コード例 #1
0
def between_correls(args):
    """TABLES MUST SORT SO THAT SAMPLES ARE IN THE SAME ORDER """
    logger = general.Logger("SCNIC_log.txt")
    logger["SCNIC analysis type"] = "between"

    # correlation and p-value adjustment methods
    correl_methods = {'spearman': spearmanr, 'pearson': pearsonr}
    p_methods = {'bh': general.bh_adjust, 'bon': general.bonferroni_adjust}
    correl_method = correl_methods[args.correl_method]
    if args.p_adjust is not None:
        p_adjust = p_methods[args.p_adjust]
    else:
        p_adjust = None

    # load tables
    table1 = load_table(args.table1)
    table2 = load_table(args.table2)
    logger["input table 1"] = args.table1
    logger["input table 1"] = args.table2

    table1 = table1.sort()
    table2 = table2.sort()

    if not np.array_equal(table1.ids(), table2.ids()):
        raise ValueError("Tables have different sets of samples present")

    # make new output directory and change to it
    if args.output is not None:
        os.makedirs(args.output)
        os.chdir(args.output)
        logger["output directory"] = args.output

    # filter tables
    if args.min_sample is not None:
        table1 = general.filter_table(table1, args.min_sample)
        metadata = general.get_metadata_from_table(table1)
        table2 = general.filter_table(table2, args.min_sample)
        metadata.update(general.get_metadata_from_table(table2))
    else:
        metadata = general.get_metadata_from_table(table1)
        metadata.update(general.get_metadata_from_table(table2))

    # make correlations
    logger["correlation metric"] = args.correl_method
    logger["p adjustment method"] = args.p_adjust
    correls = between_correls_from_tables(table1, table2, correl_method)
    correls.sort_values(correls.columns[-1], inplace=True)
    correls.to_csv(open('correls.txt', 'w'), sep='\t', index=False)

    # adjust p-values
    correls['p_adj'] = p_adjust(correls['p'])

    # make network
    net = general.correls_to_net(correls, metadata=metadata, min_p=args.min_p, min_r=args.min_r)
    logger["number of nodes"] = net.number_of_nodes()
    logger["number of edges"] = net.number_of_edges()
    nx.write_gml(net, 'crossnet.gml')

    logger.output_log()
    print '\a'
コード例 #2
0
ファイル: module.py プロジェクト: casey-martin/SCNIC
def module_maker(args):
    logger = general.Logger("SCNIC_module_log.txt")
    logger["SCNIC analysis type"] = "module"

    # read in correlations file
    correls = pd.read_table(args.input,
                            index_col=(0, 1),
                            sep='\t',
                            dtype={
                                'feature1': str,
                                'feature2': str
                            })
    logger["input correls"] = args.input
    if args.verbose:
        print("correls.txt read")

    # sanity check args
    if args.min_r is not None and args.min_p is not None:
        raise ValueError(
            "arguments min_p and min_r may not be used concurrently")
    if args.min_r is None and args.min_p is None:
        raise ValueError("argument min_p or min_r must be used")

    # read in correlations file and make distance matrix
    if args.min_r is not None:
        min_dist = ma.cor_to_dist(args.min_r)
        logger["minimum r value"] = args.min_r
        cor, labels = ma.correls_to_cor(correls)
        dist = ma.cor_to_dist(cor)
    elif args.min_p is not None:
        # TODO: This
        raise NotImplementedError()
    else:
        raise ValueError("this is prevented above")

    # read in biom table if given
    if args.table is not None:
        table = load_table(args.table)
        logger["input uncollapsed table"] = args.table
        if args.verbose:
            print("otu table read")

    # make new output directory and change to it
    if args.output is not None:
        if not os.path.isdir(args.output):
            os.makedirs(args.output)
        os.chdir(args.output)
    logger["output directory"] = os.getcwd()

    # make modules
    modules = ma.make_modules(dist, min_dist, obs_ids=labels)
    logger["number of modules created"] = len(modules)
    if args.verbose:
        print("Modules Formed")
        print("number of modules: %s" % len(modules))
        print("number of observations in modules: %s" %
              np.sum([len(i) for i in modules]))
        print("")
    ma.write_modules_to_file(modules)

