コード例 #1
0
def fetch_dataset(molecule_type, is_triu=True, index=None):

        dim = DIM[molecule_type]

        def load_triu(S, P, dim):
            
            return [extract_triu(s, dim) for s in S], [extract_triu(p, dim) for p in P]

        if is_triu:
            dataset, molecules = make_butadien_dataset(
                np.load(
                    "cc2ai/" + \
                    molecule_type + "/molecules_" + molecule_type + "_6-31g**.npy"
                ),
                *load_triu(*np.load(
                    "cc2ai/" + \
                    molecule_type + "/dataset_" + molecule_type + "_6-31g**.npy"
                ), dim), 
                index=index
            )
        else:
            dataset, molecules = make_butadien_dataset(
                np.load(
                    "cc2ai/" + \
                    molecule_type + "/molecules_" + molecule_type + "_6-31g**.npy"
                ),
                *np.load(
                    "cc2ai/" + \
                    molecule_type + "/dataset_" + molecule_type + "_6-31g**.npy"
                ),
                index=index
            )

        return dataset, molecules
コード例 #2
0
def fetch_dataset(folder, postfix, is_triu=True, index=None, test_samples=100):

    dim = DIM

    if is_triu:
        molecules = np.load(folder + "molecules" + postfix + ".npy") 
        
        descriptor = NonWeighted(
            Gaussians(*RADIAL_GAUSSIAN_MODELS["Equidistant-Broadening_1"]),
            Gaussians(*AZIMUTHAL_GAUSSIAN_MODELS["Equisitant_1"]),
            Gaussians(*POLAR_GAUSSIAN_MODELS["Equisitant_1"])
        )

        
        descriptor_values = descriptor.calculate_descriptors_batch(molecules)

        dataset, molecules = make_butadien_dataset(
            molecules,
            descriptor_values,
            [extract_triu(p, DIM) for p in np.load(folder + "P" + postfix + ".npy")],
            index=index,
            test_samples=test_samples
        )

        S = np.load(folder + "S" + postfix + ".npy")

        if index is None:
            index = np.arange(len(S))
        S_test = S[index[test_samples:]]

    else:
        raise NotImplementedError("Only triu networks!!")

    return dataset, molecules, S_test
コード例 #3
0
def prep_dataset():
    """Fetching the dataset """
    
    def load_triu(S, P, dim):
        
        return [extract_triu(s, dim) for s in S], [extract_triu(p, dim) for p in P]


    folder = join("butadien", "data", "400")

    molecules = np.load(join(folder, "molecules400.npy")) 
    
    descriptor = NonWeighted(
        Gaussians(*RADIAL_GAUSSIAN_MODELS["Equidistant-Broadening_1"]),
        Gaussians(*AZIMUTHAL_GAUSSIAN_MODELS["Equisitant_1"]),
        Gaussians(*POLAR_GAUSSIAN_MODELS["Equisitant_1"])
    )

    descriptor_values = descriptor.calculate_descriptors_batch(molecules)

    dataset, molecules = make_butadien_dataset(
        molecules,
        descriptor_values,
        [extract_triu(p, DIM) for p in np.load(join(folder, "P400.npy"))],
        test_samples=100
    )

    return dataset#, molecules
コード例 #4
0
def fetch_dataset(folder, postfix, is_triu=True, index=None):

    dim = DIM

    def load_triu(S, P, dim):
        
        return [extract_triu(s, dim) for s in S], [extract_triu(p, dim) for p in P]

    if is_triu:
        dataset, molecules = make_butadien_dataset(
            np.load(
                folder + "molecules" + postfix + ".npy"
            ),
            *load_triu(
                np.load(folder + "S" + postfix + ".npy"),
                np.load(folder + "P" + postfix + ".npy"), 
                dim
            ), 
            index=index,
            test_samples=100
        )
    else:
        raise NotImplementedError("Only triu networks!!")

