コード例 #1
0
 def plot(self, m):
     """
     图示m线概况
     :param m:
     :return:
     """
     self.add_average_line(m)
     self.add_average_pn(m)
     self.add_idx()
 
     df = self.data
 
     df = df.reset_index().reset_index()
 
     df_p = df[df.apply(lambda x: x['m_pn_' + str(m)], axis=1)]
     df_n = df[df.apply(lambda x: not x['m_pn_' + str(m)], axis=1)]
 
     fig, ax = subplots(ncols=1, nrows=2)
 
     ax[0].plot(df['level_0'], df['close'], 'b*--', label='close')
     ax[0].plot(df_p['level_0'], df_p['close'], 'r*', label='close_m' + str(m) + '_p')
     ax[0].plot(df_n['level_0'], df_n['close'], 'g*', label='close_m' + str(m) + '_n')
     ax[0].legend(loc='best')
     ax[0] = add_axis(ax[0], df['datetime'], 60, fontsize=5, rotation=90)
 
     ax[1].bar(df['level_0'], df['MACD'])
     plt.show()
コード例 #2
0
ファイル: Sub.py プロジェクト: wang-shun/MoDeng
def plot_op_result(df):
    """
	打印BS操作效果
	列名字:
		origin_money    :不使用策略时的效益
		strategy_money  :使用策略时的效益
		BS              : 记录操作行为的列
		money_remain    : 剩余的资金

	:param df:
	:return:
	"""
    sh_index = df

    fig, ax = plt.subplots(nrows=3, ncols=1)
    ax[0].plot(range(len(sh_index['date'])), sh_index['close'], 'b--')

    # 打印BS操作
    tuple_bs = list(zip(range(len(sh_index['date'])), sh_index['BS'], sh_index['close']))

    tuple_b = list(filter(lambda x: x[1] == 'buy', tuple_bs))
    ax[0].plot(list(map(lambda x: x[0], tuple_b)), list(map(lambda x: x[2], tuple_b)), 'r*', label='buy')

    tuple_s = list(filter(lambda x: x[1] == 'sale', tuple_bs))
    ax[0].plot(list(map(lambda x: x[0], tuple_s)), list(map(lambda x: x[2], tuple_s)), 'g*', label='sale')

    # 打印对比
    ax[1].plot(range(len(sh_index['date'])), sh_index['origin_money'], 'b--', label='no_use_strategy')
    ax[1].plot(range(len(sh_index['date'])), sh_index['strategy_money'], 'r--', label='use_strategy')

    # 打印stk数量和剩余money
    ax[2].plot(range(len(sh_index['date'])), normal01(sh_index['money_remain']), 'b--', label='剩余money')
    # ax[2].plot(range(len(sh_index['date'])), normal01(sh_index['amount_remain']), 'r--', label='剩余stk数量')

    # 整理x轴label
    x_label = sh_index.apply(lambda x: str(x['date'])[2:].replace('-', ''), axis=1)

    ax[0] = add_axis(ax[0], x_label, 40, rotation=45, fontsize=8)
    ax[1] = add_axis(ax[1], x_label, 40, rotation=45, fontsize=8)
    ax[2] = add_axis(ax[2], x_label, 40, rotation=45, fontsize=8)
    # ax[3] = addXticklabel(ax[3], x_label, 40, rotation=45, fontsize=8)

    for ax_sig in ax:
        ax_sig.legend(loc='best')

    plt.show()
コード例 #3
0
ファイル: Sub.py プロジェクト: rebootshen/MoDeng
    def plot(self):
        if self.debug:
            print('开始可视化结果...')

        df = self.data_minute.dropna().reset_index(drop=True)
        df['stk_money_ratio'] = df.apply(
            lambda x: x['stk_amount'] * x['close'] / (x['money_total']),
            axis=1)

        # 筛选买卖点
        df_b = df[df['opt_result'] == 'buy']
        df_s = df[df['opt_result'] == 'sale']

        df_opt = df[df.apply(lambda x: (x['opt_result'] == 'buy') |
                             (x['opt_result'] == 'sale'),
                             axis=1)]

        fig, ax = plt.subplots(ncols=1, nrows=4)

        ax[0].plot(df.index, df['close'], 'k*--', label='收盘价')
        ax[0].plot(df_opt.index,
                   df_opt['close'],
                   'y-',
                   label=u'买卖阶梯',
                   linewidth=2.5)

        ax[0].plot(df_b.index, df_b['close'], 'g*', label='买入点', markersize=10)
        ax[0].plot(df_s.index, df_s['close'], 'r*', label='卖出点', markersize=10)