    # collapse modules
    if args.table is not None:
        coll_table = ma.collapse_modules(table, modules)
        ma.write_modules_to_dir(table, modules)
        logger["number of observations in output table"] = coll_table.shape[0]
        if args.verbose:
            print("Table Collapsed")
            print("collapsed Table Observations: " + str(coll_table.shape[0]))
            print("")
        with biom_open('collapsed.biom', 'w') as f:
            coll_table.to_hdf5(f, 'make_modules.py')

    # make network
    if args.table is not None:
        metadata = general.get_metadata_from_table(table)
    else:
        metadata = defaultdict(dict)
    metadata = ma.add_modules_to_metadata(modules, metadata)
    correls_filter = general.filter_correls(correls,
                                            conet=True,
                                            min_p=args.min_p,
                                            min_r=args.min_r)
    net = general.correls_to_net(correls_filter, metadata=metadata)

    nx.write_gml(net, 'correlation_network.gml')
    if args.verbose:
        print("Network Generated")
        print("number of nodes: %s" % str(net.number_of_nodes()))
        print("number of edges: %s" % str(net.number_of_edges()))
    logger["number of nodes"] = net.number_of_nodes()
    logger["number of edges"] = net.number_of_edges()

    logger.output_log()
コード例 #3
0
ファイル: between_correls.py プロジェクト: casey-martin/SCNIC
def between_correls(args):
    """TABLES MUST SORT SO THAT SAMPLES ARE IN THE SAME ORDER """
    logger = general.Logger("SCNIC_log.txt")
    logger["SCNIC analysis type"] = "between"

    # correlation and p-value adjustment methods
    correl_methods = {'spearman': spearmanr, 'pearson': pearsonr}
    correl_method = correl_methods[args.correl_method]

    # load tables
    table1 = load_table(args.table1)
    table2 = load_table(args.table2)
    logger["input table 1"] = args.table1
    logger["input table 1"] = args.table2

    table1 = table1.sort()
    table2 = table2.sort()

    # make new output directory and change to it
    if args.force and args.output is not None:
        shutil.rmtree(args.output, ignore_errors=True)
    if args.output is not None:
        os.makedirs(args.output)
        os.chdir(args.output)
        logger["output directory"] = args.output

    # filter tables
    if args.sparcc_filter is True:
        table1 = general.sparcc_paper_filter(table1)
        table2 = general.sparcc_paper_filter(table2)
        print("Table 1 filtered: %s observations" % str(table1.shape[0]))
        print("Table 2 filtered: %s observations" % str(table2.shape[0]))
        logger["sparcc paper filter"] = True
        logger["number of observations present in table 1 after filter"] = table1.shape[0]
        logger["number of observations present in table 2 after filter"] = table2.shape[0]
    if args.min_sample is not None:
        table1 = general.filter_table(table1, args.min_sample)
        table2 = general.filter_table(table2, args.min_sample)

    if not np.array_equal(table1.ids(), table2.ids()):
        raise ValueError("Tables have different sets of samples present")

    metadata = general.get_metadata_from_table(table1)
    metadata.update(general.get_metadata_from_table(table2))

    # make correlations
    logger["correlation metric"] = args.correl_method
    logger["p adjustment method"] = args.p_adjust
    correls = ca.between_correls_from_tables(table1, table2, correl_method, nprocs=args.procs)
    correls.sort_values(correls.columns[-1], inplace=True)
    correls['p_adj'] = general.p_adjust(correls['p'])
    correls.to_csv(open('correls.txt', 'w'), sep='\t', index=True)

    # make network
    correls_filt = general.filter_correls(correls, min_p=args.min_p, min_r=args.min_r)
    net = general.correls_to_net(correls_filt, metadata=metadata)
    logger["number of nodes"] = net.number_of_nodes()
    logger["number of edges"] = net.number_of_edges()
    nx.write_gml(net, 'crossnet.gml')

    logger.output_log()
コード例 #4
0
ファイル: within_correls.py プロジェクト: sjanssen2/SCNIC
def within_correls(input_loc, output_loc, correl_method='sparcc', sparcc_filter=False, min_sample=None, procs=1,
                   sparcc_p=1000, p_adjust='fdr_bh', verbose=False):
    logger = general.Logger(path.join(output_loc, "SCNIC_within_log.txt"))
    logger["SCNIC analysis type"] = "within"

