# Specification of model type and training parameters model_type = 'mrd' model_num_inducing = 30 model_num_iterations = 700 model_init_iterations = 2000 fname = modelPath + '/models/' + 'mActions_' + model_type + '_exp' + str(experiment_number) #+ '.pickle' # Enable to save the model and visualise GP nearest neighbour matching save_model=True economy_save = True # ATTENTION!! This is still BETA!! visualise_output=False test_mode = False # Reading face data, preparation of data and training of the model mySAMpy.readData(root_data_dir, participant_index, pose_index) (Yall, Lall, YtestAll, LtestAll) = mySAMpy.prepareData(model_type, Ntr, pose_selection, randSeed=experiment_number) Lunique = numpy.unique(mySAMpy.L) L_index = dict() for i in range(len(Lunique)): L_index[Lunique[i]] = numpy.where(mySAMpy.L == i)[0] mm = [] for i in range(len(Lunique)): print('# Considering label: ' + str(Lunique[i])) cur = SAMDriver_interaction(True, imgH = 400, imgW = 400, imgHNew = 200, imgWNew = 200,inputImagePort="/CLM/imageSeg/out", openPorts=False) ############## Y_cur = Yall[L_index[i],:].copy() Ytest_cur = YtestAll[L_index[i],:].copy() L_cur = Lall[L_index[i],:].copy()
# # Reading face data, preparation of data and training of the model mySAMpy.readData(dataPath, participantList, pose_index) minImages = mySAMpy.Y.shape[1] Ntr = int(minImages * ratioData / 100) Ntest = minImages - Ntr allPersonsY = mySAMpy.Y allPersonsL = mySAMpy.L for i in range(len(participantList)): #print participantList[i] mySAMpy.Y = allPersonsY[:, :, i, None] mySAMpy.L = allPersonsL[:, :, i, None] (Yalli, Lalli, YtestAlli, LtestAlli) = mySAMpy.prepareData(model_type, Ntr, pose_selection, randSeed=2) if (i == 0): Yall = Yalli.copy() Lall = Lalli.copy() YtestAll = YtestAlli.copy() LtestAll = LtestAlli.copy() else: Yall = np.vstack([Yall, Yalli]) Lall = np.vstack([Lall, Lalli]) YtestAll = np.vstack([YtestAll, YtestAlli]) LtestAll = np.vstack([LtestAll, LtestAlli]) allPersonsY = None alPersonsL = None
pose_selection = 0 # Specification of model type and training parameters model_type = 'mrd' model_num_inducing = 30 model_num_iterations = 150 model_init_iterations = 400 fname = modelPath + '/models/' + 'mActions_' + model_type + '_exp' + str(experiment_number) #+ '.pickle' # Enable to save the model and visualise GP nearest neighbour matching save_model=True visualise_output=True # Reading face data, preparation of data and training of the model mySAMpy.readData(root_data_dir, participant_index, pose_index) mySAMpy.prepareData(model_type, Ntr, pose_selection) mySAMpy.training(model_num_inducing, model_num_iterations, model_init_iterations, fname, save_model) while( not(yarp.Network.isConnected("/speechInteraction/behaviour:o","/sam/face/interaction:i")) ): print "Waiting for connection with behaviour port..." pass # This is for visualising the mapping of the test face back to the internal memory if visualise_output: ax = mySAMpy.SAMObject.visualise() visualiseInfo=dict() visualiseInfo['ax']=ax ytmp = mySAMpy.SAMObject.recall(0) ytmp = numpy.reshape(ytmp,(mySAMpy.imgHeightNew,mySAMpy.imgWidthNew)) fig_nn = pb.figure()
