コード例 #1
0
ファイル: pl_img_linescan.py プロジェクト: wcyjames/stackbot
    def pre_run(self):
        S = self.settings
        # create arrays
        self.x_array = np.linspace(S['x0'], S['x1'], S['n_steps'])
        self.y_array = np.linspace(S['y0'], S['y1'], S['n_steps'])

        if S['retrace']:
            self.x_array = np.concatenate([self.x_array, self.x_array[::-1]])
            self.y_array = np.concatenate([self.y_array, self.y_array[::-1]])

        self.N = len(self.x_array)

        self.stage = self.app.hardware['attocube_xy_stage']

        # data file
        self.h5file = h5_io.h5_base_file(self.app, measurement=self)
        H = self.h5measure = h5_io.h5_create_measurement_group(
            measurement=self, h5group=self.h5file, group_name=self.name)

        # Create acquisition arrays
        if S['collect_apd']:
            self.apd_counter = self.app.hardware.apd_counter
            self.apd_countrates = H.create_dataset(
                'apd_countrates', self.N, dtype=float)  # 'apd_countrate'
        if S['collect_spectrum']:
            self.spectra = H.create_dataset('spectra', (self.N, ccd_Nx),
                                            dtype=float)  # 'apd_countrate'
        if S['collect_lifetime']:
            self.picoharp = self.app.hardware.picoharp
            self.time_traces = H.create_dataset(
                'time_traces',
                (self.N, self.picoharp.settings['histogram_channels']),
                dtype=int)
コード例 #2
0
    def initH5CellCounter(self):
        """
        Initialization operations for the h5 file.
        """
        t0 = time.time()
        f = self.app.settings['data_fname_format'].format(
            app=self.app,
            measurement=self,
            timestamp=datetime.fromtimestamp(t0),
            sample=self.app.settings["sample"] + "_cell_counter",
            ext='h5')

        fname = os.path.join(self.app.settings['save_dir'], f)

        self.h5file_counter = h5_io.h5_base_file(app=self.app,
                                                 measurement=self,
                                                 fname=fname)

        self.h5_group = h5_io.h5_create_measurement_group(
            measurement=self, h5group=self.h5file_counter)

        self.h5_mean = self.h5_group.create_dataset(name='t0/c0/mean',
                                                    shape=(self.N_frames, 1,
                                                           1),
                                                    dtype="int16",
                                                    chunks=(1, 1, 1))
        self.h5_dt = self.h5_group.create_dataset(name='t0/c0/dt',
                                                  shape=(self.N_frames, 1, 1),
                                                  dtype="float",
                                                  chunks=(1, 1, 1))

        self.h5_t1 = self.h5_group.create_dataset(name='t0/c0/t1',
                                                  shape=(self.N_frames, 1, 1),
                                                  dtype="float",
                                                  chunks=(1, 1, 1))
コード例 #3
0
    def run(self):
        self.display_update_period = 1  #seconds

        if self.save_data.val:
            self.full_optimize_history = []
            self.full_optimize_history_time = []
            self.t0 = time.time()

        while not self.interrupt_measurement_called:
            self.optimize_ii += 1
            self.optimize_ii %= self.OPTIMIZE_HISTORY_LEN

            self.optimize_history_A[
                self.optimize_ii] = self.ctrl.settings['T_A']
            self.optimize_history_B[
                self.optimize_ii] = self.ctrl.settings['T_B']

            time.sleep(self.display_update_period)

        if self.settings['save_data']:
            try:
                self.h5_file = h5_io.h5_base_file(self.app, measurement=self)
                self.h5_file.attrs['time_id'] = self.t0
                H = self.h5_meas_group = h5_io.h5_create_measurement_group(
                    self, self.h5_file)

                #create h5 data arrays
                H['power_optimze_history'] = self.full_optimize_history
                H['optimze_history_time'] = self.full_optimize_history_time
            finally:
                self.h5_file.close()
コード例 #4
0
 def initH5_temp2(self):
     """
     Initialization operations for the h5 file.
     """
     t0 = time.time()
     f = self.app.settings['data_fname_format'].format(
         app=self.app,
         measurement=self,
         timestamp=datetime.fromtimestamp(t0),
         sample=self.app.settings["sample"],
         ext='h5')
     fname = os.path.join(self.app.settings['save_dir'], f)
     
     self.h5file = h5_io.h5_base_file(app=self.app, measurement=self, fname = fname)
     self.h5_group = h5_io.h5_create_measurement_group(measurement=self, h5group=self.h5file)
     img_size=self.image.shape
     length=self.camera.hamamatsu.number_image_buffers
     self.image_h5 = self.h5_group.create_dataset( name  = 't0/c0/image', 
                                                   shape = ( length, img_size[0], img_size[1]),
                                                   dtype = self.image.dtype, chunks = (1, self.eff_subarrayv, self.eff_subarrayh)
                                                   )
     """
     THESE NAMES MUST BE CHANGED
     """
     self.image_h5.dims[0].label = "z"
     self.image_h5.dims[1].label = "y"
     self.image_h5.dims[2].label = "x"
     
     #self.image_h5.attrs['element_size_um'] =  [self.settings['zsampling'], self.settings['ysampling'], self.settings['xsampling']]
     self.image_h5.attrs['element_size_um'] =  [1,1,1]
コード例 #5
0
    def run(self):
        self.display_update_period = 0.02  #seconds

        #self.apd_counter_hc = self.gui.apd_counter_hc
        #self.apd_count_rate = self.apd_counter_hc.apd_count_rate
        #self.pm_hc = self.gui.thorlabs_powermeter_hc
        #self.pm_analog_readout_hc = self.gui.thorlabs_powermeter_analog_readout_hc

        if self.save_data.val:
            self.full_optimize_history = []
            self.full_optimize_history_time = []
            self.t0 = time.time()

        while not self.interrupt_measurement_called:
            self.optimize_ii += 1
            self.optimize_ii %= self.OPTIMIZE_HISTORY_LEN
            self.oo_spec.interrupt_measurement_called = self.interrupt_measurement_called

            self.oo_spec.settings['continuous'] = False
            self.oo_spec.settings['save_h5'] = False

            #             if ~self.oo_spec.activation.val:
            #                 self.oo_spec.activation.update_value(True)
            #self.oo_spec.run()
            self.start_nested_measure_and_wait(self.oo_spec)
            spec = self.oo_spec.hw.spectrum.copy()

            if self.oo_spec.settings['baseline_subtract']:
                new_value = (spec -
                             self.oo_spec.settings['baseline_val']).sum()
            else:
                new_value = self.pow_reading.update_value(spec.sum())

            if isnan(new_value):
                print('spec sum nan', self.optimize_ii)
                self.pow_reading.update_value(
                    self.optimize_history[self.optimize_ii - 1])
            else:
                print('spec sum', self.optimize_ii, new_value)
                self.pow_reading.update_value(new_value)
            self.optimize_history[self.optimize_ii] = self.pow_reading.val

            time.sleep(self.settings['update_period'])
            #time.sleep(0.02)

        if self.settings['save_data']:
            try:
                self.h5_file = h5_io.h5_base_file(self.app, measurement=self)
                self.h5_file.attrs['time_id'] = self.t0
                H = self.h5_meas_group = h5_io.h5_create_measurement_group(
                    self, self.h5_file)

                #create h5 data arrays
                H['power_optimze_history'] = self.full_optimize_history
                H['optimze_history_time'] = self.full_optimize_history_time
            finally:
                self.h5_file.close()
コード例 #6
0
ファイル: photocurrent_iv.py プロジェクト: wcyjames/stackbot
 def save_h5(self):
     # h5 data file setup
     self.t0 = time.time()
     self.h5_file = h5_io.h5_base_file(self.app, measurement=self)
     self.h5_filename = self.h5_file.filename
     self.h5_file.attrs['time_id'] = self.t0
     H = self.h5_meas_group  =  h5_io.h5_create_measurement_group(self, self.h5_file)
     H['V'] = np.array(self.Varray)
     H['I'] = np.array(self.Iarray)
     self.h5_file.close()
コード例 #7
0
    def initH5(self):
        """
        Initialization operations for the h5 file
        """
        self.create_saving_directory()

