isinstance(get_reader(extension = ".thy"), Isabelle_Reader)) self.assertTrue(isinstance(get_reader(extension = ".html"), Coqdoc_Reader)) def setUp(self): self.data = "Test data \n new line" self.reader = Reader() self.reader.add_code(self.data) def test_add_code(self): """ Test setting data. """ self.assertEquals(self.data, self.reader.script) def test_reader_newline(self): """ Test that getting a new line yields the desired result. """ self.assertEquals("Test data \n", self.reader.getLine())
def run_hr_monitor(self): """ The heart of the program. This function runs the while loop that calls all other classes that are part of this assignment. It calls the classes that read the data in, find the instant heart rate, and find the average heart rates. Calls the method to destroy the display and finish running the script. """ reader = Reader(self.data_filename, self.update_time_seconds, self.data_bit_length) beat_detector = BeatDetector(self.update_time_seconds, self.signal_choice) processor_hr = HRProcessor(self.update_time_seconds, self.tachycardia, self.bradycardia, self.multi_min_avg_1, self.multi_min_avg_2) [data_array_ecg, data_array_ppg] = reader.get_next_data_instant() while reader.still_reading(): instant_hr = beat_detector.find_instant_hr(data_array_ecg, data_array_ppg) visualization_info = processor_hr.add_inst_hr( instant_hr, self.time_passed_string) self.render_information_display(visualization_info) [data_array_ecg, data_array_ppg] = reader.get_next_data_instant() time.sleep(self.seconds_between_readings) print("DONE") self.clean_up()
def generate_rete(filename): rule_processor = RuleProcessor() reader = Reader(filename, rule_processor, 1) rule_processor.reader = reader reader.read_clips_command() buffer = \ "from graphviz import Digraph\n" + \ "from pyknow import *\n" + \ "import os\n\n" buffer += rule_processor.facts_classes buffer += "class Engine(KnowledgeEngine):\n" buffer += rule_processor.rules buffer += "engine=Engine()\n" buffer += "engine.reset()\n" buffer += rule_processor.facts buffer += "graph=engine.matcher.print_network()\n" buffer += "fd=open(\"graph.vd\",\"w\")\n" buffer += "fd.write(graph)\n" buffer += "dirpath = os.getcwd()\n" buffer += "graph_path = dirpath +" buffer += '"\\graph.vd"\n' buffer += "output_path = dirpath +" buffer += '"\\graph.png"\n' ################ create examples ############## #buffer += '"\\example1.png"\n' #buffer += '"\\example2.png"\n' buffer += "command_to_execute=\"dot -T png \"+graph_path +\" -o \"+output_path\n" buffer += "os.popen(command_to_execute)\n" fd = open("result_script.py", "w") fd.write(buffer) dirpath = os.getcwd() command_to_execute = "py " + dirpath + "\\result_script.py" os.popen(command_to_execute)
def __init__(self, xml_file): Reader.__init__(self, xml_file) self.last_object = '' self.matrix = list() self.obj_matrix = dict() # {obj1:[ [][][] ], obj2: [ [][][] ], ...} self.parse_rows(self.root)
def __init__(self, **kwargs): lang_dict_path = kwargs['lang_dict_path'] if 'file' in kwargs: self.__text = Reader.read(kwargs['file']) elif 'string' in kwargs: self.__text = kwargs['string'].lower() terms_list = list( map(lambda s: s[:-1], Reader.readlines(lang_dict_path))) lengths = set(map(lambda s: len(s), terms_list)) min_length = min(lengths) max_length = max(lengths) term_matrix = {} for i in range(min_length, max_length + 1): term_matrix[i] = [] for term in terms_list: if len(term) == i: term_matrix[i].append(term) self.__term_matrix = term_matrix self.__dict_entropy = AI_decypher.__get_entropy(terms_list) self.__entropy = AI_decypher.__get_entropy(self.__text) if 'entropy_from' in kwargs: self.__entropy_from_documents = None for file in kwargs['entropy_from']: self.__entropy_update( AI_decypher.__get_entropy(Reader.read(file), raw=True))
def main(): reader = Reader() reader._init_("mediumF.txt") net = reader.readNetwork() gaParam = {"popSize": 500, "noGen": 500} problParam = { 'function': roadValue, 'noNodes': net['noNodes'], 'net': net['mat'] } ga = GA(gaParam, problParam) ga.initialisation() ga.evaluation() stop = False g = -1 solutions = [] while not stop and g < gaParam['noGen']: g += 1 ga.oneGenerationElitism() bestChromo = ga.bestChromosome() solutions.append(bestChromo) print('Best solution in generation ' + str(g) + ' is: x = ' + str(bestChromo.repres) + ' f(x) = ' + str(bestChromo.fitness)) heapify(solutions) print(str(solutions[0]))
def main(argv): rd = Reader() ev = Evaluator() pr = Printer() program = rd.read(argv[1]) pr.prnt(program) value = ev.eval(program) pr.prnt(value)
def get_error_files(self) -> List[str]: error_files: List[str] = self.__reader.catch_fatal_errors() if not error_files: error_files = self.__reader.catch_errors() if not error_files: self.__quests = Reader.read_quests() self.__textsAns = Reader.read_texts_ans() self.__correctAns = Reader.read_correct_ans() return error_files
def main_crfae(MAX_ITERS): N_POS = 3 BATCH_SIZE = 5 WINDOW_SIZE = 3 # for removal of short sequences EVAL_CHK = 3 # File paths ptbfile = join('ds','deptrees','dev') unvfile = join('universal-pos-tags', 'en-ptb.map') brownfile = join('output','paths') reader = Reader(ptbfile, unvfile, brownfile, WINDOW_SIZE) top_tags, pos_remap = gen_pos_remap(reader, N_POS) LATENT_STATES = top_tags fgen = FeatureGenerator(brownfile) all_tokens = set() for ex in reader.examples: all_tokens |= set([t[0] for t in ex.gt_tokens]) generative_model = Generative(latent_states=LATENT_STATES, clusters=all_tokens, word_to_cluster=reader.word_to_cluster) crf = CRFAE(fgen, latent_states=LATENT_STATES) eval_sentences, _, eval_pos = reader.sample(30) eval_pos = map(pos_remap, eval_pos) learning_rate = 0.01 train_hist = [] eval_hist = [] for it in xrange(MAX_ITERS): with rtk.timing.Logger('batch', print_every=20): step_size = 100 * 1. / (it + 1) sentences, clusters, pos = reader.sample(BATCH_SIZE) pos = map(pos_remap, pos) if True: supervised_learning_step(crf, sentences, pos, step_size) print 'Accuracy:', evaluate_accuracy(crf, None, eval_sentences, eval_pos) else: unsupervised_learning_step(crf, generative_model, sentences, step_size=step_size) obj = compute_log_likelihood(crf, generative_model, eval_sentences) train_hist.append((it, obj)) print 'Iter : %d Objective : %f' % (it, obj) if it % EVAL_CHK == 0: acc = evaluate_v(crf, generative_model, eval_sentences, eval_pos) print 'Evaluation : %f' % acc eval_hist.append((it, acc)) # Pickle training history with open(join('results', 'unsupervised_data2.pkl'), 'wb') as fid: pickle.dump({'train_hist':train_hist, 'eval_hist':eval_hist, 'crf_weights':crf.weights, 'gen_weights':generative_model.conditional}, fid)
def deserialize(self,buffer): reader=Reader() print("84 is here") self.questype = reader.readByte(buffer) print("questype = {0}".format(self.questype)) self.result = reader.readByte(buffer) print("result = {0}".format(self.result))
def LoadDataForVisualisation(self): print 'Loading data for visualisation...' Reader.read(self.filePath2) self.data = Reader.load self.dataStr = Reader.load2 #data i czas self.data = Operations.CalculateToMetrics(self.data) stat = Statistics(self.data, self.dataStr) stat.makeStats() self.UpdateStatsGUI(stat) print 'All done.'