        # ax[0].legend(loc='best')

        # 展示收益比
        c_origin = np.array(df['close'])
        ratio_origin = list((c_origin / c_origin[0]))

        c_reseau = np.array(df['money_total'])
        ratio_reseau = list((c_reseau / c_reseau[0]))

        ax[1].plot(df.index, ratio_origin, 'y--', label=u'不操作收益曲线')
        ax[1].plot(df.index, ratio_reseau, 'r--', label=u'网格收益曲线')
        # ax[1].legend(loc='best')

        ax[2].plot(df.index, df['stk_money_ratio'], 'b--', label=u'仓位')
        # ax[2].legend(loc='best')

        ax[3].plot(df.index, df['total_earn'], 'b--', label=u'网格收益')

        # 增加横轴
        ax[3] = add_axis(ax[3], df['date'], 20, 8)

        for ax_ in ax:
            ax_.legend(loc='best')

        plt.show()
コード例 #4
0
ファイル: M20Research.py プロジェクト: xiaokuiyang/MoDeng
stk_code = '000001'
sh_index = ts.get_k_data(code=stk_code,start='2014-01-01')

sh_index['M10'] = sh_index['close'].rolling(window=10, center=False).mean()
sh_index['C-M10'] = sh_index.apply(lambda x: x['close']-x['M10'], axis=1)

sh_index['M20'] = sh_index['close'].rolling(window=20, center=False).mean()
sh_index['C-M20'] = sh_index.apply(lambda x: x['close']-x['M20'], axis=1)

sh_index = sh_index.dropna(how='any')

# 展示C-M20的分布
count, bins = np.histogram(sh_index['C-M20'], 100, normed=True)
plt.bar(range(len(count)), count)

plt.show()
fig, ax = plt.subplots(nrows=2, ncols=1)

ax[0].plot(range(0, len(sh_index['date'])), sh_index['close'], 'r-', label='20日均线', linewidth=1)
ax[1].plot(range(0, len(sh_index['date'])), sh_index['C-M20'], 'g*', label='C-20日均线', linewidth=1)
ax[1].plot(range(0, len(sh_index['date'])), np.zeros(len(sh_index)), 'b', label='零线')

# 准备下标
ax[0] = add_axis(ax[0], sh_index['date'], 40)
ax[1] = add_axis(ax[1], sh_index['date'], 40)

for ax_sig in ax:
    ax_sig.legend(loc='best')

plt.show()
コード例 #5
0
ファイル: Demo1.py プロジェクト: xiaokuiyang/MoDeng
    sh_index['M20'] = sh_index['close'].rolling(window=180,
                                                center=False).mean()
    sh_index['M5'] = sh_index['close'].rolling(window=30, center=False).mean()
    sh_index['M5-M20'] = sh_index.apply(lambda x: x['M5'] - x['M20'], axis=1)

    sh_index['MM9'] = sh_index['M5-M20'].rolling(window=5, center=False).mean()
    sh_index['MACD'] = sh_index.apply(lambda x: x['M5-M20'] - x['MM9'], axis=1)

    sh_index = sh_index.dropna(how='any')
    """ -------------------------------- 图示结果 ------------------------------------ """
    fig, ax = plt.subplots(nrows=2, ncols=1)
    ax[0].plot(range(len(sh_index['date'])), sh_index['close'], 'b--')
    # ax[0].plot(range(len(sh_index['date'])), sh_index['M5-M20'], 'r--')

    ax[1].plot(range(len(sh_index['date'])), sh_index['MACD'], 'r--')

    # 整理x轴label
    x_label = sh_index.apply(lambda x: str(x['date'])[2:].replace('-', ''),
                             axis=1)

    ax[0] = add_axis(ax[0], x_label, 40, rotation=45, fontsize=8)
    ax[1] = add_axis(ax[1], x_label, 40, rotation=45, fontsize=8)
    # ax[2] = addXticklabel(ax[2], x_label, 40, rotation=45, fontsize=8)
    # ax[3] = addXticklabel(ax[3], x_label, 40, rotation=45, fontsize=8)

    for ax_sig in ax:
        ax_sig.legend(loc='best')

    plt.show()

end = 0
コード例 #6
0
# encoding=utf-8
コード例 #7
0
ファイル: gen_pic_class.py プロジェクト: xiaokuiyang/MoDeng
    def gen_idx_pic(stk_df, stk_code=''):
        """
        打印常用指标
        """
        # 按升序排序
        stk_df = stk_df.sort_values(by='date', ascending=True)
        """
        增加指标