        # file name creation
        timestamp = time.strftime("%y%m%d_%H%M%S", time.localtime())
        sample = self.app.settings['sample']
        #sample_name = f'{timestamp}_{self.name}_{sample}.h5'
        if sample == '':
            sample_name = '_'.join([timestamp, self.name])
        else:
            sample_name = '_'.join([timestamp, self.name, sample])
        fname = os.path.join(self.app.settings['save_dir'],
                             sample_name + '.h5')

        # file creation
        self.h5file = h5_io.h5_base_file(app=self.app,
                                         measurement=self,
                                         fname=fname)
        self.h5_group = h5_io.h5_create_measurement_group(measurement=self,
                                                          h5group=self.h5file)

        img_size = self.im.image[
            0].shape  # both image[0] and image[1] are valid, since they have the same shape

        number_of_channels = len(self.channels)

        # take as third dimension of the file the total number of images collected in the buffer
        if self.camera.hamamatsu.last_frame_number < self.camera.hamamatsu.number_image_buffers:
            length = int((self.camera.hamamatsu.last_frame_number + 1) /
                         number_of_channels)
        else:
            length = self.camera.hamamatsu.number_image_buffers / number_of_channels

        # dataset creation

        for ch_index in self.channels:

            name = f't0/c{ch_index}/image'

            self.image_h5[ch_index] = self.h5_group.create_dataset(
                name=name,
                shape=(length, img_size[0], img_size[1]),
                dtype=self.im.image[0].dtype,
                chunks=(1, img_size[0], img_size[1]))

            self.image_h5[ch_index].attrs['element_size_um'] = [
                self.settings['zsampling'], self.settings['ysampling'],
                self.settings['xsampling']
            ]
            self.image_h5[ch_index].attrs['acq_time'] = timestamp
            self.image_h5[ch_index].attrs['flowrate'] = self.settings[
                'flowrate']
コード例 #8
0
    def run(self):

        cam_hw = self.app.hardware.ascom_camera

        print(self.name, 'interrupted', self.interrupt_measurement_called)

        while not self.interrupt_measurement_called:
            # Blocking version
            #self.img = cam_hw.acq_single_exposure()

            # non blocking version
            cam_hw.ac.StartExposure(cam_hw.settings['exp_time'])
            t0 = time.time()
            while not cam_hw.ac.is_image_ready():
                if self.interrupt_measurement_called:
                    break
                time.sleep(0.05)
                self.settings['progress'] = 100.0 * (
                    time.time() - t0) / cam_hw.settings['exp_time']
            self.img = cam_hw.ac.read_image_data()

            if not self.settings['continuous']:
                # save image
                try:
                    t0 = time.time()
                    fname = os.path.join(self.app.settings['save_dir'],
                                         "%i_%s" % (t0, self.name))
                    print(self.name, 'asdf', self.img.dtype, fname)
                    if self.settings['save_ini']:
                        self.app.settings_save_ini(fname + ".ini")
                    if self.settings['save_png']:
                        scipy.misc.imsave(fname + ".png", self.img)
                    if self.settings['save_tif']:
                        #im = PIL.Image.fromarray(self.img.T)
                        #im.save("%i_%s.tif" % (t0, self.name), compression=6)
                        tif_imsave(fname + ".tif",
                                   self.img.T.astype(np.uint16),
                                   compress=0)
                    if self.settings['save_h5']:
                        with h5_io.h5_base_file(self.app,
                                                fname=fname + ".h5") as H:
                            M = h5_io.h5_create_measurement_group(
                                measurement=self, h5group=H)
                            M.create_dataset('img',
                                             data=self.img,
                                             compression='gzip')
                except Exception as e:
                    print('Error saving files!', e)
                    raise e

                finally:
                    break  # end the while loop for non-continuous scans
            else:
                pass
コード例 #9
0
    def run(self):
        # Set up Hardware
        self.andor_ccd.settings['acq_mode'] = 'single'
        self.andor_ccd.settings['trigger_mode'] = 'internal'
        self.andor_ccd.set_readout()

        ccd_hw = self.app.hardware['andor_ccd']
        ccd_dev = ccd_hw.ccd_dev

        width_px = ccd_dev.Nx_ro
        height_px = ccd_dev.Ny_ro

        try:
            # create data file and array
            self.h5_file = h5_io.h5_base_file(app=self.app, measurement=self)
            self.h5m = h5_io.h5_create_measurement_group(measurement=self,
                                                         h5group=self.h5_file)

            self.sweep_wls = self.settings.ranges['sweep_wls'].array
            self.h5m['sweep_wls'] = self.sweep_wls

            self.spectra = np.zeros((len(self.sweep_wls), width_px),
                                    dtype=float)
            self.spectra_h5 = self.h5m.create_dataset(
                'spectra', shape=(len(self.sweep_wls), width_px), dtype=float)

            for ii, center_wl in enumerate(self.sweep_wls):
                if self.interrupt_measurement_called:
                    break
                # move spectrometer to center wavelength
                self.spec.settings['center_wl'] = center_wl

                ccd_dev.start_acquisition()

                stat = ccd_hw.settings.ccd_status.read_from_hardware()
                while stat == 'ACQUIRING':
                    if self.interrupt_measurement_called:
                        break
                    time.sleep(0.01)
                    stat = ccd_hw.settings.ccd_status.read_from_hardware()

                if stat == 'IDLE':
                    self.ccd_img = ccd_dev.get_acquired_data()
                    self.spectrum = np.average(self.ccd_img, axis=0)
                    self.spectra[ii, :] = self.spectrum
                    self.spectra_h5[ii, :] = self.spectrum

        finally:
            print(self.name, 'done')
            self.h5_file.close()
コード例 #10
0
    def run(self):

        cam = self.spec_hw.cam

        print("rois|-->", cam.read_rois())

        cam.commit_parameters()
        
        while not self.interrupt_measurement_called:
            self.t0 = time.time()
            
            dat = cam.acquire(readout_count=1, readout_timeout=-1)
            
            self.roi_data = cam.reshape_frame_data(dat)
            #print "roi_data shapes", [d.shape for d in self.roi_data]            
            self.spec = spec  = np.average(self.roi_data[0], axis=0)
            
            px_index = np.arange(self.spec.shape[-1])
            self.hbin = self.spec_hw.settings['roi_x_bin']

            if 'acton_spectrometer' in self.app.hardware:
                self.wls = self.app.hardware['acton_spectrometer'].get_wl_calibration(px_index, self.hbin)
            else:
                self.wls =  self.hbin*px_index + 0.5*(self.hbin-1)
            self.pixels = self.hbin*px_index + 0.5*(self.hbin-1)
            self.raw_pixels = px_index
            self.wave_numbers = 1.0e7/self.wls
            self.raman_shifts = 1.0e7/self.laser_wl.val - 1.0e7/self.wls
            
            
            self.wls_mean = self.wls.mean()

            if not self.continuous.val:
                break
            

        if self.settings['save_h5']:
            self.h5_file = h5_io.h5_base_file(self.app, measurement=self )
            self.h5_file.attrs['time_id'] = self.t0
            H = self.h5_meas_group  =  h5_io.h5_create_measurement_group(self, self.h5_file)
              