def LoadDataForVisualisation(self): print 'Loading data for visualisation...' Reader.read(self.filePath2) self.data = Reader.load self.dataStr = Reader.load2 #data i czas self.data = Operations.CalculateToMetrics(self.data) stat = Statistics(self.data,self.dataStr) stat.makeStats() self.UpdateStatsGUI(stat) print 'All done.'
def read(): path = os.path.join(os.getcwd(), 'novels') novels = os.listdir(path) for index, novel in enumerate(novels): print("{}. {}".format(index + 1, novel)) choice = int(input("Choose a title: ")) title = novels[choice - 1] numOfChapters = int(input("How many chapters do you want me to read?")) reader = Reader(title) for i in range(numOfChapters): reader.read_page()
def __init__(self, file_path, row_separator='\n', column_separator=','): """ Creates a new instance of the CSVReader. :param file_path: The file_path to the csv file :param row_separator: The separator used for separating the rows (',' by default) :param column_separator: The separator used for separating the columns ('\n' by default) """ Reader.__init__(self) self._row_separator = row_separator self._column_separator = column_separator self._init_data(file_path)
def __init__(self): reader = Reader() # Reader object path = "1150haber" # A corpus of documents # Dictionaries which will contain words adj_dict = {} noun_dict = {} verb_dict = {} # Key counters of the dictionaries adj_key_counter = 1 noun_key_counter = 1 verb_key_counter = 1 # It will store the words wordList = reader.readWords(path) # Stores the words inside appropriate dictionaries adj_dict, noun_dict, verb_dict, adj_key_counter, noun_key_counter, verb_key_counter = reader.storeWords( adj_dict, noun_dict, verb_dict, adj_key_counter, noun_key_counter, verb_key_counter, wordList) sentenceCounter = 0 # Counts the number of generated sentences which has the requested value numOfSentences = int(input("Enter the number of the sentences: ")) sentenceTotal = int(input("Enter the value of the sentences: ")) print("---------------------------------------") # 'break' and random statements is added to vary the words in the sentences for noun in noun_dict: # Traverses the noun_dict dictionary noun = randint(1, noun_key_counter) for adj in adj_dict: adj = randint(1, adj_key_counter) for verb in verb_dict: if sentenceCounter < numOfSentences: # Generates sentences until the given number of sentences is reached sentence = str( noun_dict[noun][0]).capitalize() + " " + str( adj_dict[adj][0]) + " " + str( verb_dict[verb][0]) # Concatenation mySum = noun_dict[noun][1] + adj_dict[adj][ 1] + verb_dict[verb][ 1] # Computes the value of the sentence if mySum == sentenceTotal: # If the value of the current sentence is equal to the input value print(sentenceCounter + 1, ": ", sentence, " | ", mySum) sentenceCounter += 1 break elif sentenceCounter == numOfSentences: # If the number of sentences is reached to the input value, exit exit(1) else: print("No matches found!") break
def mails(): mailList=list() thread1= Reader(mailList,"mails1.txt"); thread1.start() thread2= Reader(mailList,"mails2.txt") thread2.start() thread1.join() thread2.join() thread3=Counter(mailList) thread3.start() thread3.join()
def read()-> P_Expr: """ Reads a line from the IP and instantiates a Reader using the IP and returns the resulting p-expression :return: p_expr """ # try: ip = read_lines().line if not ip: return P_Expr(False) r = Reader(ip) p_expr = r.reader() return P_Expr(p_expr)
def __init__(self, cwd, inputFilePath): """create utilities required by the program, i.e. a registry checker, reader and module list """ self.cwd = cwd self.inputFilePath = inputFilePath self._registryChecker = RegistryChecker() self._inputReader = Reader() self.moduleList = ModuleList() self.__prepModuleResult = DataContainer() return
def read() -> P_Expr: """ Reads a line from the IP and instantiates a Reader using the IP and returns the resulting p-expression :return: p_expr """ # try: ip = read_lines().line if not ip: return P_Expr(False) r = Reader(ip) p_expr = r.reader() return P_Expr(p_expr)
def main(): #Crate the Reader object reader = Reader() #Get the file's path from the user's input print("Hello.\nPlease type the full path for the file you want to read:") fullpath = input() #Call the read file function try: print(reader.readFile(fullpath)) except ValueError as err: print(err) return
def test_load_next_data_point(): for filename in filename_list: my_reader = Reader(filename) # opens up a new instance of the Reader [point_1, point_2] = my_reader.load_next_data_points() assert point_1 == point_2 point_3 = None point_4 = None for i in range(0, rate): [point_3, point_4] = my_reader.load_next_data_points() assert point_3 == point_4 assert point_1 == point_4
class Process: def __init__(self): self.reader = Reader() self.profiler = Profiler() def execute(self): source = self.reader.read_source() while source: self.profiler.start_tracking() little = Little(source) little.run() little.print_result() self.profiler.end_tracking() print(self.profiler.get_time_delta_message()) source = self.reader.read_source()
def __init__(self, inputDirectory, outputDirectory="", readSize=1024*1024*200): Reader.__init__(self, inputDirectory, readSize) self.outputDirectory = outputDirectory self.totalURLProcessed = 0 self.totalDifferentHostFound = 0 self.totalHostProcessed = 0 self.foundHosts = {} self.urlLister = URLLister() self.lastTime = 0 self.startedTime = datetime.now() if os.path.exists(os.path.join(outputDirectory, "AllHosts.txt")): self.outputFile = open(os.path.join(outputDirectory, "AllHosts.txt"), "a") else: self.outputFile = open(os.path.join(outputDirectory, "AllHosts.txt"), "w")