        'RSI5', 'RSI12', 'RSI30'
        'SAR'
        'slowk', 'slowd'
        'upper', 'middle', 'lower'
        'MOM'
        """
        stk_df_ = add_stk_index_to_df(stk_df).tail(60)

        GenPic.set_background_color(bc='w')

        result_analysis = []

        # 检查SAR
        attention = False
        sar_tail_origin = stk_df_.tail(2)
        sar_tail = sar_tail_origin.copy()
        sar_tail['compare'] = sar_tail_origin.apply(
            lambda x: x['SAR'] - x['close'], axis=1)

        title_tmp = stk_code + ' ' + code2name(stk_code)

        if sar_tail.head(1)['compare'].values[0] * sar_tail.tail(
                1)['compare'].values[0] < 0:
            if sar_tail.tail(1)['SAR'].values[0] < sar_tail.tail(
                    1)['close'].values[0]:
                title_tmp = stk_code + ' ' + code2name(
                    stk_code) + ' 注意 SAR 指标翻转,后续数天可能上涨!'
                result_analysis.append(title_tmp +
                                       RankNote.print_day_close_rank(stk_df))
                GenPic.set_background_color(bc='b_r')
            else:
                title_tmp = stk_code + ' ' + code2name(
                    stk_code) + ' 注意 SAR 指标翻转,后续数天可能下跌!'
                result_analysis.append(title_tmp +
                                       RankNote.print_day_close_rank(stk_df))
                GenPic.set_background_color(bc='b_g')

            attention = True

        fig, ax = plt.subplots(nrows=5, ncols=1)

        ax[0].plot(range(0, len(stk_df_['date'])),
                   stk_df_['RSI5'],
                   'b--',
                   label='RSI5线',
                   linewidth=1)
        ax[0].plot(range(0, len(stk_df_['date'])),
                   stk_df_['RSI12'],
                   'r--',
                   label='RSI12线',
                   linewidth=1)
        ax[0].plot(range(0, len(stk_df_['date'])),
                   stk_df_['RSI30'],
                   'g*--',
                   label='RSI30',
                   linewidth=0.5,
                   markersize=1)
        ax[0].plot(range(0, len(stk_df_['date'])),
                   [20 for a in range(len(stk_df_['date']))],
                   'b--',
                   linewidth=0.3)
        ax[0].plot(range(0, len(stk_df_['date'])),
                   [80 for a in range(len(stk_df_['date']))],
                   'b--',
                   linewidth=0.3)
        ax[0].set_ylim(0, 100)

        ax[1].plot(range(0, len(stk_df_['date'])),
                   stk_df_['SAR'],
                   'r--',
                   label='SAR',
                   linewidth=0.5,
                   markersize=1)
        ax[1].plot(range(0, len(stk_df_['date'])),
                   stk_df_['close'],
                   'g*--',
                   label='close',
                   linewidth=0.5,
                   markersize=1)

        ax[2].plot(range(0, len(stk_df_['date'])),
                   stk_df_['slowk'],
                   'g*--',
                   label='slowk',
                   linewidth=0.5,
                   markersize=1)
        ax[2].plot(range(0, len(stk_df_['date'])),
                   stk_df_['slowd'],
                   'r*--',
                   label='slowd',
                   linewidth=0.5,
                   markersize=1)
        ax[2].plot(range(0, len(stk_df_['date'])),
                   [20 for a in range(len(stk_df_['date']))],
                   'b--',
                   linewidth=0.3)
        ax[2].plot(range(0, len(stk_df_['date'])),
                   [80 for a in range(len(stk_df_['date']))],
                   'b--',
                   linewidth=0.3)
        ax[2].set_ylim(0, 100)

        ax[3].plot(range(0, len(stk_df_['date'])),
                   stk_df_['upper'],
                   'r*--',
                   label='布林上线',
                   linewidth=0.5,
                   markersize=1)
        ax[3].plot(range(0, len(stk_df_['date'])),
                   stk_df_['middle'],
                   'b*--',
                   label='布林均线',
                   linewidth=0.5,
                   markersize=1)
        ax[3].plot(range(0, len(stk_df_['date'])),
                   stk_df_['lower'],
                   'g*--',
                   label='布林下线',
                   linewidth=0.5,
                   markersize=1)

        ax[4].plot(range(0, len(stk_df_['date'])),
                   stk_df_['MOM'],
                   'g*--',
                   label='MOM',
                   linewidth=0.5,
                   markersize=1)