            H['spectrum'] = spec
            H['wavelength'] = self.wls
            H['wave_numbers'] = self.wave_numbers
            H['raman_shifts'] = self.raman_shifts
            
            print('saved file')
            
            self.h5_file.close()
コード例 #11
0
ファイル: oo_spec_measure.py プロジェクト: wcyjames/stackbot
 def save_data(self):
     t = time.localtime(time.time())
     t_string = "{:02d}{:02d}{:02d}_{:02d}{:02d}{:02d}".format(
         int(str(t[0])[:-2]), t[1], t[2], t[3], t[4], t[5])
     fname = os.path.join(self.app.settings['save_dir'],
                          "%s_%s" % (t_string, self.name))
     with h5_io.h5_base_file(self.app, fname=fname + ".h5") as H:
         print("Saving " + fname + ".h5")
         M = h5_io.h5_create_measurement_group(measurement=self, h5group=H)
         M.create_dataset('spectrum',
                          data=self.spectrum,
                          compression='gzip')
         M.create_dataset('wavelengths',
                          data=self.wavelengths,
                          compression='gzip')
コード例 #12
0
    def run(self):
        self.ph_hw = self.app.hardware['picoharp']
        self.ph = self.ph_hw.picoharp
        if self.settings['use_calc_hist_chans']:
            self.ph_hw.settings[
                'histogram_channels'] = self.ph_hw.calc_num_hist_chans()

        self.sleep_time = min((max(0.1 * self.ph.Tacq * 1e-3, 0.010), 0.100))
        self.t0 = time.time()

        while not self.interrupt_measurement_called:
            self.ph.start_histogram()
            if self.ph.Tacq < 101:
                time.sleep(self.ph.Tacq * 1e-3 + 5e-3)
            else:
                while not self.ph.check_done_scanning():
                    self.set_progress(100 * (time.time() - self.t0) /
                                      self.ph_hw.settings['Tacq'])
                    if self.interrupt_measurement_called:
                        break
                    self.ph.read_histogram_data()
                    self.ph_hw.settings.count_rate0.read_from_hardware()
                    self.ph_hw.settings.count_rate1.read_from_hardware()
                    time.sleep(self.sleep_time)
            self.ph_hw.settings.count_rate0.read_from_hardware()
            self.ph_hw.settings.count_rate1.read_from_hardware()
            self.ph.stop_histogram()
            self.ph.read_histogram_data()

            if not self.settings['continuous']:
                break

        self.data_slice = slice(0, self.ph_hw.settings['histogram_channels'])
        histogram_data = self.ph.histogram_data[self.data_slice]
        time_array = self.ph.time_array[self.data_slice]
        elapsed_meas_time = self.ph.read_elapsed_meas_time()

        if self.settings['save_h5']:
            self.h5_file = h5_io.h5_base_file(self.app, measurement=self)
            self.h5_file.attrs['time_id'] = self.t0

            H = self.h5_meas_group = h5_io.h5_create_measurement_group(
                self, self.h5_file)
            H['time_histogram'] = histogram_data
            H['time_array'] = time_array
            H['elapsed_meas_time'] = elapsed_meas_time

            self.h5_file.close()
コード例 #13
0
 def init_roi_h5(self):
     """
     Initialization operations for the h5 file
     """
     self.create_saving_directory()
     
     # file name creation
     timestamp = time.strftime("%y%m%d_%H%M%S", time.localtime())
     sample = self.app.settings['sample']
     #sample_name = f'{timestamp}_{self.name}_{sample}_ROI.h5'
     sample_name = '_'.join([timestamp, self.name, sample, 'ROI.h5'])
     fname = os.path.join(self.app.settings['save_dir'], sample_name)
     
     # file creation
     self.h5_roi_file = h5_io.h5_base_file(app=self.app, measurement=self, fname = fname)
     self.h5_roi_group = h5_io.h5_create_measurement_group(measurement=self, h5group=self.h5_roi_file)
コード例 #14
0
    def snap_h5(self):

        #
        from ScopeFoundry import h5_io
        #self.app.hardware['asi_stage'].correct_backlash(0.02)

        self.h5_file = h5_io.h5_base_file(app=self.app, measurement=self)
        H = self.h5_meas_group = h5_io.h5_create_measurement_group(
            self, self.h5_file)
        im = self.get_rgb_image()
        im = np.flip(im.swapaxes(0, 1), 0)
        H['image'] = im
        self.h5_file.close()
        print('saved file successfully', im.sum())

        return im
コード例 #15
0
ファイル: photocurrent_iv.py プロジェクト: wcyjames/stackbot
    def _run(self):

        self.initial_scan_setup_plotting = True

        #Hardware
        self.keithley_hc = self.gui.keithley_sourcemeter_hc
        K1 = self.keithley = self.keithley_hc.keithley

        # h5 data file setup
        self.t0 = time.time()
        self.h5_file = h5_io.h5_base_file(self.gui,
                                          "%i_%s.h5" % (self.t0, self.name))
        self.h5_file.attrs['time_id'] = self.t0
        H = self.h5_meas_group = self.h5_file.create_group(self.name)
        h5_io.h5_save_measurement_settings(self, H)
        h5_io.h5_save_hardware_lq(self.gui, H)

        K1.resetA()
        K1.setAutoranges_A()
        K1.switchV_A_on()
        I, V = K1.measureIV_A(self.source_voltage_steps.val,
                              Vmin=self.source_voltage_min.val,
                              Vmax=self.source_voltage_max.val,
                              KeithleyADCIntTime=1,
                              delay=0)

        K1.switchV_A_off()

        print I
        print V

        self.Iarray = I
        self.Varray = V

        #save some data
        save_dict = {'I': self.Iarray, 'V': self.Varray}
        self.fname = "%i_photocurrent_iv.npz" % time.time()
        np.savez_compressed(self.fname, **save_dict)
        print "photocurrent_iv Saved", self.fname

        #create h5 data arrays
        H['I'] = self.Iarray
        H['V'] = self.Varray

        self.h5_file.close()
コード例 #16
0
    def run(self):
        
        self.display_ready = False
        
        self.hw = hw = self.app.hardware['hydraharp']
        Tacq = hw.settings['Tacq']

        if self.settings['auto_HistogramBins']:
            self.hw.update_HistogramBins()
            
        
        self.sleep_time = min((max(0.1*Tacq, 0.010), 0.100))
        self.t0 = time.time()
        
    
        while not self.interrupt_measurement_called:  
            hw.start_histogram()
            if Tacq < 0.1:
                time.sleep(Tacq+5e-3)
            else:
                while not hw.check_done_scanning():
                    self.set_progress( 100*(time.time() - self.t0)/Tacq )
                    if self.interrupt_measurement_called:
                        break
                    self.hist_data = hw.read_histogram_data(clear_after=False)
                    time.sleep(self.sleep_time)
            hw.stop_histogram()
            self.hist_data = hw.read_histogram_data(clear_after=True)
        
            if not self.settings['continuous']:
                break
            
    
        elapsed_meas_time = hw.settings.ElapsedMeasTime.read_from_hardware()
        
        if self.settings['save_h5']:
            self.h5_file = h5_io.h5_base_file(self.app, measurement=self )
            self.h5_file.attrs['time_id'] = self.t0
            
            H = self.h5_meas_group  =  h5_io.h5_create_measurement_group(self, self.h5_file)
            H['time_histogram'] = self.hist_data[self.hw.hist_slice]
            H['time_array'] = self.hw.time_array[self.hw.hist_slice[-1]]
            H['elapsed_meas_time'] = elapsed_meas_time
            
            self.h5_file.close()
コード例 #17
0
    def save_image(self):
        print('thor_cam_capture save_image')
        S = self.settings
        t0 = time.time()
        fname = os.path.join(self.app.settings['save_dir'],
                             "%i_%s" % (t0, self.name))

        if S['save_ini']:
            self.app.settings_save_ini(fname + ".ini")
        if S['save_png']:
            self.imview.export(fname + ".png")
        if S['save_tif']:
            self.imview.export(fname + ".tif")
        if S['save_h5']:
            with h5_io.h5_base_file(app=self.app, measurement=self) as H:
                M = h5_io.h5_create_measurement_group(measurement=self,
                                                      h5group=H)
                M.create_dataset('img', data=self.img, compression='gzip')
コード例 #18
0
    def run(self):
        self.t0 = time.time()