def __init__(self, **kwargs): if 'string' in kwargs: self.__text = kwargs['string'].lower() elif 'file' in kwargs: file = kwargs['file'] self.__text = Reader.read(file).lower() else: raise Exception("Missing source text") alpha = [] if 'alpha' in kwargs: alpha = kwargs['alpha'] else: alpha = [chr(l) for l in range(97, 123)] for i in range(26): random = randint(0, 25) hold = alpha[i] alpha[i] = alpha[random] alpha[random] = hold self.__alpha = { chr(l): alpha[i] for l, i in zip(range(97, 123), range(26)) }
def __init__(self, wordLi, wpm): super(QtReader, self).__init__() self.setReadOnly(True) self.reader =Reader(wordLi, 0, 600); self.timer=QtCore.QTimer(self) self.timer.timeout.connect(self.flashWord) self.wpm = wpm
def parse_reviews(self, reviews): # tokenize each review, add to each review obj IN PLACE for obj in reviews: obj['tokens'] = Reader().tokens(obj['review']) obj['bigrams'] = list(nltk.bigrams(obj['tokens'])) obj['trigrams'] = list(nltk.trigrams(obj['tokens'])) return reviews
def awakeFromNib(self): self.red_color = NSColor.colorWithCalibratedRed_green_blue_alpha_(0.8, 0.3, 0.3, 1.0) self.green_color = NSColor.colorWithCalibratedRed_green_blue_alpha_(0.2, 0.6, 0.2, 1.0) self.blue_color = NSColor.colorWithCalibratedRed_green_blue_alpha_(0.1, 0.3, 0.7, 1.0) self.white_color = NSColor.colorWithCalibratedRed_green_blue_alpha_(0.0, 0.0, 0.0, 1.0) self.reader = Reader() self.code = None self.scanning = True transform = NSAffineTransform.transform() transform.scaleXBy_yBy_(-1.0, 1.0) self.flipFilter = CIFilter.filterWithName_("CIAffineTransform") self.flipFilter.setValue_forKey_(transform, "inputTransform") self.isight = PySight.ISight.alloc().init() session = self.isight.start() self.cameraView.setCaptureSession_(session) self.cameraView.setDelegate_(self) self.codeView.setString_("Initializing...") self.codeView.setTextColor_(self.white_color) self.msgLabel.setHidden_(True) window = self.window() window.setAspectRatio_(window.frame().size) self.showWindow_(None) self.thread = NSThread.alloc().initWithTarget_selector_object_(self,self.updateLoop, None) self.thread.start()
class Engine: """SQL Engine""" def __init__(self, prompt, metadataFilename): self.parser = Parser(prompt) self.dbReader = Reader(metadataFilename) self.dbReader.printMetadata() def run(self): while True: query = self.parser.getTokens() if query == "exit": print("Bye") break else: print(query)
def serializing(): #f3 = open('', 'wb'); new_reader = Reader('Sergey', 'K.', 18) #f3.write(library2.pickle) pickle.dump(new_reader, open('C:\EX4serializing.pkl', 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
def process_for_playOrStop(): while True: play = fileDealer.fileReader("buttons/next") if (play == "True"): fileDealer.fileWriter("buttons/next") print("Play button is pressed, running program") lock.acquire(block=True) firstDownload = PlayEvent() firstFile = firstDownload.download( firstDownload.cursor[0]["id"], firstDownload.cursor[0]["title"]) playFirst = Reader(firstFile) playFirst.go_for_play() print('Done, Exiting and releasing play lock') SetDefaults() lock.release()
class Process: def __init__(self): self.reader = Reader() self.profiler = Profiler() def execute(self, a, b, p, ant_n, t_max, q): source = self.reader.read_source() while source: self.profiler.start_tracking() alg = Algorithm(source.matrix, a, b, p, ant_n, t_max, q) alg.run() alg.print_result() self.profiler.end_tracking() print(self.profiler.get_time_delta_message()) source = self.reader.read_source() break
def __init__(self): self.clearScreen() self.theConnection = None self.readThe = Reader().theReader try: theUser = input(">>Enter the username:\n") self.clearScreen() thePassword = getpass.getpass( ">>Password for {}: ".format(theUser)) self.clearScreen() theServer = self.readThe['server'] thePort = self.readThe['port'] theDriver = self.readThe['driver'] theDBName = input(">>Enter the database you want to connect to:\n") self.clearScreen() if theDBName == " " or "": theDBName = self.readThe['defaultDB'] theConnectionString = "DRIVER={};SERVER={};PORT={};DATABASE={};UID={};PWD={}".format( theDriver, theServer, thePort, theDBName, theUser, thePassword) self.theConnection = pyodbc.connect(theConnectionString, autocommit=True) print(theConnectionString) self.theCursor = self.theConnection.cursor() self.chooseTheOption() except (Exception, pyodbc.DatabaseError) as error: print("Something happened") print(self.formatTheError(error)) sys.exit()
def _parse_config_file(self, file_name): lines = Reader(file_name, 100).lines # Checks if read of config file was successful if lines: # Array of attribute names for below Loop. array = [ "left_bracket", "right_bracket", "op_not", "op_and", "op_or", "op_xor", "implies", "bicondition", "initial_fact", "query", "implies_sub", "bicondition_sub", "max_lines" ] # Loop through parsed config, to overwrite default config. for line in lines: # Remove comment and new line line = line.replace("\n", "").split("#")[0] # Check for 'set' keyword if line.count("set "): line = line.split("set")[1] else: line = "" # Remove white spaces and tabs line = line.replace(" ", "").replace("\t", "") # Loops through array of attribute names for x in array: # Checks if modification attribute is valid. tmp = self._match_attr(line, x) # Checks if line contains only "value", sets attribute if line != tmp and self._is_value_valid(array, x, tmp): setattr(self, x, tmp) self.max_lines = int(self.max_lines)