    # correlation and p-value adjustment methods
    correl_methods = {'spearman': spearmanr, 'pearson': pearsonr, 'kendall': kendalltau, 'sparcc': 'sparcc'}
    correl_method = correl_methods[correl_method.lower()]

    # get features to be correlated
    table = load_table(input_loc)
    logger["input table"] = input_loc
    if verbose:
        print("Table loaded: " + str(table.shape[0]) + " observations")
        print("")
    logger["number of samples in input table"] = table.shape[1]
    logger["number of observations in input table"] = table.shape[0]

    # make new output directory
    if output_loc is not None:
        if not path.isdir(output_loc):
            os.makedirs(output_loc)
    logger["output directory"] = path.abspath(output_loc)

    # filter
    if sparcc_filter is True:
        table_filt = general.sparcc_paper_filter(table)
        if verbose:
            print("Table filtered: %s observations" % str(table_filt.shape[0]))
            print("")
        logger["sparcc paper filter"] = True
        logger["number of observations present after filter"] = table_filt.shape[0]
    elif min_sample is not None:
        table_filt = general.filter_table(table, min_sample)
        if verbose:
            print("Table filtered: %s observations" % str(table_filt.shape[0]))
            print("")
        logger["min samples present"] = min_sample
        logger["number of observations present after filter"] = table_filt.shape[0]
    else:
        table_filt = table

    logger["number of processors used"] = procs

    # correlate features
    if correl_method in [spearmanr, pearsonr, kendalltau]:
        # calculate correlations
        if verbose:
            print("Correlating with %s" % correl_method)
        # correlate feature
        correls = ca.calculate_correlations(table_filt, correl_method, nprocs=procs, p_adjust_method=p_adjust)
    elif correl_method == 'sparcc':
        if sparcc_p is None:
            correls = ca.fastspar_correlation(table_filt, verbose=verbose, nprocs=procs)
        else:
            correls = ca.fastspar_correlation(table_filt, calc_pvalues=True, bootstraps=sparcc_p,
                                              verbose=verbose, nprocs=procs, p_adjust_method=p_adjust)
    else:
        raise ValueError("How did this even happen?")
    logger["distance metric used"] = correl_method
    if verbose:
        print("Features Correlated")
        print("")

    correls.to_csv(path.join(output_loc, 'correls.txt'), sep='\t', index_label=('feature1', 'feature2'))
    if verbose:
        print("Correls.txt written")

    # make correlation network
    metadata = general.get_metadata_from_table(table_filt)
    net = general.correls_to_net(correls, metadata=metadata)
    nx.write_gml(net, path.join(output_loc, 'correlation_network.gml'))
    if verbose:
        print("Network made")
        print("")

    logger.output_log()
コード例 #5
0
def within_correls(args):
    logger = general.Logger("SCNIC_within_log.txt")
    logger["SCNIC analysis type"] = "within"

    # correlation and p-value adjustment methods
    correl_methods = {'spearman': spearmanr, 'pearson': pearsonr, 'kendall': kendalltau, 'sparcc': 'sparcc'}
    correl_method = correl_methods[args.correl_method.lower()]

    # get features to be correlated
    table = load_table(args.input)
    logger["input table"] = args.input
    if args.verbose:
        print("Table loaded: " + str(table.shape[0]) + " observations")
        print("")
    logger["number of samples in input table"] = table.shape[1]
    logger["number of observations in input table"] = table.shape[0]

    # make new output directory and change to it
    if args.output is not None:
        if not os.path.isdir(args.output):
            os.makedirs(args.output)
        os.chdir(args.output)
    logger["output directory"] = os.getcwd()

    # filter
    if args.sparcc_filter is True:
        table_filt = general.sparcc_paper_filter(table)
        if args.verbose:
            print("Table filtered: %s observations" % str(table_filt.shape[0]))
            print("")
        logger["sparcc paper filter"] = True
        logger["number of observations present after filter"] = table_filt.shape[0]
    elif args.min_sample is not None:
        table_filt = general.filter_table(table, args.min_sample)
        if args.verbose:
            print("Table filtered: %s observations" % str(table_filt.shape[0]))
            print("")
        logger["min samples present"] = args.min_sample
        logger["number of observations present after filter"] = table_filt.shape[0]
    else:
        table_filt = table