        #Hardware
        self.keithley_hw = self.app.hardware['keithley_sourcemeter']
        KS = self.keithley_hw.settings

        self.keithley = self.keithley_hw.keithley

        KS['output_a_on'] = True

        time.sleep(0.5)

        #measure IV
        self.V_sources = self.voltage_range.sweep_array
        self.I_array = np.zeros_like(self.V_sources, float)
        self.V_array = np.zeros_like(self.V_sources, float)

        for i, Vs in enumerate(self.V_sources):
            self.ii = i
            self.set_progress(i / len(self.V_sources) * 100)

            KS['source_V_a'] = Vs
            time.sleep(KS['delay_time_a'])
            self.keithley_hw.settings.I_a.read_from_hardware()
            self.keithley_hw.settings.V_a.read_from_hardware()
            self.I_array[i] = KS["I_a"]
            self.V_array[i] = KS["V_a"]
            self.collect_Vs(i, Vs, KS["I_a"], KS["V_a"])

        KS['output_a_on'] = False

        if self.settings['save_h5']:
            self.h5_file = h5_io.h5_base_file(self.app, measurement=self)
            self.h5_filename = self.h5_file.filename
            self.h5_file.attrs['time_id'] = self.t0
            H = self.h5_meas_group = h5_io.h5_create_measurement_group(
                self, self.h5_file)
            H['V_sourced'] = self.V_sources
            H['V'] = np.array(self.V_array)
            H['I'] = np.array(self.I_array)
            self.save_collected()
            self.h5_file.close()
コード例 #19
0
    def run(self):
        self.display_update_period = 0.02  #seconds

        #self.apd_counter_hc = self.gui.apd_counter_hc
        #self.apd_count_rate = self.apd_counter_hc.apd_count_rate
        #self.pm_hc = self.gui.thorlabs_powermeter_hc
        #self.pm_analog_readout_hc = self.gui.thorlabs_powermeter_analog_readout_hc

        if self.save_data.val:
            self.full_optimize_history = []
            self.full_optimize_history_time = []
            self.t0 = time.time()

        while not self.interrupt_measurement_called:
            self.optimize_ii += 1
            self.optimize_ii %= self.OPTIMIZE_HISTORY_LEN

            pow_reading = self.powermeter.settings.power.read_from_hardware()
            #pow_reading = self.powermeter.power_meter.measure_power()

            self.optimize_history[self.optimize_ii] = pow_reading
            #self.pm_analog_readout_hc.voltage.read_from_hardware()
            if self.save_data.val:
                self.full_optimize_history.append(pow_reading)
                self.full_optimize_history_time.append(time.time() - self.t0)

            time.sleep(self.settings['update_period'])
            #time.sleep(0.02)

        if self.settings['save_data']:
            try:
                self.h5_file = h5_io.h5_base_file(self.app, measurement=self)
                self.h5_file.attrs['time_id'] = self.t0
                H = self.h5_meas_group = h5_io.h5_create_measurement_group(
                    self, self.h5_file)

                #create h5 data arrays
                H['power_optimze_history'] = self.full_optimize_history
                H['optimze_history_time'] = self.full_optimize_history_time
            finally:
                self.h5_file.close()
コード例 #20
0
    def initH5(self):
        """
        Initialization operations for the h5 file.
        """

        self.h5file = h5_io.h5_base_file(app=self.app, measurement=self)
        self.h5_group = h5_io.h5_create_measurement_group(measurement=self,
                                                          h5group=self.h5file)
        img_size = self.image.shape
        length = self.camera.pixelink.number_frames
        self.image_h5 = self.h5_group.create_dataset(
            name='t0/c0/image',
            shape=(self.camera.pixelink.number_frames, self.eff_img_height,
                   self.eff_img_width),
            dtype=self.image.dtype)

        self.image_h5.dims[0].label = "z"
        self.image_h5.dims[1].label = "y"
        self.image_h5.dims[2].label = "x"

        self.image_h5.attrs['element_size_um'] = [1, 1, 1]
コード例 #21
0
    def initH5(self):
        """
        Initialization operations for the h5 file.
        """
        self.create_saving_directory()

        # file name creation
        timestamp = time.strftime("%y%m%d_%H%M%S", time.localtime())
        sample = self.app.settings['sample']
        #sample_name = f'{timestamp}_{self.name}_{sample}.h5'
        if sample == '':
            sample_name = '_'.join([timestamp, self.name])
        else:
            sample_name = '_'.join([timestamp, self.name, sample])
        fname = os.path.join(self.app.settings['save_dir'],
                             sample_name + '.h5')

        # file creation
        self.h5file = h5_io.h5_base_file(app=self.app,
                                         measurement=self,
                                         fname=fname)
        self.h5_group = h5_io.h5_create_measurement_group(measurement=self,
                                                          h5group=self.h5file)

        img_size = self.image.shape
        length = self.camera.hamamatsu.number_image_buffers
        self.image_h5 = self.h5_group.create_dataset(
            name='t0/c0/image',
            shape=(length, img_size[0], img_size[1]),
            dtype=self.image.dtype,
            chunks=(1, self.eff_subarrayv, self.eff_subarrayh))

        self.image_h5.dims[0].label = "z"
        self.image_h5.dims[1].label = "y"
        self.image_h5.dims[2].label = "x"

        #self.image_h5.attrs['element_size_um'] =  [self.settings['zsampling'], self.settings['ysampling'], self.settings['xsampling']]
        self.image_h5.attrs['element_size_um'] = [
            1, 1, 1
        ]  # required for compatibility with imageJ
コード例 #22
0
 def initH5(self):
     """
     Initialization operations for the h5 file.
     """
     
     self.h5file = h5_io.h5_base_file(app=self.app, measurement=self)
     self.h5_group = h5_io.h5_create_measurement_group(measurement=self, h5group=self.h5file)
     img_size=self.image.shape
     length=self.camera.hamamatsu.number_image_buffers
     self.image_h5 = self.h5_group.create_dataset( name  = 't0/c0/image', 
                                                   shape = ( length, img_size[0], img_size[1]),
                                                   dtype = self.image.dtype, chunks = (1, self.eff_subarrayv, self.eff_subarrayh)
                                                   )
     """
     THESE NAMES MUST BE CHANGED
     """
     self.image_h5.dims[0].label = "z"
     self.image_h5.dims[1].label = "y"
     self.image_h5.dims[2].label = "x"
     
     #self.image_h5.attrs['element_size_um'] =  [self.settings['zsampling'], self.settings['ysampling'], self.settings['xsampling']]
     self.image_h5.attrs['element_size_um'] =  [1,1,1]
コード例 #23
0
 def create_h5_file(self):                   
     self.create_saving_directory()
     # file name creation
     timestamp = time.strftime("%y%m%d_%H%M%S", time.localtime())
     sample = self.app.settings['sample']
     #sample_name = f'{timestamp}_{self.name}_{sample}.h5'
     if sample == '':
         sample_name = '_'.join([timestamp, self.name])
     else:
         sample_name = '_'.join([timestamp, self.name, sample])
     fname = os.path.join(self.app.settings['save_dir'], sample_name + '.h5')
     
     self.h5file = h5_io.h5_base_file(app=self.app, measurement=self, fname = fname)
     self.h5_group = h5_io.h5_create_measurement_group(measurement=self, h5group=self.h5file)
     
     img_size = self.img.shape
     dtype=self.img.dtype
     
     length = self.image_gen.frame_num.val
     self.image_h5 = self.h5_group.create_dataset(name  = 't0/c0/image', 
                                               shape = [length, img_size[0], img_size[1]],
                                               dtype = dtype)
     self.image_h5.attrs['element_size_um'] =  [self.settings['zsampling'],self.settings['ysampling'],self.settings['xsampling']]
コード例 #24
0
    def run(self):
        self.t0 = time.time()