def main(): # 标签文件路径 LABEL_DIR = '/Users/jellyfive/Desktop/实验/Dataset/BuildingData/training/label_2' IMAGE_DIR = '/Users/jellyfive/Desktop/实验/Dataset/BuildingData/training/image_2' CALIB_DIR = '/Users/jellyfive/Desktop/实验/Dataset/BuildingData/training/calib' # 读取标签文件 label_reader = Reader(IMAGE_DIR, LABEL_DIR, CALIB_DIR) show_indices = label_reader.indices for index in show_indices: data_label = label_reader.data[index] proj_matrix = data_label['camera_to_image'] image = Image.open(data_label['image_path']) for tracklet in data_label['tracklets']: bbox, dim, loc, r_x, r_y, r_z = [ tracklet['bbox'], tracklet['dimensions'], tracklet['location'], tracklet['rotation_x'], tracklet['rotation_y'], tracklet['rotation_z'] ] # 画图 draw(image, bbox, proj_matrix, dim, loc, loc, r_x, r_y, r_z, r_x, r_y, r_z) # plt.show() plt.savefig( '/Users/jellyfive/Desktop/实验/3D-pose-estimation--translation/output_6/{}_proj' .format(index))
class Parser: res_dict = {} res_matrix = {} res_biword_index = {} stop_words = list( list(stopwords.words('english')) + list(string.printable) + list("'s")) def __init__(self): self.reader = Reader() def __create_inverted_index(self): for line in self.reader.generate_string_lines(): words = word_tokenize(line[0]) from_file = line[1] for word in words: if word.lower() not in self.stop_words: if word.lower() in self.res_dict: self.res_dict[word.lower()].add( self.reader.file_list.index(from_file)) else: self.res_dict[word.lower()] = { self.reader.file_list.index(from_file) } return self.res_dict def __create_incident_matrix(self): inv_index = self.create_or_load_dictionary() for k, v in inv_index.items(): inv_index[k] = self.__to_matrix(v) return inv_index def __to_matrix(self, list_of_presented_files): res_list = [] for i in enumerate(self.reader.file_list): if i[0] in list_of_presented_files: res_list.append(1) else: res_list.append(0) return res_list def create_or_load_dictionary(self): try: with open('dict.pickle', "rb") as f: foo = pickle.load(f) except Exception: foo = self.__create_inverted_index() with open('dict.pickle', "wb") as f: pickle.dump(foo, f) return foo def create_or_load_matrix(self): try: with open('matrix.pickle', "rb") as f: foo = pickle.load(f) except Exception: foo = self.__create_incident_matrix() with open('matrix.pickle', "wb") as f: pickle.dump(foo, f) return foo
class QtReader(QtGui.QTextEdit): def __init__(self, wordLi, wpm): super(QtReader, self).__init__() self.setReadOnly(True) self.reader =Reader(wordLi, 0, 600); self.timer=QtCore.QTimer(self) self.timer.timeout.connect(self.flashWord) self.wpm = wpm def flashWord(self): if not self.reader.paused: self.setText(self.reader.getWord()) self.reader.next() def start(self): self.timer.start(self.wpm/60*1000) def stop(self): self.timer.stop()
def createValidIDs(): #add more IDs if necessary IDs = set() IDs.add("062301632603431110") reader_ = Reader(IDs) return reader_
def extracting(self, num_str, file_loc_hdf5=None, channel="primary"): File_num_pkl = [el for el in self.files_pkl if num_str in el] File_num_hdf5 = [el for el in self.files_hdf5 if num_str in el] for el in File_num_pkl: if "cycle_cens" in el: file_loc = el fp = open(file_loc, "r") a = pkl.load(fp) fp.close() right_traj_ind = a["length"].keys() ## traj_noF_densities for el in File_num_pkl: if "traj_intQC" in el: file_loc = el fp = open(file_loc, "r") a = pkl.load(fp) fp.close() first = a[a.keys()[0]].keys()[0] second = a[a.keys()[0]][first].keys()[0] a_1 = a[a.keys()[1]][first][second] self.trajectories = [a_1.lstTraj[ind] for ind in range(len(a_1.lstTraj)) if ind in right_traj_ind] self.all_trajectories = [a_1.lstTraj[ind] for ind in range(len(a_1.lstTraj))] if file_loc_hdf5 is None: file_loc = File_num_hdf5[0] else: file_loc = file_loc_hdf5 self.hdf5_reader = Reader() self.hdf5_reader.hdf5_read(file_loc, line_id=True, channel=channel) self.names = self.hdf5_reader.names self.data = self.hdf5_reader.data self.Var_missing = self.hdf5_reader.names[[62, 92, 122, 152]] c = self.hdf5_reader.id_just_opened n, = c.shape self.mat_id = c[0:n] def id_t(x): return tuple(x) self.mat_id = map(id_t, self.mat_id) self.mat_id_inv = {} for i in range(len(self.mat_id)): self.mat_id_inv[self.mat_id[i]] = i
def __init__(self, inDirectory="../../", outDirectory=os.getcwd(), ramSize=32): Reader.__init__(self, inDirectory, os.path.join(outDirectory, 'DirectoryDetectorData'), ramSize) print "Input: ", inDirectory print "Output: ", os.path.join(outDirectory, 'DirectoryDetectorData') self.inputDirectory = inDirectory self.outputDirectory = os.path.join(outDirectory, 'DirectoryDetectorData') self.hostDataProcessor = {} self.mainDBFile = None self.mainDBIndex = None self.dataFoundURLFile = None #self.dataFoundURLIndex = None self.isPrintLog = True self.errorFile = open(os.path.join(outDirectory, "Error.log"), "w") sys.stderr = self.errorFile
def reader( self, mapping=None ): prm = dict() for p in self._params: prm[p['name']] = p['value'] reader = Reader.new( self.type(), **prm ) if reader: if not mapping: mapping = CodeLookup() reader.setMappingSource(mapping) return reader