    logger["number of processors used"] = args.procs

    # correlate features
    if correl_method in [spearmanr, pearsonr, kendalltau]:
        # calculate correlations
        if args.verbose:
            print("Correlating with %s" % args.correl_method)
        # correlate feature
        correls = ca.calculate_correlations(table_filt, correl_method)
    elif correl_method == 'sparcc':
        correls = ca.fastspar_correlation(table_filt, verbose=args.verbose)
        if args.sparcc_p is not None:
            raise NotImplementedError()  # TODO: reimplement with fastspar
    else:
        raise ValueError("How did this even happen?")
    logger["distance metric used"] = args.correl_method
    if args.verbose:
        print("Features Correlated")
        print("")

    if 'p' in correls.columns:
        correls['p_adj'] = general.p_adjust(correls['p'])
    correls.to_csv('correls.txt', sep='\t', index_label=('feature1', 'feature2'))
    if args.verbose:
        print("Correls.txt written")

    # make correlation network
    metadata = general.get_metadata_from_table(table_filt)
    net = general.correls_to_net(correls, metadata=metadata)
    nx.write_gml(net, 'correlation_network.gml')
    if args.verbose:
        print("Network made")
        print("")

    logger.output_log()
コード例 #6
0
def module_maker(input_loc, output_loc, min_p=None, min_r=None, method='naive', k_size=3, gamma=.4, table_loc=None,
                 prefix='module', verbose=False):
    logger = general.Logger(path.join(output_loc, "SCNIC_module_log.txt"))
    logger["SCNIC analysis type"] = "module"

    # read in correlations file
    correls = pd.read_csv(input_loc, index_col=(0, 1), sep='\t')
    correls.index = pd.MultiIndex.from_tuples([(str(id1), str(id2)) for id1, id2 in correls.index])
    logger["input correls"] = input_loc
    if verbose:
        print("correls.txt read")

    # sanity check args
    if min_r is not None and min_p is not None:
        raise ValueError("arguments min_p and min_r may not be used concurrently")
    if min_r is None and min_p is None:
        raise ValueError("argument min_p or min_r must be used")

    # make new output directory and change to it
    if output_loc is not None:
        if not path.isdir(output_loc):
            os.makedirs(output_loc)
    logger["output directory"] = path.abspath(output_loc)

    # make modules
    if method == 'naive':
        modules = ma.make_modules_naive(correls, min_r, min_p, prefix=prefix)
    elif method == 'k_cliques':
        modules = ma.make_modules_k_cliques(correls, min_r, min_p, k_size, prefix=prefix)
    elif method == 'louvain':
        modules = ma.make_modules_louvain(correls, min_r, min_p, gamma, prefix=prefix)
    else:
        raise ValueError('%s is not a valid module picking method' % method)
    logger["number of modules created"] = len(modules)
    if verbose:
        print("Modules Formed")
        print("number of modules: %s" % len(modules))
        print("number of observations in modules: %s" % np.sum([len(i) for i in modules]))
        print("")
    ma.write_modules_to_file(modules, path_str=path.join(output_loc, 'modules.txt'))

    # collapse modules
    if table_loc is not None:
        table = load_table(table_loc)
        logger["input uncollapsed table"] = table_loc
        if verbose:
            print("otu table read")
        coll_table = ma.collapse_modules(table, modules)
        # ma.write_modules_to_dir(table, modules)
        logger["number of observations in output table"] = coll_table.shape[0]
        if verbose:
            print("Table Collapsed")
            print("collapsed Table Observations: " + str(coll_table.shape[0]))
            print("")
        with biom_open(path.join(output_loc, 'collapsed.biom'), 'w') as f:
            coll_table.to_hdf5(f, 'make_modules.py')
        metadata = general.get_metadata_from_table(table)
    else:
        metadata = defaultdict(dict)

    # make network
    metadata = ma.add_modules_to_metadata(modules, metadata)
    correls_filter = general.filter_correls(correls, conet=True, min_p=min_p, min_r=min_r)
    net = general.correls_to_net(correls_filter, metadata=metadata)

    nx.write_gml(net, path.join(output_loc, 'correlation_network.gml'))
    if verbose:
        print("Network Generated")
        print("number of nodes: %s" % str(net.number_of_nodes()))
        print("number of edges: %s" % str(net.number_of_edges()))
    logger["number of nodes"] = net.number_of_nodes()
    logger["number of edges"] = net.number_of_edges()

    logger.output_log()