        self.spec_readout.settings['continuous'] = False

        self.spectra = []
        self.center_wls = []  #center wls read from spectrometer

        for center_wl in self.center_wl_range.array:
            self.spec_center_wl.update_value(center_wl)
            time.sleep(1)
            self.start_nested_measure_and_wait(self.spec_readout,
                                               polling_time=0.1,
                                               start_time=0.1)
            self.spectra.append(self.spec_readout.spec)
            self.center_wls.append(self.spec_center_wl.val)

        self.h5_file = h5_io.h5_base_file(self.app, measurement=self)
        self.h5_file.attrs['time_id'] = self.t0
        H = self.h5_meas_group = h5_io.h5_create_measurement_group(
            self, self.h5_file)
        H['spectra'] = np.array(self.spectra)
        H['center_wls'] = np.array(self.center_wls)
        self.h5_file.close()
コード例 #25
0
ファイル: power_scan.py プロジェクト: wcyjames/stackbot
    def run(self):
        if len(self.used_hws) == 0: 
            self.status = {'title':'Select a Collection Option and press Start', 'color':'r'}
            return
        else:
            ETA = datetime.timedelta(seconds=int(self.total_acquisition_time) )
            self.status = {'title':'Power scan total acquisition time in h:mm:ss {}'.format(str(ETA)), 'color':'g'}
        
        self.move_to_min_pos()
                
        # loop through power wheel positions and measure active components.
        for ii in range(self.Np):
            self.ii = ii
            self.settings['progress'] = 100.*ii/self.Np
            if self.interrupt_measurement_called:
                break
                        
            for hw, Tacq_lq, acq_times_array in self.Tacq_arrays:
                print("power scan {} of {}, {} acq_times {}".format(ii + 1, self.Np, hw, acq_times_array[ii]))
                Tacq_lq.update_value(acq_times_array[ii])


            print("moving power wheel to " + str(self.power_wheel_hw.settings['position']) )            
            self.power_wheel_hw.settings['position'] = self.power_wheel_position[ii]
            time.sleep(0.25)

            
            # collect power meter value
            self.pm_powers[ii]=self.collect_pm_power_data()
            
            
            # read detectors
            if self.settings['collect_apd_counter']:
                time.sleep(self.apd_counter_hw.settings['int_time'])
                self.apd_count_rates[ii] = \
                    self.apd_counter_hw.settings.count_rate.read_from_hardware()
                
                
            if self.settings['collect_picoharp']:
                ph = self.ph_hw.picoharp
                ph.start_histogram()
                while not ph.check_done_scanning():
                    if self.interrupt_measurement_called:
                        break
                    ph.read_histogram_data()
                    time.sleep(0.1)        
                ph.stop_histogram()
                ph.read_histogram_data()
                Nt = self.ph_hw.settings['histogram_channels']
                self.picoharp_elapsed_time[ii] = ph.read_elapsed_meas_time()
                self.picoharp_histograms[ii,:] = ph.histogram_data[0:Nt]
                self.picoharp_time_array =  ph.time_array[0:Nt]
                
                
            if self.settings['collect_hydraharp']:
                self.hydraharp_histograms[ii,:] = self.aquire_histogram(self.hh_hw)
                self.hydraharp_time_array = self.hh_hw.sliced_time_array
                self.hydraharp_elapsed_time[ii] = self.hh_hw.settings['ElapsedMeasTime']
                
                
            if self.settings['collect_winspec_remote_client']:
                #self.spec_readout.run()
                self.spec_readout.settings['continuous'] = False
                self.spec_readout.settings['save_h5'] = False
                
                self.spec_readout.interrupt_measurement_called = False
                self.spec_readout.run()
                time.sleep(0.5)
                Tacq_lq = self.installed_hw['winspec_remote_client']
                #time.sleep(Tacq_lq.val)
                spec = np.array(self.spec_readout.data)
                self.spectra.append(spec)
                self.integrated_spectra.append(spec.sum()) 

                
            if self.settings['collect_andor_ccd']:
                self.andor_readout.settings['read_single'] = True            
                self.start_nested_measure_and_wait(self.andor_readout)
                spec = self.andor_readout.get_spectrum()
                self.spectra.append(spec)
                self.integrated_spectra.append(spec.sum()) 
                                
                                
            if self.settings['collect_ascom_img']:
                self.ascom_camera_capture.interrupt_measurement_called = False
                self.ascom_camera_capture.run()
                img = self.ascom_camera_capture.img.copy()/self.ascom_camera_capture.settings['exp_time']
                self.ascom_img_stack.append(img)
                self.ascom_img_integrated.append(img.astype(float).sum())
                
                
            # collect power meter value after measurement
            self.pm_powers_after[ii]=self.collect_pm_power_data()

        self.status = {'title':'Power scan finished', 'color':'y'}


        # write data to h5 file on disk        
        self.t0 = time.time()
        self.h5_file = h5_io.h5_base_file(app=self.app,measurement=self)
        try:
            self.h5_file.attrs['time_id'] = self.t0
            
            H = self.h5_meas_group  =  h5_io.h5_create_measurement_group(self, self.h5_file)    
            if self.settings['collect_apd_counter']:
                H['apd_count_rates'] = self.apd_count_rates
            if self.settings['collect_picoharp']:
                H['picoharp_elapsed_time'] = self.picoharp_elapsed_time
                H['picoharp_histograms'] = self.picoharp_histograms
                H['picoharp_time_array'] = self.picoharp_time_array
            if self.settings['collect_hydraharp']:
                H['hydraharp_elapsed_time'] = self.hydraharp_elapsed_time
                H['hydraharp_histograms'] = self.hydraharp_histograms
                H['hydraharp_time_array'] = self.hydraharp_time_array                
            if self.settings['collect_winspec_remote_client']:
                H['wls'] = self.spec_readout.wls
                H['spectra'] = np.squeeze(np.array(self.spectra))
                H['integrated_spectra'] = np.array(self.integrated_spectra)
            if self.settings['collect_andor_ccd']:
                H['wls'] = self.andor_readout.wls
                H['spectra'] = np.squeeze(np.array(self.spectra))
                H['integrated_spectra'] = np.array(self.integrated_spectra)
            if self.settings['collect_ascom_img']:
                H['ascom_img_stack'] = np.array(self.ascom_img_stack)
                H['ascom_img_integrated'] = np.array(self.ascom_img_integrated)
                
            H['pm_powers'] = self.pm_powers
            H['pm_powers_after'] = self.pm_powers_after
            H['power_wheel_position'] = self.power_wheel_position
            
            for hw, Tacq_lq, acq_times_array in self.Tacq_arrays:
                H[hw + '_acq_times_array'] = acq_times_array
                print('saving ' + hw + '_acq_times_array')
                
        finally:
            self.log.info("data saved " + self.h5_file.filename)
            self.h5_file.close()
コード例 #26
0
    def run(self):

        self.first_display = True
        self.do_callback_times = []
        self.img= np.zeros((self.settings['image_size_x'],self.settings['image_size_y']), dtype=np.float)
        self.counts= np.zeros((self.settings['image_size_x'],self.settings['image_size_y']), dtype=np.float)
        
        
        try:
            self.setup_tasks()
            
            # Create h5 arrays
            
            self.h5_file = h5_io.h5_base_file(self.app, measurement=self)
            self.h5_filename = self.h5_file.filename
            self.h5_m = h5_io.h5_create_measurement_group(measurement=self, h5group=self.h5_file)
            