type=int,\ default=10,\ help='number of iterations of training (default: 10)') if __name__=="__main__": args = parser.parse_args() #md = Metadata('/home/chunmun/fyp/variable.txt.proc') #md = Metadata('/home/chunmun/fyp/all.vardec') md = Metadata(args.filename) directory_model = 'bestModel' if args.load_reader: with open(os.path.join(directory_model, 'reader.pkl'), 'rb') as f: reader = pickle.load(f) else: reader = Reader(md) reader.save(directory_model) # Generate the training set num_sentences = len(reader.sentences) num_words = len(reader.word_dict) codified_sentences = [numpy.asarray(\ utils.contextwin([t.codified_word for t in s], args.window,\ reader.get_padding_left(), reader.get_padding_right()\ ), dtype=numpy.int32)\ for s in reader.sentences] #print('codified_sentences', codified_sentences) #sentences_shared = theano.shared(codified_sentences) num_tags = len(reader.tag_dict)
def addAttributeValue(self,line): values = line.split() self.states.append((values[0], Reader.isTrue(self,values[1])))
def __init__(self,fileName): self.states = [] Reader.__init__(self, fileName)
class Traj_data: def __init__(self, file_name=None, pkl_traj_file="/home/naylor/Documents/Work/Files/pkl"): print ("Traj_data built") local_dir_hdf5 = pkl_traj_file local_dir_pkl = local_dir_hdf5 self.files_hdf5 = [] for fn in os.listdir(local_dir_hdf5): if "hdf5" in fn: self.files_hdf5.append(local_dir_hdf5 + "/" + fn) self.files_pkl = [] for fn in os.listdir(local_dir_pkl): if "pkl" in fn: self.files_pkl.append(local_dir_pkl + "/" + fn) if file_name is not None: self.extracting("0015", "both_channels_0015.hdf5", "primary") self.data = pd.read_csv(file_name) self.update() def extracting(self, num_str, file_loc_hdf5=None, channel="primary"): File_num_pkl = [el for el in self.files_pkl if num_str in el] File_num_hdf5 = [el for el in self.files_hdf5 if num_str in el] for el in File_num_pkl: if "cycle_cens" in el: file_loc = el fp = open(file_loc, "r") a = pkl.load(fp) fp.close() right_traj_ind = a["length"].keys() ## traj_noF_densities for el in File_num_pkl: if "traj_intQC" in el: file_loc = el fp = open(file_loc, "r") a = pkl.load(fp) fp.close() first = a[a.keys()[0]].keys()[0] second = a[a.keys()[0]][first].keys()[0] a_1 = a[a.keys()[1]][first][second] self.trajectories = [a_1.lstTraj[ind] for ind in range(len(a_1.lstTraj)) if ind in right_traj_ind] self.all_trajectories = [a_1.lstTraj[ind] for ind in range(len(a_1.lstTraj))] if file_loc_hdf5 is None: file_loc = File_num_hdf5[0] else: file_loc = file_loc_hdf5 self.hdf5_reader = Reader() self.hdf5_reader.hdf5_read(file_loc, line_id=True, channel=channel) self.names = self.hdf5_reader.names self.data = self.hdf5_reader.data self.Var_missing = self.hdf5_reader.names[[62, 92, 122, 152]] c = self.hdf5_reader.id_just_opened n, = c.shape self.mat_id = c[0:n] def id_t(x): return tuple(x) self.mat_id = map(id_t, self.mat_id) self.mat_id_inv = {} for i in range(len(self.mat_id)): self.mat_id_inv[self.mat_id[i]] = i def missing_features_data(self): for name in self.Var_missing: if name in self.data.columns: self.data = self.data.drop(name, 1) self.names = [el for el in self.names if el not in self.Var_missing] def missing_features_train(self): for name in self.Var_missing: if name in self.train.columns: self.train = self.train.drop(name, 1) self.names = [el for el in self.names if el not in self.Var_missing] def add_error(self): features1 = [2, 4, 5, 6, 8, 9, 16, 17, 18, 23] features3 = [31, 32, 33, 34, 35, 37, 42] features2 = [24, 25, 26, 27, 28, 29, 30, 62, 92, 122, 152] features4 = [0, 3, 153, 162, 164, 217, 218, 219, 220, 221, 237, 238] features = features1 + features2 + features3 + features4 self.data.ix[self.data.index, self.data.columns[features]] += 1 def label_finder(self, file_name): file_loc = "D:/cellcog/for cell cognition/classifier/annotations" + "/PLLT0001_01___P0015___T00001.xml" file_loc = file_name ## file_loc="D:/cellcog/pcna_eth/classifier/three_phases/annotations/PLPlate1___P0015___T00001_bis.xml" tree = ET.parse(file_loc) root = tree.getroot() data_0015 = np.zeros(shape=(2000, 4)) seq = 0 for i in range(len(root[1])): if len(root[1][i]) != 0 and len(root[1][i]) != 1: for j in range(len(root[1][i])): if len(root[1][i][j]) == 0: Type = root[1][i][j].text else: data_0015[seq, :] = [Type, root[1][i][j][0].text, root[1][i][j][1].text, root[1][i][j][2].text] seq = seq + 1 for i in range(len(data_0015)): if data_0015[i, 1] == 0: break data_0015 = data_0015[0:i, :] data_0015 = pd.DataFrame(data_0015) data_0015.columns = ["Type", "x_c", "y_c", "time_idx"] full_data_0015 = self.data[ [self.hdf5_reader.well + "_id_frame", self.hdf5_reader.well + "_pos_x", self.hdf5_reader.well + "_pos_y"] ] full_data_0015.columns = ["time_idx", "x", "y"] full_data_0015["Type"] = 0 for frame in set(list(data_0015["time_idx"])): A_f = data_0015[data_0015["time_idx"] == frame] B_f = full_data_0015[full_data_0015["time_idx"] == frame] for A_line in A_f.index: x_c = A_f.loc[A_line]["x_c"] y_c = A_f.loc[A_line]["y_c"] B_f_temp = B_f B_f_temp["Distance"] = (B_f_temp["x"] - x_c) ** 2 + (B_f_temp["y"] - y_c) ** 2 min_ind = B_f_temp["Distance"].idxmin(axis=1) full_data_0015.ix[min_ind, "Type"] = A_f.loc[A_line]["Type"] self.labels_and_line = full_data_0015[full_data_0015["Type"] != 0] self.labels_and_line.columns = [ self.hdf5_reader.well + "_id_frame", self.hdf5_reader.well + "_pos_x", self.hdf5_reader.well + "_pos_y", "Type", ] def renaming_and_merge(self): def bij(val_string): val_string = int(val_string) if val_string == 1: return "1" elif val_string == 2: return "S" elif val_string == 3: return "S" elif val_string == 4: return "S" elif val_string == 5: return "2" else: return "M" self.labels_and_line["Type"] = self.labels_and_line.apply(lambda r: bij(r["Type"]), axis=1) self.data = self.data.join(self.labels_and_line["Type"]) self.train = self.data[pd.notnull(self.data["Type"])] def Add_traj(self, normalize=False, all_traj=False, average=False, diff=False, num_traj=0): ## It can be improved with a grouby and lambda function (once they have traj if all_traj: traj_dic = self.all_trajectories else: traj_dic = self.trajectories if num_traj != 0: traj_dic = [traj_dic[i] for i in range(num_traj)] i = 0 for traj in traj_dic: list_feat = [] for key in traj.lstPoints.keys(): if key in self.mat_id_inv.keys(): list_feat.append(self.mat_id_inv[key]) else: print key print "this is not the best signe..., maybe wrong xml file or wrong hdf5, or wrong traj" list_feat.sort() if normalize: if average: X_nor = self.data[self.names].mean(axis=0) else: X_nor = self.data.ix[list_feat[0], self.names] if diff: X_ = self.data.ix[list_feat, self.names] - X_nor else: X_ = self.data.ix[list_feat, self.names] / X_nor self.data.ix[list_feat, self.names] = X_ self.data.ix[list_feat, "traj"] = i i += 1 self.Group_of_traj = self.data.groupby("traj") first_word = "Normalized" if normalize else "Unnormalzied" second_word = "Averaged" if average else "" if normalize: third_word = "Subtracted" if diff else "Divided" else: third_word = "" self.caract = first_word + "_" + second_word + "_" + third_word def update(self, show=True): self.Group_of_traj = self.data.groupby("traj") if show: print "Updated member Group_of_traj" we = "0015" self.labels_and_line = self.data[[we + "_id_frame", we + "_pos_x", we + "_pos_y", "Type"]] self.labels_and_line = self.labels_and_line[pd.notnull(self.labels_and_line["Type"])] self.train = self.data[pd.notnull(self.data["Type"])] def filter_length_traj(self, mu): new_data = self.data.groupby("traj").filter(lambda x: len(x) >= mu) self.data = new_data self.update(show=False)
def __init__(self): Reader.__init__(self) self.unfinished = None
# Generate the training set num_sentences = len(reader.sentences) num_words = len(reader.word_dict) num_tags = len(reader.tag_dict) n = lambda x: np.asarray(x, dtype=np.int32) codified_sentences = [n([t.codified_word for t in s]) for s in reader.sentences] codified_tags = [n([t.codified_tag for t in s]) for s in reader.sentences] print('#sentences : {}, #words: {}, #tags : {}, learning rate : {}, #hidden : {}, embedding size: {} '.format(\ num_sentences, num_words, num_tags, args.learning_rate, args.hidden, args.num_features)) if args.validation_filename != None: valid_md = Metadata(args, args.validation_filename) reader_valid = Reader(valid_md) reader_valid.word_dict = reader.word_dict reader_valid.tag_dict = reader.tag_dict reader_valid.codify_sentences() codified_sentences_valid = [n([t.codified_word for t in s]) for s in reader_valid.sentences] codified_tags_valid = [n([t.codified_tag for t in s]) for s in reader_valid.sentences] x = T.ivector('x') y = T.ivector('y') mask = T.ivector('mask') emb = Embedding(x, args.num_features, num_words+1) if args.dropout: dropout = Dropout(emb.output, args.num_features, args.dropout) lstm = LSTM(dropout.output, args.l2, args.hidden, num_words + 1, num_tags, args.num_features)
def main_vae(): rtk.rand.seed(rtk.dist.mgr.p('rand_seed')) N_POS = 3 BATCH_SIZE = 5 WINDOW_SIZE = 3 # for removal of short sequences EVAL_CHK = 3 # File paths prefix = '/atlas/u/tachim/w/semisupervised/CRF_AE' ptbfile = join(prefix, 'ds','deptrees','dev') unvfile = join(prefix, 'universal-pos-tags', 'en-ptb.map') brownfile = join(prefix, 'output','paths') reader = Reader(ptbfile, unvfile, brownfile, WINDOW_SIZE) top_tags, pos_remap = gen_pos_remap(reader, N_POS) LATENT_STATES = top_tags fgen = FeatureGenerator(brownfile) all_tokens = set() for ex in reader.examples: all_tokens |= set([t[0] for t in ex.gt_tokens]) generative_model = HMMGenerative(latent_states=LATENT_STATES, clusters=all_tokens, word_to_cluster=reader.word_to_cluster) crf = CRFAE(fgen, latent_states=LATENT_STATES) train_sentences, _, train_pos = reader.sample(20) train_pos = map(pos_remap, train_pos) eval_sentences, _, eval_pos = reader.sample(20) eval_pos = map(pos_remap, eval_pos) train_hist = [] eval_hist = [] stats = [] for it in xrange(rtk.dist.mgr.p('n_iters')): with rtk.timing.Logger('batch', print_every=1): step_size = 1. / (it + 1) if it < 5: supervised_learning_step(crf, train_sentences, train_pos, step_size) crf.batch_vae_update(eval_sentences, generative_model, stepsize=step_size) generative_model.batch_update(crf, eval_sentences) vae_test = evaluate_vae(crf, generative_model, eval_sentences) crf_test_accuracy = evaluate_accuracy(crf, None, eval_sentences, eval_pos) crf_train_accuracy = evaluate_accuracy(crf, None, train_sentences, train_pos) v_measure = evaluate_v(crf, None, eval_sentences, eval_pos) print 'VAE on test:', vae_test print 'Accuracy on test:', crf_test_accuracy print 'Accuracy on train:', crf_train_accuracy print 'V measure:', v_measure stats.append(dict( vae_test=vae_test, crf_test_accuracy=crf_test_accuracy, crf_train_accuracy=crf_train_accuracy, v_measure=v_measure, )) return stats
def __init__(self, fileName): Reader.__init__(self, fileName)
fignum = 0 t = 0 while t <= T: for i, b in enumerate(bodies): b.a = Vector(0, 0, 0) for other in bodies[i + 1:]: f = b.force(other) b.a += f / b.m other.a -= f / other.m for b in bodies: b.step(dt) t += dt if plot: fig = plt.figure() axes = Axes3D(fig) for b in bodies: b.plot(axes) plt.savefig('{0}{1:05.0f}.png'.format(savedir, fignum)) plt.close('all') fignum += 1 if __name__ == '__main__': reader = Reader(sys.argv[1]) bodies = reader.getBodies() fig = plt.figure() sim(bodies, dt = 1, T = 3600, plot = True, savedir = sys.argv[2])