# # Reading face data, preparation of data and training of the model mySAMpy.readData(dataPath, participantList, pose_index) minImages = mySAMpy.Y.shape[1] Ntr = int(minImages*ratioData/100) Ntest = minImages - Ntr allPersonsY = mySAMpy.Y; allPersonsL = mySAMpy.L; for i in range(len(participantList)): #print participantList[i] mySAMpy.Y = allPersonsY[:,:,i,None] mySAMpy.L = allPersonsL[:,:,i,None] (Yalli, Lalli, YtestAlli, LtestAlli) = mySAMpy.prepareData(model_type, Ntr, pose_selection, randSeed=2) if(i==0): Yall = Yalli.copy(); Lall = Lalli.copy(); YtestAll = YtestAlli.copy() LtestAll = LtestAlli.copy() else: Yall = np.vstack([Yall,Yalli]) Lall = np.vstack([Lall,Lalli]) YtestAll = np.vstack([YtestAll,YtestAlli]) LtestAll = np.vstack([LtestAll, LtestAlli]) allPersonsY = None alPersonsL = None
# Reading face data, preparation of data and training of the model mySAMpy.readData(root_data_dir, participant_index, pose_index) minImages = mySAMpy.Y.shape[1] Ntr = int(minImages*ratioData/100) Ntest = minImages - Ntr allPersonsY = mySAMpy.Y; allPersonsL = mySAMpy.L; for i in range(len(participantList)): #print participantList[i] mySAMpy.Y = allPersonsY[:,:,i,None] mySAMpy.L = allPersonsL[:,:,i,None] (Yalli, Lalli, YtestAlli, LtestAlli) = mySAMpy.prepareData(model_type, Ntr, pose_selection, randSeed=experiment_number) if(i==0): Yall = Yalli.copy(); Lall = Lalli.copy(); YtestAll = YtestAlli.copy() LtestAll = LtestAlli.copy() else: Yall = np.vstack([Yall,Yalli]) Lall = np.vstack([Lall,Lalli]) YtestAll = np.vstack([YtestAll,YtestAlli]) LtestAll = np.vstack([LtestAll, LtestAlli]) allPersonsY = None alPersonsL = None mm = []
model_type = 'mrd' model_num_inducing = 30 model_num_iterations = 150 model_init_iterations = 400 fname = modelPath + '/models/' + 'mActions_' + model_type + '_exp' + str( experiment_number) #+ '.pickle' # Enable to save the model and visualise GP nearest neighbour matching save_model = True economy_save = True # ATTENTION!! This is still BETA!! visualise_output = True # Reading face data, preparation of data and training of the model mySAMpy.readData(root_data_dir, participant_index, pose_index) mySAMpy.prepareData(model_type, Ntr, pose_selection, randSeed=experiment_number) mySAMpy.training(model_num_inducing, model_num_iterations, model_init_iterations, fname, save_model, economy_save) if yarpRunning: while (not (yarp.Network.isConnected("/speechInteraction/behaviour:o", "/sam/face/interaction:i"))): print "Waiting for connection with behaviour port..." pass # This is for visualising the mapping of the test face back to the internal memory if visualise_output: ax = mySAMpy.SAMObject.visualise() visualiseInfo = dict() visualiseInfo['ax'] = ax
# Specification of model type and training parameters model_type = 'mrd' model_num_inducing = 30 model_num_iterations = 150 model_init_iterations = 400 fname = modelPath + '/models/' + 'mActions_' + model_type + '_exp' + str(experiment_number) #+ '.pickle' # Enable to save the model and visualise GP nearest neighbour matching save_model=True economy_save = True # ATTENTION!! This is still BETA!! visualise_output=True # Reading face data, preparation of data and training of the model mySAMpy.readData(root_data_dir, participant_index, pose_index) mySAMpy.prepareData(model_type, Ntr, pose_selection, randSeed=experiment_number) mySAMpy.training(model_num_inducing, model_num_iterations, model_init_iterations, fname, save_model, economy_save) if yarpRunning: while( not(yarp.Network.isConnected("/speechInteraction/behaviour:o","/sam/face/interaction:i")) ): print "Waiting for connection with behaviour port..." pass # This is for visualising the mapping of the test face back to the internal memory if visualise_output: ax = mySAMpy.SAMObject.visualise() visualiseInfo=dict() visualiseInfo['ax']=ax ytmp = mySAMpy.SAMObject.recall(0)