    return dataset, molecules
コード例 #5
0
def prep_dataset():
    """Fetching the dataset """
    def load_triu(S, P, dim):

        return [extract_triu(s, dim)
                for s in S], [extract_triu(p, dim) for p in P]

    folder = join("butadien", "data")

    dataset, molecules = make_butadien_dataset(
        np.load(join(folder, "molecules.npy")), np.load(join(folder, "S.npy")),
        np.load(join(folder, "P.npy")))

    return dataset  #, molecules
コード例 #6
0
def prep_dataset():
    """Fetching the dataset """
    def load_triu(S, P, dim):

        return [extract_triu(s, dim)
                for s in S], [extract_triu(p, dim) for p in P]

    folder = join("butadien", "data", "400")

    dataset, molecules = make_butadien_dataset(
        np.load(join(folder, "molecules400.npy")),
        *load_triu(np.load(join(folder, "S400.npy")),
                   np.load(join(folder, "P400.npy")), DIM),
        test_samples=100)

    return dataset  #, molecules
コード例 #7
0
def prep_dataset(molecule_type):
    """Fetching the dataset """
    def load_triu(S, P, dim):

        return [extract_triu(s, dim)
                for s in S], [extract_triu(p, dim) for p in P]

    folder = join("cc2ai", molecule_type)

    dataset, molecules = make_butadien_dataset(
        np.load(
            join(
                folder, "molecules_" + molecule_type + "_" +
                BASIS[molecule_type] + ".npy")),
        *load_triu(
            *np.load(
                join(
                    folder, "dataset_" + molecule_type + "_" +
                    BASIS[molecule_type] + ".npy")), DIM[molecule_type]),
    )

    return dataset  #, molecules
コード例 #8
0
def main(sample_index):

    msg.print_level = 2

    msg.info("Hi. Measurements for butadien", 2)

    #--- fetch dataset and constants ---
    msg.info("Fetching sample " + str(sample_index) + " from datase", 2)

    dim = DIM

    molecules = np.load(
        "butadien/data/molecules.npy"
    )
    S = np.load( "butadien/data/S.npy")
    P = np.load( "butadien/data/P.npy")
    dataset = make_butadien_dataset(molecules, S, P)[0]

    molecule = molecules[sample_index].get_pyscf_molecule()
    s = S[sample_index].reshape(dim, dim)
    s_normed = dataset.inverse_input_transform(s.reshape(1, -1)).reshape(1,-1)
    p = P[sample_index].reshape(dim, dim)
    #---

    #--- fetch network ---
    msg.info("Fetching pretained network ", 2)
    graph = tf.Graph()
    structure, weights, biases = np.load(
        "butadien/data/network.npy", 
        encoding="latin1"
    )
    
    with graph.as_default():
        sess = tf.Session()
        network = EluFixedValue(structure, weights, biases)
        network.setup()
        sess.run(tf.global_variables_initializer())
    #---

    #--- calculate guesses ---
    msg.info("Calculating guesses ...",2)
    
    msg.info("Neural network ", 1)
    p_nn = network.run(sess, s_normed).reshape(dim, dim)

    msg.info("McWheenys", 1)
    p_mcw1 = multi_mc_wheeny(p_nn, s, n_max=1)
    p_mcw5 = multi_mc_wheeny(p_nn, s, n_max=5)

    msg.info("Classics", 1)
    p_sap = hf.init_guess_by_atom(molecule)
    
    p_minao = hf.init_guess_by_minao(molecule)
    
    p_gwh = hf.init_guess_by_wolfsberg_helmholtz(molecule)
    #--- 

    #--- Measureing & print ---
    outfile = "butadien/results/cube_" + str(sample_index) + "_"
    
    msg.info("Results Converged ", 1)
    cubegen.density(molecule, outfile + "converged.cube", p.astype("float64"))

    msg.info("Results NN: ", 1)
    cubegen.density(molecule, outfile + "nn.cube", p_nn.astype("float64"))
    
    msg.info("Results McWheeny 1: ",1)
    cubegen.density(molecule, outfile + "mcw1.cube", p_mcw1.astype("float64"))
    
    msg.info("Results McWheeny 5: ", 1)
    cubegen.density(molecule, outfile + "mcw5.cube", p_mcw5.astype("float64"))

    msg.info("Results SAP: ", 1)
    cubegen.density(molecule, outfile + "sap.cube", p_sap)

    msg.info("Results MINAO: ", 1)
    cubegen.density(molecule, outfile + "minao.cube", p_minao)

    msg.info("Results GWH: ", 1)
    cubegen.density(molecule, outfile + "gwh.cube", p_gwh)