def __init__(self, s_start, s_goal, heuristic_type): self.s_start, self.s_goal = s_start, s_goal self.heuristic_type = heuristic_type self.Env = env.Env() # class Env self.Plot = plotting.Plotting(s_start, s_goal) self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.x = self.Env.x_range self.y = self.Env.y_range self.g, self.rhs, self.U = {}, {}, {} self.km = 0 for i in range(1, self.Env.x_range - 1): for j in range(1, self.Env.y_range - 1): self.rhs[(i, j)] = float("inf") self.g[(i, j)] = float("inf") self.rhs[self.s_goal] = 0.0 self.U[self.s_goal] = self.CalculateKey(self.s_goal) self.visited = set() self.count = 0 self.fig = plt.figure()
def __init__(self, s_start, s_goal, heuristic_type): self.s_start, self.s_goal = s_start, s_goal self.heuristic_type = heuristic_type self.Env = env.Env() self.Plot = plotting.Plotting(self.s_start, self.s_goal) self.u_set = self.Env.motions self.obs = self.Env.obs self.x = self.Env.x_range self.y = self.Env.y_range self.g, self.rhs, self.U = {}, {}, {} for i in range(self.Env.x_range): for j in range(self.Env.y_range): self.rhs[(i, j)] = float("inf") self.g[(i, j)] = float("inf") self.rhs[self.s_start] = 0 self.U[self.s_start] = self.CalculateKey(self.s_start) self.visited = set() self.count = 0 self.fig = plt.figure()
def __init__(self, s_start, s_goal): self.s_start = s_start self.s_goal = s_goal self.Env = env.Env() self.plotting = plotting.Plotting(self.s_start, self.s_goal) self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.OPEN = deque() # OPEN set: visited nodes self.PARENT = dict() # recorded parent self.CLOSED = [] # CLOSED set / visited order
def __init__(self, s_start, s_goal, N, heuristic_type): self.s_start, self.s_goal = s_start, s_goal self.heuristic_type = heuristic_type self.Env = env.Env() self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.N = N # number of expand nodes each iteration self.visited = [] # order of visited nodes in planning self.path = [] # path of each iteration self.h_table = {} # h_value table
def __init__(self, s_start, s_goal): self.s_start = s_start self.s_goal = s_goal self.Env = env.Env() self.plotting = plotting.Plotting(self.s_start, self.s_goal) self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.OPEN = [] # priority queue / OPEN set self.CLOSED = [] # closed set & visited self.PARENT = dict() # record parent self.g = dict() # Cost to come
def __init__(self, s_start, s_goal, heuristic_type): self.s_start = s_start self.s_goal = s_goal self.heuristic_type = heuristic_type self.Env = env.Env() # class Env self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.OPEN = [] # priority queue / OPEN set self.CLOSED = [] # CLOSED set / VISITED order self.PARENT = dict() # recorded parent self.g = dict() # cost to come
def __init__(self, s_start, s_goal, e, heuristic_type): self.s_start, self.s_goal = s_start, s_goal self.heuristic_type = heuristic_type self.Env = env.Env() # class Env self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.e = e # weight self.g = dict() # Cost to come self.OPEN = dict() # priority queue / OPEN set self.CLOSED = set() # CLOSED set self.INCONS = {} # INCONSISTENT set self.PARENT = dict() # relations self.path = [] # planning path self.visited = [] # order of visited nodes
def __init__(self, s_start, s_goal, heuristic_type): self.s_start = s_start self.s_goal = s_goal self.heuristic_type = heuristic_type self.Env = env.Env() # class Env self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.OPEN_fore = [] # OPEN set for forward searching self.OPEN_back = [] # OPEN set for backward searching self.CLOSED_fore = [] # CLOSED set for forward self.CLOSED_back = [] # CLOSED set for backward self.PARENT_fore = dict() # recorded parent for forward self.PARENT_back = dict() # recorded parent for backward self.g_fore = dict() # cost to come for forward self.g_back = dict() # cost to come for backward