from Reader import Reader from DigitOCR import DigitOCR from Solver import solve_grid_opt ocm = DigitOCR() #ocm.create_training_data() #ocm.train() reader = Reader() reader.load_image("images/sudoku6.jpg") reader.clean_image() reader.show_image() reader.rectify_perspective() reader.show_rectified() reader.cut_image_from_clean() reader.margin_cases() mat = reader.convert_to_matrix(ocm) print mat print "Searching for a solution..." print solve_grid_opt(mat)
def setUp(self): self.data = "Test data \n new line" self.reader = Reader() self.reader.add_code(self.data)
def MitoseClassif(obj_norm, y_name_3state="Type",classif_Mitose="MitoseOrNot", num_str="0015"): print "\n We first load the unnormalized data: \n" if os.path.isfile("H2b_data.csv"): print "The file existed so I loaded it." H2b = Traj_data(file_name="H2b_data.csv",pkl_traj_file="./Pkl_file") else: H2b=Traj_data() H2b.extracting(num_str,"both_channels_0015.hdf5",'primary') ## Extracting the hdf5 file for the primary channel (H2b) H2b.Add_traj(normalize=False)## ,num_traj=10) ## (you can reduce the number of traj) ## Adding Alice's work on tracking to have trajectories file_loc="0015_PCNA.xml" H2b.label_finder(file_loc) ## Finding associated labels by minimizing distance by click and distance of cell H2b.renaming_and_merge() ## renaming the labels to have G1=="1", S=="S", G2=="2" and M=="M" #This procedure may take a long time. H2b.data.to_csv('H2b_data.csv',index=False,header=True) print "\n We train a classifier for mitosis or not: \n" obj_unnorm=H2b train_file="MitoseClassif.arff" train_1=Reader() train_1.arrf_read(train_file) train_1.renaming_for_mitosis() train_1.data["label"].value_counts() kfold=3 if train_1.Var_missing[0] in train_1.data.columns: train_1.missing_features_data() values=[100 + i*10 for i in range(15)] model_1=RandomForest_Autotunner(values) model_1.tunning(train_1.data[train_1.names],train_1.data["label"],kfold,plot=True,fit_new_model=True) plt.show() model_1.cm_normalized = model_1.cm.astype('float') / model_1.cm.sum(axis=1)[:, np.newaxis] plot_matrix(model_1.cm_normalized,title="Normalized confusion matrix",names=["M","O","S"]) plt.show() ## To reduce computation and none useless things, we remove instances that do not belong to trajectories. obj_norm.data=obj_norm.data.ix[pd.notnull(obj_norm.data["traj"]),obj_norm.data.columns] obj_unnorm.data=obj_unnorm.data.ix[pd.notnull(obj_unnorm.data["traj"]),obj_unnorm.data.columns] obj_norm.update() obj_unnorm.update() ## Predicting model 1 index_no_missing=obj_norm.data[obj_norm.names].dropna(axis=0, how='any').index obj_norm.data.ix[index_no_missing,classif_Mitose]=model_1.predict(obj_unnorm.data.ix[index_no_missing,train_1.names]) ## Carefull, we put the unnormalized data in the above prediction. print "\n A bit of statistics on the overall predictions: \n" print "Frequency of predicted values for the Mitosis or not classifier: \n" print obj_norm.data[classif_Mitose].value_counts() print "\n We were however not able to predict %d instances because of missing values" % (obj_norm.data.shape[0]-len(index_no_missing)) obj_norm.data obj_norm.update() ### Giving priority to the first classif... model_1.names_to_give=train_1.names return(obj_norm,model_1)
if __name__=="__main__": args = parser.parse_args() varlist = list(map(str, [os.path.basename(args.filename), os.path.basename(args.validation_filename), \ args.iterations, args.hidden, args.l2, args.dropout_rare, args.dropout,\ args.fixed_embeddings is not None, args.learn_embeddings is not None])) #reader = Reader(md) directory_model = 'Model_' + '_'.join(varlist) try: with open(os.path.join(directory_model, 'reader.pkl'), 'rb') as f: reader = pickle.load(f) except: md = Metadata(args, args.filename, args.fixed_embeddings or args.learn_embeddings) reader = Reader(md, minimum_occurrence=2) num_tags = len(reader.tag_dict) num_words = len(reader.word_dict) print('... loading models') x = T.ivector('x') emb = Embedding(x, args.num_features, num_words+1) lstm = LSTM(emb.output, args.l2, args.hidden, num_words + 1, num_tags, args.num_features) emb.load(directory_model, varlist) lstm.load(directory_model, varlist) classify = th.function( inputs = [x],
class ReaderController(NSWindowController): # IB Outlets cameraView = IBOutlet() codeView = IBOutlet() resetButton = IBOutlet() msgLabel = IBOutlet() def awakeFromNib(self): self.red_color = NSColor.colorWithCalibratedRed_green_blue_alpha_(0.8, 0.3, 0.3, 1.0) self.green_color = NSColor.colorWithCalibratedRed_green_blue_alpha_(0.2, 0.6, 0.2, 1.0) self.blue_color = NSColor.colorWithCalibratedRed_green_blue_alpha_(0.1, 0.3, 0.7, 1.0) self.white_color = NSColor.colorWithCalibratedRed_green_blue_alpha_(0.0, 0.0, 0.0, 1.0) self.reader = Reader() self.code = None self.scanning = True transform = NSAffineTransform.transform() transform.scaleXBy_yBy_(-1.0, 1.0) self.flipFilter = CIFilter.filterWithName_("CIAffineTransform") self.flipFilter.setValue_forKey_(transform, "inputTransform") self.isight = PySight.ISight.alloc().init() session = self.isight.start() self.cameraView.setCaptureSession_(session) self.cameraView.setDelegate_(self) self.codeView.setString_("Initializing...") self.codeView.setTextColor_(self.white_color) self.msgLabel.setHidden_(True) window = self.window() window.setAspectRatio_(window.frame().size) self.showWindow_(None) self.thread = NSThread.alloc().initWithTarget_selector_object_(self,self.updateLoop, None) self.thread.start() def