            
            self.ao_data_h5 = self.h5_m.create_dataset('ao_data', 
                                     shape=(self.N_ao, self.ao_chan_count), 
                                     maxshape=(None, self.ao_chan_count), dtype=float, 
                                     chunks=(self.N_ao, self.ao_chan_count))
            self.ai_data_h5 = self.h5_m.create_dataset('ai_data', 
                                     shape=(self.N_ai, self.ai_chan_count),
                                     maxshape=(None, self.ai_chan_count), dtype=float,
                                     chunks=(self.N_ai, self.ai_chan_count))
    
    
            self.i_processed = 0        
            
            #KDE interp (it overwrites the one created in setup())
            Nx=self.settings['image_size_x']
            Ny=self.settings['image_size_y']
            Ax=self.settings['amplitude_x']
            Ay=self.settings['amplitude_y']
            self.kde_img = KDE_Image((Ny,Nx), self.settings['kde_sigma'])

            
            ### Start Output Tasks
            self.ao_task.StartTask()
            self.do_task.StartTask()
            
            block_i=0
            t00=time.time()  
            while not self.interrupt_measurement_called:
                #time.sleep(0.1)
                
                
                
                if len(self.ao_block_queue) > 0:    
                    # pop things off queue
                    i_ao, ao_block = self.ao_block_queue.pop(0)
                    assert ao_block.shape[0] == self.N_ao
                    
                    # store in h5 dataset
                    if i_ao >= self.ao_data_h5.shape[0]:
                        self.ao_data_h5.resize((i_ao+self.N_ao, self.ao_chan_count))
                    
                    self.ao_data_h5[i_ao:i_ao+self.N_ao,:] = ao_block
                   
                    # process block
                  
                if len(self.ai_block_queue) > 0:    
                    # pop things off queue
                    i_ai, ai_block = self.ai_block_queue.pop(0)
                    assert ai_block.shape[0] == self.N_ai
                    
                    # store in h5 dataset
                    if i_ai >= self.ai_data_h5.shape[0]:
                        self.ai_data_h5.resize((i_ai+self.N_ai, self.ai_chan_count))
                    self.ai_data_h5[i_ai:i_ai+self.N_ai,:] = ai_block
                    
                # process block
                
                if self.ai_data_h5.shape[0] > self.i_processed:
                    
                                    
                    x = self.ao_data_h5[self.i_processed: self.i_processed + self.N_ao, 0]
                    y = self.ao_data_h5[self.i_processed: self.i_processed + self.N_ao, 1]    
                    #we are choosing here analog input channel 0 as signal
                    z = self.ai_data_h5[self.i_processed: self.i_processed + self.N_ai, 0]
                
#                     print ("x",x)
#                     print ("y",y)
#                     print ("z",z)
#                     
                    # Quick interpolation
                    x_img=np.uint32((Nx-1)/2*x/Ax+(Nx)/2)
                    y_img=np.uint32((Ny-1)/2*y/Ay+(Ny)/2)
#                     for ii in range(len(x)):
#                         #self.img[x_img[ii],y_img[ii]]+=z[ii]
#                         self.counts[x_img[ii],y_img[ii]]+=1
#                         cc=self.counts[x_img[ii],y_img[ii]]
#                         old_z=self.img[x_img[ii],y_img[ii]]
#                           new_z=(old_z*(cc-1)+z[ii])/cc
#                         self.img[x_img[ii],y_img[ii]]=new_z
#                         
                    ### KDE
                    x_img=(Nx-1)/2*x/Ax+(Nx)/2
                    y_img=(Ny-1)/2*y/Ay+(Ny)/2
                    
                    x_img = np.clip(x_img, 4, Nx-4)
                    y_img = np.clip(y_img, 4, Ny-4)
                    
                    t0=time.time()    
                    self.kde_img.add_datapoints(x_img, y_img,z)
                    print('Elapsed time for adding chunk to image:', round(time.time()-t0,3))
                
                    self.i_processed += self.N_ao
                    block_i+=1
                #print('Acquired samples:' , block_i*self.N_ai)
                
                if (block_i*self.N_ai) > 2e6:
                    print('While loop terminated')
                    break
                print('Elapsed time for all in while loop:', round(time.time()-t00,3))
                
                # Optional: store old blocks in a finite sized buffer
        finally:
            self.stop_tasks()
コード例 #27
0
    def saveMeasurements(self):
        if list_equal(self.imageRaw_store, self.imageRAW):
            self.show_text("Raw images are not saved: the same measurement.")
        else:
            timestamp = time.strftime("%y%m%d_%H%M%S", time.localtime())
            sample = self.app.settings['sample']
            if sample == '':
                sample_name = '_'.join([timestamp, self.name])
            else:
                sample_name = '_'.join([timestamp, self.name, sample])
            # create file path for both h5 and other types of files
            pathname = os.path.join(self.app.settings['save_dir'], sample_name)
            Path(pathname).mkdir(parents=True, exist_ok=True)
            self.pathname = pathname
            self.sample_name = sample_name

            # create h5 base file if the h5 file is not exist
            if self.ui.saveH5.isChecked():
                # create h5 file for raw
                fname_raw = os.path.join(pathname, sample_name + '_Raw.h5')
                self.h5file_raw = h5_io.h5_base_file(app=self.app,
                                                     measurement=self,
                                                     fname=fname_raw)
                # save measure component settings
                h5_io.h5_create_measurement_group(measurement=self,
                                                  h5group=self.h5file_raw)
                for ch_idx in range(2):
                    gname = f'data/c{ch_idx}/raw'
                    if np.sum(self.imageRAW[ch_idx]
                              ) == 0:  # remove the empty channel
                        self.h5file_raw.create_dataset(gname,
                                                       data=h5py.Empty("f"))
                        self.show_text("[H5] Raw images are empty.")
                    else:
                        self.h5file_raw.create_dataset(
                            gname, data=self.imageRAW[ch_idx])
                        self.show_text("[H5] Raw images are saved.")

                self.h5file_raw.close()

            if self.ui.saveTif.isChecked():
                for ch_idx in range(2):
                    fname_raw = os.path.join(
                        pathname, sample_name + f'_Raw_Ch{ch_idx}.tif')
                    if np.sum(self.imageRAW[ch_idx]
                              ) != 0:  # remove the empty channel
                        tif.imwrite(fname_raw,
                                    np.single(self.imageRAW[ch_idx]))
                        self.show_text("[Tif] Raw images are saved.")
                    else:
                        self.show_text("[Tif] Raw images are empty.")

            self.imageRaw_store = self.imageRAW  # store the imageRAW for comparision

        if self.isCalibrated:
            if self.ui.saveH5.isChecked():
                fname_pro = os.path.join(
                    self.pathname, self.sample_name +
                    f'_C{self.current_channel_display()}_Processed.h5')
                self.h5file_pro = h5_io.h5_base_file(app=self.app,
                                                     measurement=self,
                                                     fname=fname_pro)
                h5_io.h5_create_measurement_group(measurement=self,
                                                  h5group=self.h5file_pro)

                name = f'data/sim'
                if np.sum(self.imageSIM) == 0:
                    dset = self.h5file_pro.create_dataset(name,
                                                          data=h5py.Empty("f"))
                    self.show_text("[H5] SIM images are empty.")
                else:
                    dset = self.h5file_pro.create_dataset(name,
                                                          data=self.imageSIM)
                    self.show_text("[H5] SIM images are saved.")
                dset.attrs['kx'] = self.kx_full
                dset.attrs['ky'] = self.ky_full

                if self.numSets != 0:
                    for idx in range(self.numSets):
                        roi_group_name = f'data/roi/{idx:03}'
                        raw_set = self.h5file_pro.create_dataset(
                            roi_group_name + '/raw',
                            data=self.imageRaw_ROI[idx])
                        raw_set.attrs['cx'] = self.oSegment.selected_cx[idx]
                        raw_set.attrs['cy'] = self.oSegment.selected_cy[idx]
                        sim_set = self.h5file_pro.create_dataset(
                            roi_group_name + '/sim',
                            data=self.imageSIM_ROI[idx])
                        sim_set.attrs['kx'] = self.kx_roi[idx]
                        sim_set.attrs['ky'] = self.ky_roi[idx]
                    self.show_text("[H5] ROI images are saved.")