        # 准备下标
        xlabel_series = stk_df_.apply(lambda x: x['date'][2:].replace('-', ''),
                                      axis=1)

        ax[4] = add_axis(ax[4], xlabel_series, 40, rotation=45, fontsize=10)

        # 设置默认标题
        title_tmp = stk_code + ' ' + code2name(stk_code) + '/上次更新时间:%s' % str(
            get_current_datetime_str())
        ax[0].set_title(title_tmp)

        for ax_sig in ax:
            ax_sig.legend(loc='best', fontsize=5)

        fig.tight_layout()  # 调整整体空白
        plt.subplots_adjust(wspace=0, hspace=0)  # 调整子图间距
        ax[0].set_title(title_tmp)

        return fig, ax, attention, result_analysis
コード例 #8
0
def genStkIdxPicForQQ(stk_df, stk_code=''):
    """
    打印常用指标
    """
    # 按升序排序
    stk_df = stk_df.sort_values(by='date', ascending=True)
    """
    增加指标
    
    'RSI5', 'RSI12', 'RSI30'
    'SAR'
    'slowk', 'slowd'
    'upper', 'middle', 'lower' 
    'MOM'
    """
    stk_df = add_stk_index_to_df(stk_df).tail(60)

    fig, ax = plt.subplots(nrows=5, ncols=1)

    ax[0].plot(range(0, len(stk_df['date'])),
               stk_df['RSI5'],
               'b--',
               label='RSI5线',
               linewidth=1)
    ax[0].plot(range(0, len(stk_df['date'])),
               stk_df['RSI12'],
               'r--',
               label='RSI12线',
               linewidth=1)
    ax[0].plot(range(0, len(stk_df['date'])),
               stk_df['RSI30'],
               'g*--',
               label='RSI30',
               linewidth=0.5,
               markersize=1)
    ax[0].plot(range(0, len(stk_df['date'])),
               [20 for a in range(len(stk_df['date']))],
               'b--',
               linewidth=0.3)
    ax[0].plot(range(0, len(stk_df['date'])),
               [80 for a in range(len(stk_df['date']))],
               'b--',
               linewidth=0.3)
    ax[0].set_ylim(0, 100)

    ax[1].plot(range(0, len(stk_df['date'])),
               stk_df['SAR'],
               'r--',
               label='SAR',
               linewidth=0.5,
               markersize=1)
    ax[1].plot(range(0, len(stk_df['date'])),
               stk_df['close'],
               'g*--',
               label='close',
               linewidth=0.5,
               markersize=1)

    ax[2].plot(range(0, len(stk_df['date'])),
               stk_df['slowk'],
               'g*--',
               label='slowk',
               linewidth=0.5,
               markersize=1)
    ax[2].plot(range(0, len(stk_df['date'])),
               stk_df['slowd'],
               'r*--',
               label='slowd',
               linewidth=0.5,
               markersize=1)
    ax[2].plot(range(0, len(stk_df['date'])),
               [20 for a in range(len(stk_df['date']))],
               'b--',
               linewidth=0.3)
    ax[2].plot(range(0, len(stk_df['date'])),
               [80 for a in range(len(stk_df['date']))],
               'b--',
               linewidth=0.3)
    ax[2].set_ylim(0, 100)

    ax[3].plot(range(0, len(stk_df['date'])),
               stk_df['upper'],
               'r*--',
               label='布林上线',
               linewidth=0.5,
               markersize=1)
    ax[3].plot(range(0, len(stk_df['date'])),
               stk_df['middle'],
               'b*--',
               label='布林均线',
               linewidth=0.5,
               markersize=1)
    ax[3].plot(range(0, len(stk_df['date'])),
               stk_df['lower'],
               'g*--',
               label='布林下线',
               linewidth=0.5,
               markersize=1)

    ax[4].plot(range(0, len(stk_df['date'])),
               stk_df['MOM'],
               'g*--',
               label='MOM',
               linewidth=0.5,
               markersize=1)