copyCode(self, code): if code is not None: pb = NSPasteboard.generalPasteboard() types = [NSStringPboardType] pb.declareTypes_owner_(types, self) pb.setString_forType_(code, NSStringPboardType) def nsimage2pil(self, image): rep = image.representations().objectAtIndex_(0) data = rep.bitmapData() im = Image.fromstring("RGBA", (int(image.size().width), int(image.size().height)), data) return im # IB Action resetClicked: def resetClicked_(self, e): self.msgLabel.setHidden_(True) self.reader.reset() self.scanning = True def displayDoneState(self): strcode = str(self.code) self.codeView.setString_(strcode) self.codeView.setTextColor_(self.green_color) self.resetButton.setEnabled_(True) self.copyCode(strcode) self.msgLabel.setStringValue_("Code copied") self.msgLabel.setHidden_(False) def displayReadingState(self): code = self.code strcode = str(code) self.codeView.setString_(strcode) self.codeView.setTextColor_(self.white_color) self.resetButton.setEnabled_(True) pos = code.get_active_positions() i = 0 while i < len(strcode): l = 1 if i in pos: while i + l < len(strcode) and i + l in pos: l += 1 self.codeView.setTextColor_range_(self.blue_color, NSMakeRange(i, l)) elif strcode[i] == 'x': while i + l < len(strcode) and strcode[i + l] == 'x': l += 1 self.codeView.setTextColor_range_(self.red_color, NSMakeRange(i, l)) i += l def displayErrorState(self, message): strcode = str(self.code) self.codeView.setString_(strcode) self.codeView.setTextColor_(self.red_color) self.resetButton.setEnabled_(True) self.msgLabel.setStringValue_(message) self.msgLabel.setHidden_(False) def updateLoop(self): while True: loopPool = NSAutoreleasePool.alloc().init() if self.scanning: frame = self.isight.consumeFrame() reschedule = True if frame: frame.retain() self.code = self.reader.process(self.nsimage2pil(frame)) (result, message) = self.code.check() strcode = str(self.code) if result == 0: self.performSelectorOnMainThread_withObject_waitUntilDone_(self.displayDoneState, None, True) self.scanning = False elif result == 1: self.performSelectorOnMainThread_withObject_waitUntilDone_(self.displayReadingState, None, True) else: self.performSelectorOnMainThread_withObject_waitUntilDone_(self.displayErrorState, message, True) self.scanning = False frame.release() del loopPool NSThread.sleepForTimeInterval_(0.3) # QTCaptureView delegate def view_willDisplayImage_(self, view, image): self.flipFilter.setValue_forKey_(image, "inputImage") image.release() # why oh why? return self.flipFilter.valueForKey_("outputImage") # NSWindow delegate def windowWillClose_(self, notification): self.isight.stop()
#!/usr/bin/env python #from readtest import * import re from CardList import CardList from Reader import Reader import sys import subprocess import shlex reader = Reader() cardList = CardList() print 'Ready: place a card on top of the reader' while True: try: card = reader.readCard() print 'Read card', card plist = cardList.getPlaylist(card) print 'Playlist', plist if plist != '': subprocess.check_call( ["./haplaylist.sh %s" % plist], shell=True) except KeyboardInterrupt: sys.exit(0) except: pass
from CryptographicAlgorithms import CryptoBox from binascii import hexlify, unhexlify from Reader import Reader if __name__ == "__main__": security_level = 1 fileManager = Reader() fileManager.read() res = hexlify(CryptoBox.generateHash(fileManager.inputs[fileManager.SHA], 1)) # SHA256 fileManager.write("# SHA256\n" + res + "\n") res = hexlify(CryptoBox.generateHash(fileManager.inputs[fileManager.SHA], 2)) # SHA384 fileManager.write("# SHA384\n" + res + "\n") res = hexlify(CryptoBox.generateHash(fileManager.inputs[fileManager.SHA], 3)) # SHA512 fileManager.write("# SHA512\n" + res + "\n") AES_cipher = CryptoBox.AESencryption(fileManager.inputs[fileManager.AES], 1) # AES enc & dec key, cipher, iv = AES_cipher[0], AES_cipher[1], AES_cipher[2] AES_original = CryptoBox.AESdecryption(key, cipher, iv) fileManager.write("\n# AES security level " + str(security_level) + "\nkey = " + hexlify(key) + "\ncipher text = " + hexlify(cipher) + "\niv = " + hexlify(iv) + "\noriginal text = " + hexlify(AES_original) + "\n") DES3_cipher = CryptoBox.DES3encryption(fileManager.inputs[fileManager.DES3]) # DES3 enc & dec key, cipher, iv = DES3_cipher[0], DES3_cipher[1], DES3_cipher[2] DES3_original = CryptoBox.DES3decryption(key, cipher, iv) fileManager.write("\n# 3DES" + "\nkey = " + hexlify(key) + "\ncipher text = " + hexlify(cipher) + "\niv = " + hexlify(iv) + "\noriginal text = " + hexlify(DES3_original)+ "\n")
md = Metadata(args, args.filename, args.fixed_embeddings or args.learn_embeddings) varlist = list(map(str, [os.path.basename(args.filename), os.path.basename(args.validation_filename), \ args.iterations, args.hidden, args.window, args.l2, args.fixed_embeddings is not None, args.learn_embeddings is not None])) directory_model = 'Model_' + '_'.join(varlist) utils.create_directory(directory_model) if args.load_reader: print('... loading reader') with open(os.path.join(directory_model, 'reader.pkl'), 'rb') as f: reader = pickle.load(f) else: print('... Generating new reader') reader = Reader(md, minimum_occurrence=2) #reader.save(directory_model) """ Special options """ #reader.load_files(directory_model) #reader.codify_sentences() # Generate the training set num_sentences = len(reader.sentences) num_words = len(reader.word_dict) num_tags = len(reader.tag_dict) if args.validation_filename: valid_md = Metadata(args, args.validation_filename, args.fixed_embeddings or args.learn_embeddings)