コード例 #1
0
 def generateAlertsCsvFile(self, directory):
     detection_threshold = self.alerts_conf.detection_threshold
     with open(directory + 'alerts.csv', 'w') as f:
         alerts = matrix_tools.extractRowsWithThresholds(
             self.predictions_monitoring.predictions, detection_threshold,
             None, 'predicted_proba')
         alerts = matrix_tools.sortDataFrame(alerts, 'predicted_proba',
                                             False, False)
         alerts.to_csv(f, index_label='instance_id')
     return list(alerts.index.values)
コード例 #2
0
def getPredictions(experiment_id, train_test, index):
    experiment = updateCurrentExperiment(experiment_id)
    filename = experiment.getOutputDirectory()
    filename += train_test + '/predictions.csv'
    index = int(index)
    min_value = index * 0.1
    max_value = (index + 1) * 0.1
    with open(filename, 'r') as f:
        data = pd.read_csv(f, header=0, index_col=0)
        data = matrix_tools.extractRowsWithThresholds(data, min_value,
                                                      max_value,
                                                      'predicted_proba')
        selected_instances = list(data.index.values)
        proba = list(data['predicted_proba'])
    return jsonify({'instances': selected_instances, 'proba': proba})
コード例 #3
0
 def runModels(self, already_queried = None):
     df = matrix_tools.extractRowsWithThresholds(self.predictions,
             self.proba_min, self.proba_max, 'predicted_proba')
     if already_queried is not None:
         self.predicted_ids = list(set(df.index).difference(set(already_queried)))
     else:
         self.predicted_ids = list(df.index)
     datasets = self.iteration.datasets
     self.annotated_instances = datasets.getAnnotatedInstances(label = self.label)
     self.families_analysis   = self.familiesAnalysis()
     if self.families_analysis:
         self.annotations_type = 'families'
         start_time = time.time()
         self.buildCategories()
         self.analysis_time = time.time() - start_time
         self.categories.setLikelihood(self.iteration.iteration_number)
     else:
         self.annotations_type = 'individual'
         self.categories       = None
         self.analysis_time    = 0