                self.h5file_pro.close()

            if self.ui.saveTif.isChecked():
                fname_sim = os.path.join(
                    self.pathname, self.sample_name +
                    f'_C{self.current_channel_display()}_SIM' + '.tif')
                fname_ini = os.path.join(
                    self.pathname, self.sample_name +
                    f'_C{self.current_channel_display()}_Settings' + '.ini')
                if np.sum(self.imageSIM) != 0:
                    tif.imwrite(fname_sim, np.single(self.imageSIM))
                    self.app.settings_save_ini(fname_ini, save_ro=False)
                    self.show_text("[Tif] SIM images are saved.")
                else:
                    self.show_text("[Tif] SIM images are empty.")

                if self.numSets != 0:
                    for idx in range(self.numSets):
                        fname_roi = os.path.join(
                            self.pathname, self.sample_name +
                            f'_Roi_C{self.current_channel_display()}_{idx:003}_SIM'
                            + '.tif')
                        tif.imwrite(fname_roi,
                                    np.single(self.imageSIM_ROI[idx]))
                    self.show_text("[Tif] ROI images are saved.")
コード例 #28
0
ファイル: base_2d_scan.py プロジェクト: wcyjames/stackbot
    def _run(self):
        #hardware
        self.stage = self.gui.mcl_xyz_stage_hc
        self.nanodrive = self.stage.nanodrive

        # Data arrays
        self.h_array = np.arange(self.h0.val,
                                 self.h1.val,
                                 self.dh.val,
                                 dtype=float)
        self.v_array = np.arange(self.v0.val,
                                 self.v1.val,
                                 self.dv.val,
                                 dtype=float)

        self.Nh = len(self.h_array)
        self.Nv = len(self.v_array)

        self.range_extent = [
            self.h0.val, self.h1.val, self.v0.val, self.v1.val
        ]

        self.corners = [
            self.h_array[0], self.h_array[-1], self.v_array[0],
            self.v_array[-1]
        ]

        self.imshow_extent = [
            self.h_array[0] - 0.5 * self.dh.val,
            self.h_array[-1] + 0.5 * self.dh.val,
            self.v_array[0] - 0.5 * self.dv.val,
            self.v_array[-1] + 0.5 * self.dv.val
        ]

        # h5 data file setup
        self.t0 = time.time()
        self.h5_file = h5_io.h5_base_file(self.gui,
                                          "%i_%s.h5" % (self.t0, self.name))
        self.h5_file.attrs['time_id'] = self.t0
        self.h5_meas_group = self.h5_file.create_group(self.name)
        #h5_io.h5_save_measurement(self, self.h5_meas_group)
        h5_io.h5_save_measurement_settings(self, self.h5_file['/'])

        self.h5_meas_group.create_dataset(name='h_array',
                                          data=self.h_array,
                                          compression='gzip',
                                          shuffle=True)
        self.h5_meas_group.create_dataset(name='v_array',
                                          data=self.v_array,
                                          compression='gzip',
                                          shuffle=True)
        self.h5_meas_group.attrs['Nv'] = self.Nv
        self.h5_meas_group.attrs['Nh'] = self.Nh
        self.h5_meas_group.attrs['range_extent'] = self.range_extent
        self.h5_meas_group.attrs['corners'] = self.corners
        self.h5_meas_group.attrs['imshow_extent'] = self.imshow_extent

        #scan specific setup
        self.pre_scan_setup()

        # TODO Stop other timers?!

        print "scanning"
        self.current_pixel_num = 0
        self.t_scan_start = time.time()
        try:

            v_axis_id = self.stage.v_axis_id
            h_axis_id = self.stage.h_axis_id

            # move slowly to start position
            start_pos = [None, None, None]
            start_pos[v_axis_id - 1] = self.v_array[0]
            start_pos[h_axis_id - 1] = self.h_array[0]
            #print "scan.."

            print start_pos
            self.nanodrive.set_pos_slow(*start_pos)

            # Scan!
            line_time0 = time.time()

            for i_v in range(self.Nv):
                if self.interrupt_measurement_called:
                    break

                self.v_pos = self.v_array[i_v]
                self.nanodrive.set_pos_ax(self.v_pos, v_axis_id)
                #self.read_stage_position()

                if i_v % 2:  #odd lines
                    h_line_indicies = range(self.Nh)[::-1]
                else:  #even lines -- traverse in opposite direction
                    h_line_indicies = range(self.Nh)

                for i_h in h_line_indicies:
                    if self.interrupt_measurement_called:
                        break

                    self.h_pos = self.h_array[i_h]
                    self.nanodrive.set_pos_ax(self.h_pos, h_axis_id)

                    # collect data
                    self.collect_pixel(i_h, i_v)
                    self.current_pixel_num += 1

                T_pixel = float(time.time() - line_time0) / self.Nh
                print "line time:", time.time() - line_time0
                line_time0 = time.time()
                self.progress.update_value(self.current_pixel_num * 100. /
                                           (self.Nv * self.Nh))

                total_px = self.Nv * self.Nh
                print "time per pixel:", T_pixel, '| estimated total time (h)', total_px * T_pixel / 3600, '| Nh, Nv:', self.Nh, self.Nv,
                Time_finish = time.localtime(total_px * T_pixel +
                                             self.t_scan_start)
                print '| scan finishes at: {:02d}:{:02d}'.format(
                    Time_finish.tm_hour, Time_finish.tm_min)

                # read stage position every line
                self.stage.read_pos()

            #scanning done
            self.post_scan_cleanup()
        #except Exception as err:
        #    self.interrupt()
        #    raise err
        finally:
            #save  data file
            save_dict = {
                'h_array': self.h_array,
                'v_array': self.v_array,
                'Nv': self.Nv,
                'Nh': self.Nh,
                'range_extent': self.range_extent,
                'corners': self.corners,
                'imshow_extent': self.imshow_extent,
            }

            save_dict.update(self.scan_specific_savedict())

            for lqname, lq in self.gui.logged_quantities.items():
                save_dict[lqname] = lq.val

            for hc in self.gui.hardware_components.values():
                for lqname, lq in hc.logged_quantities.items():
                    save_dict[hc.name + "_" + lqname] = lq.val

            for lqname, lq in self.logged_quantities.items():
                save_dict[self.name + "_" + lqname] = lq.val

            self.fname = "%i_%s.npz" % (self.t0, self.name)
            np.savez_compressed(self.fname, **save_dict)
            print self.name, "saved:", self.fname

            #h5 file
            self.h5_file.close()

            if not self.interrupt_measurement_called:
                self.measurement_sucessfully_completed.emit()
            else:
                pass
コード例 #29
0
    def saveMeasurements(self):
        timestamp = time.strftime("%y%m%d_%H%M%S", time.localtime())
        ch = self.current_channel_process()  # selected channel
        if self.isCalibrated:
            if self.ui.saveH5.isChecked():
                if list_equal(self.imageSIM_store, self.imageSIM):
                    self.show_text("[NOT SAVED]\tSIM images are identical.")
                else:
                    # create file name for the processed file
                    fname_pro = os.path.join(
                        self.filepath, self.filetitle +
                        f'_{timestamp}_C{self.current_channel_process()}_Processed.h5'
                    )
                    # create H5 file
                    self.h5file_pro = h5_io.h5_base_file(app=self.app,
                                                         measurement=self,
                                                         fname=fname_pro)
                    # create measurement group and save measurement settings
                    h5_io.h5_create_measurement_group(measurement=self,
                                                      h5group=self.h5file_pro)

