コード例 #1
0
ファイル: AC_networks.py プロジェクト: nicoladainese96/SC2-RL
    def _init_params_nets(self):
        self.arguments_networks = {}
        self.arguments_dict = {}

        for a in self.action_dict:
            action = self.all_actions[self.action_dict[a]]
            args = action.args

            for arg in args:
                self.arguments_dict[
                    arg.name] = arg.id  # store 'name':id pairs for future use
                if debug: print('\narg.name: ', arg.name)

                size = self.all_arguments[arg.id].sizes
                if debug: print('size: ', size)
                if len(size) == 1:
                    if debug:
                        print("Init CategoricalNet for " + arg.name +
                              ' argument')
                    self.arguments_networks[arg.name] = net.CategoricalNet(
                        self.net.n_features, size[0])
                else:
                    if debug:
                        print("Init SpatialNet for " + arg.name + ' argument')
                    self.arguments_networks[arg.name] = net.SpatialNet(
                        self.net.n_features, size)
        return
コード例 #2
0
ファイル: AC_networks.py プロジェクト: nicoladainese96/SC2-RL
    def __init__(self, action_space, env, n_layers, linear_size, in_channels,
                 n_channels, **non_spatial_HPs):
        """
        Parameters
        ----------
        action_space: int
            Number of (discrete) possible actions to take
        map_size: int
            If input is (batch_dim, n_channels, linear_size, linear_size), 
            then map_size = linear_size - 2
        env: int
            Instance of the environment
        **net_args: dict (optional)
            Dictionary of {'key':value} pairs valid for OheNet
        """
        super(SpatialActor, self).__init__()

        # Environment-related attributes
        self.action_dict = {0: _NO_OP, 1: _SELECT_ARMY, 2: _MOVE_SCREEN}
        self.screen_res = env.observation_spec()[0]['feature_screen'][1:]
        self.all_actions = env.action_spec()[0][1]
        self.all_arguments = env.action_spec()[0][0]

        # Useful HyperParameters as attributes
        self.n_channels = n_channels

        # Networks
        self.spatial_features_net = net.SpatialFeatures(
            n_layers, linear_size, in_channels, n_channels)
        self.nonspatial_features_net = net.NonSpatialFeatures(
            linear_size, n_channels, **non_spatial_HPs)
        self.linear = nn.Linear(n_channels, action_space)
        self._init_params_nets()
コード例 #3
0
ファイル: AC_networks.py プロジェクト: nicoladainese96/SC2-RL
 def __init__(self, n_layers, linear_size, in_channels, n_channels,
              **non_spatial_HPs):
     """
     Parameters
     ----------
     map_size: int
         If input is (batch_dim, n_channels, linear_size, linear_size), 
         then map_size = linear_size - 2
     **net_args: dict (optional)
         Dictionary of {'key':value} pairs valid for OheNet
     """
     super(SpatialBasicCritic, self).__init__()
     self.net = nn.Sequential(
         net.SpatialFeatures(n_layers, linear_size, in_channels,
                             n_channels),
         net.NonSpatialFeatures(linear_size, n_channels, **non_spatial_HPs),
         nn.Linear(n_channels, 1))
コード例 #4
0
ファイル: AC_networks.py プロジェクト: nicoladainese96/SC2-RL
 def __init__(self, map_size, **net_args):
     """
     Parameters
     ----------
     map_size: int
         If input is (batch_dim, n_channels, linear_size, linear_size), 
         then map_size = linear_size - 2
     **net_args: dict (optional)
         Dictionary of {'key':value} pairs valid for OheNet
     """
     super(OheBasicCritic, self).__init__()
     self.net = net.OheNet(map_size, **net_args)
     self.linear = nn.Linear(self.net.n_features, 1)
コード例 #5
0
ファイル: AC_networks.py プロジェクト: nicoladainese96/SC2-RL
    def __init__(self, action_space, map_size, **net_args):
        """
        Parameters
        ----------
        action_space: int
            Number of (discrete) possible actions to take
        map_size: int
            If input is (batch_dim, n_channels, linear_size, linear_size), 
            then map_size = linear_size - 2
        **net_args: dict (optional)
            Dictionary of {'key':value} pairs valid for OheNet
        """
        super(OheActor, self).__init__()

        self.action_dict = {0: _NO_OP, 1: _SELECT_ARMY, 2: _MOVE_SCREEN}
        self.net = net.OheNet(map_size, **net_args)
        self.linear = nn.Linear(self.net.n_features, action_space)