    # 准备下标
    xlabel_series = stk_df.apply(lambda x: x['date'][2:].replace('-', ''),
                                 axis=1)
    ax[0] = add_axis(ax[0], xlabel_series, 40, rotation=45)
    ax[1] = add_axis(ax[1], xlabel_series, 40, rotation=45)
    ax[2] = add_axis(ax[2], xlabel_series, 40, rotation=45)
    ax[3] = add_axis(ax[3], xlabel_series, 40, rotation=45)
    ax[4] = add_axis(ax[4], xlabel_series, 40, rotation=45)

    for ax_sig in ax:
        ax_sig.legend(loc='best', fontsize=5)

    fig.tight_layout()  # 调整整体空白
    plt.subplots_adjust(wspace=0, hspace=0)  # 调整子图间距

    # 检查SAR
    attention = False
    sar_tail = stk_df.tail(2)
    sar_tail['compare'] = sar_tail.apply(lambda x: x['SAR'] - x['close'],
                                         axis=1)

    if sar_tail.head(1)['compare'].values[0] * sar_tail.tail(
            1)['compare'].values[0] < 0:
        plt.title(stk_code + ' 注意 SAR 指标异动!')
        attention = True

    return fig, ax, attention
コード例 #9
0
def genStkIdxPic(stk_df,
                 stk_code,
                 current_date,
                 root_save_dir,
                 pic_name='stk_idx.png'):
    """
    打印常用指标
    """
    # 按升序排序
    stk_df = stk_df.sort_values(by='date', ascending=True)
    """
    增加指标

    'RSI5', 'RSI12', 'RSI30'
    'SAR'
    'slowk', 'slowd'
    'upper', 'middle', 'lower' 
    'MOM'
    """
    stk_df = add_stk_index_to_df(stk_df).tail(60)

    fig, ax = plt.subplots(nrows=5, ncols=1)

    ax[0].plot(range(0, len(stk_df['date'])),
               stk_df['RSI5'],
               'b--',
               label='RSI5线',
               linewidth=1)
    ax[0].plot(range(0, len(stk_df['date'])),
               stk_df['RSI12'],
               'r--',
               label='RSI12线',
               linewidth=1)
    ax[0].plot(range(0, len(stk_df['date'])),
               stk_df['RSI30'],
               'g*--',
               label='RSI30',
               linewidth=0.5,
               markersize=1)

    ax[1].plot(range(0, len(stk_df['date'])),
               stk_df['SAR'],
               'g*--',
               label='SAR',
               linewidth=0.5,
               markersize=1)

    ax[2].plot(range(0, len(stk_df['date'])),
               stk_df['slowk'],
               'g*--',
               label='slowk',
               linewidth=0.5,
               markersize=1)
    ax[2].plot(range(0, len(stk_df['date'])),
               stk_df['slowd'],
               'r*--',
               label='slowd',
               linewidth=0.5,
               markersize=1)

    ax[3].plot(range(0, len(stk_df['date'])),
               stk_df['upper'],
               'r*--',
               label='布林上线',
               linewidth=0.5,
               markersize=1)
    ax[3].plot(range(0, len(stk_df['date'])),
               stk_df['middle'],
               'b*--',
               label='布林均线',
               linewidth=0.5,
               markersize=1)
    ax[3].plot(range(0, len(stk_df['date'])),
               stk_df['lower'],
               'g*--',
               label='布林下线',
               linewidth=0.5,
               markersize=1)

    ax[4].plot(range(0, len(stk_df['date'])),
               stk_df['MOM'],
               'g*--',
               label='MOM',
               linewidth=0.5,
               markersize=1)

    # 准备下标
    xlabel_series = stk_df.apply(lambda x: x['date'][2:].replace('-', ''),
                                 axis=1)
    ax[0] = add_axis(ax[0], xlabel_series, 40, rotation=45)
    ax[1] = add_axis(ax[1], xlabel_series, 40, rotation=45)
    ax[2] = add_axis(ax[2], xlabel_series, 40, rotation=45)
    ax[3] = add_axis(ax[3], xlabel_series, 40, rotation=45)
    ax[4] = add_axis(ax[4], xlabel_series, 40, rotation=45)

    for ax_sig in ax:
        ax_sig.legend(loc='best', fontsize=5)

    # 保存图片
    save_dir = root_save_dir + current_date + '/' + str(stk_code) + '/'
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    plt.tight_layout()
    plt.savefig(save_dir + pic_name, dpi=300)
    plt.close()

    return save_dir + pic_name