                    # name of the sim image group
                    sim_name = f'data/sim'
                    avg_name = f'data/avg'
                    std_name = f'data/std'
                    if np.sum(self.imageSIM) == 0:
                        dset = self.h5file_pro.create_dataset(
                            sim_name, data=h5py.Empty("f"))
                        dset_1 = self.h5file_pro.create_dataset(
                            avg_name, data=h5py.Empty("f"))
                        dset_2 = self.h5file_pro.create_dataset(
                            std_name, data=h5py.Empty("f"))
                        # self.show_text("[UNSAVED] SIM images are empty.")
                    else:
                        dset = self.h5file_pro.create_dataset(
                            sim_name, data=self.imageSIM)
                        dset_1 = self.h5file_pro.create_dataset(
                            avg_name, data=self.imageAVG)
                        dset_2 = self.h5file_pro.create_dataset(
                            std_name, data=self.imageSTD)
                        self.show_text("[SAVED]\tSIM images to <H5>.")
                    dset.attrs['kx'] = self.kx_full
                    dset.attrs['ky'] = self.ky_full

                    if self.numSets != 0:
                        for idx in range(self.numSets):
                            roi_group_name = f'data/roi/{idx:03}'
                            raw_set = self.h5file_pro.create_dataset(
                                roi_group_name + '/raw',
                                data=self.imageRAW_ROI[idx])
                            raw_set.attrs['cx'] = self.oSegment.selected_cx[
                                idx]
                            raw_set.attrs['cy'] = self.oSegment.selected_cy[
                                idx]
                            sim_set = self.h5file_pro.create_dataset(
                                roi_group_name + '/sim',
                                data=self.imageSIM_ROI[idx])
                            sim_set.attrs['kx'] = self.kx_roi[idx]
                            sim_set.attrs['ky'] = self.ky_roi[idx]
                            avg_set = self.h5file_pro.create_dataset(
                                roi_group_name + '/avg',
                                data=self.imageAVG_ROI[idx])
                            std_set = self.h5file_pro.create_dataset(
                                roi_group_name + '/std',
                                data=self.imageSTD_ROI[idx])
                        self.show_text("[SAVED]\tROI images to <H5>.")

                    self.h5file_pro.close()

        if self.ui.saveTif.isChecked():
            fname_sim = os.path.join(
                self.filepath, self.filetitle +
                f'_{timestamp}_C{self.current_channel_process()}_SIM' + '.tif')
            fname_ini = os.path.join(
                self.filepath, self.filetitle +
                f'_{timestamp}_C{self.current_channel_process()}_Settings' +
                '.ini')
            fname_avg = os.path.join(
                self.filepath, self.filetitle +
                f'_{timestamp}_C{self.current_channel_process()}_AVG' + '.tif')
            fname_std = os.path.join(
                self.filepath, self.filetitle +
                f'_{timestamp}_C{self.current_channel_process()}_STD' + '.tif')

            self.app.settings_save_ini(fname_ini, save_ro=False)
            if np.sum(self.imageSIM) != 0:
                tif.imwrite(fname_sim, np.single(self.imageSIM))
                tif.imwrite(fname_avg, np.single(self.imageAVG))
                tif.imwrite(fname_std, np.single(self.imageSTD))
                self.show_text("[SAVED]\tSIM images to <TIFF>.")
            # else:
            # self.show_text("[UNSAVED] SIM images are empty.")

            if self.numSets != 0:
                for idx in range(self.numSets):
                    fname_roi_sim = os.path.join(
                        self.filepath, self.filetitle +
                        f'_{timestamp}_Roi_C{self.current_channel_process()}_{idx:003}_SIM'
                        + '.tif')
                    fname_roi_avg = os.path.join(
                        self.filepath, self.filetitle +
                        f'_{timestamp}_Roi_C{self.current_channel_process()}_{idx:003}_AVG'
                        + '.tif')
                    fname_roi_std = os.path.join(
                        self.filepath, self.filetitle +
                        f'_{timestamp}_Roi_C{self.current_channel_process()}_{idx:003}_STD'
                        + '.tif')
                    tif.imwrite(fname_roi_sim,
                                np.single(self.imageSIM_ROI[idx]))
                    tif.imwrite(fname_roi_avg,
                                np.single(self.imageAVG_ROI[idx]))
                    tif.imwrite(fname_roi_std,
                                np.single(self.imageSTD_ROI[idx]))
                self.show_text("[SAVED]\tROI images to <TIFF>.")
コード例 #30
0
    def run(self):
        """
        Runs when measurement is started. Runs in a separate thread from GUI.
        It should not update the graphical interface directly, and should only
        focus on data acquisition.
        """
        self.buffer = np.zeros((60000,2))
        self.track_cam._dev.set_buffer_count(500)
        
        
            # if enabled will create an HDF5 file with the plotted data
            # first we create an H5 file (by default autosaved to app.settings['save_dir']
            # This stores all the hardware and app meta-data in the H5 file

        if self.settings.save_video.value():
            save_dir = self.app.settings.save_dir.value()
            data_path = os.path.join(save_dir,self.app.settings.sample.value())
            try:
                os.makedirs(data_path)
            except OSError:
                print('directory already exist, writing to existing directory')

            frame_rate = self.track_cam.settings.frame_rate.value()
            self.recorder.settings.path.update_value(data_path)
            
            self.recorder.create_file('track_mov',frame_rate)
            
            #save h5
            file_name_index=0
            file_name=os.path.join(self.recorder.settings.path.value(),'trail_'+str(file_name_index)+'.h5')
            while os.path.exists(file_name):
                file_name_index+=1
                file_name=os.path.join(self.recorder.settings.path.value(),'trail_'+str(file_name_index)+'.h5')
        
            self.h5file = h5_io.h5_base_file(app=self.app, measurement=self,fname = file_name)
            
            # create a measurement H5 group (folder) within self.h5file
            # This stores all the measurement meta-data in this group
            self.h5_group = h5_io.h5_create_measurement_group(measurement=self, h5group=self.h5file)
        

            # create an h5 dataset to store the data
            self.buffer_h5 = self.h5_group.create_dataset(name  = 'buffer', 
                                                          shape = self.buffer.shape,
                                                          dtype = self.buffer.dtype)
            
            
        

#             self.recorder.create_file('wide_mov',frame_rate)
        
        self.track_disp_queue = queue.Queue(1000)
#         self.wide_disp_queue = queue.Queue(1000)
        self.motor_queue = queue.Queue(1000)
        self.comp_thread = SubMeasurementQThread(self.camera_action)
        self.motor_thread = SubMeasurementQThread(self.motor_action)
        
        self.interrupt_subthread.connect(self.comp_thread.interrupt)
        self.interrupt_subthread.connect(self.motor_thread.interrupt)
        
        self.pid = PIDController(p = self.settings.proportional.value(),
                             i = self.settings.integral.value(),
                             d = self.settings.derivative.value())
        self.midpoint = (self.track_cam.settings.height.value()//self.settings.binning.value())//2
        self.pix_size = self.settings.pixel_size.value() * self.settings.binning.value()

        try:
            self.track_i = 0
            self.i = 0
#             self.wide_i = 0
            
            self.track_flag = False
            
            self.track_cam.start()
#             self.wide_cam.start()
            self.comp_thread.start()
            self.motor_thread.start()
            
            # Will run forever until interrupt is called.
            while not self.interrupt_measurement_called:
                #wait for 0.1ms
                time.sleep(0.5)
        
                if self.interrupt_measurement_called:
                    # Listen for interrupt_measurement_called flag.
                    # This is critical to do, if you don't the measurement will
                    # never stop.
                    # The interrupt button is a polite request to the 
                    # Measurement thread. We must periodically check for
                    # an interrupt request
                    self.interrupt_subthread.emit()
                    break

        finally:
            self.track_cam.stop()
#             self.wide_cam.stop()
            if self.settings.save_video.value():
                self.recorder.close()
            
            del self.motor_thread           
            del self.comp_thread
            del self.motor_queue
            del self.track_disp_queue
            if self.settings.save_video.value():
                self.recorder.close()
                self.h5file.close()