def createNaiveBayesConf(self): exp = self.experiment name = '-'.join([ 'AL' + str(exp.experiment_id), 'Iter' + str(self.iteration.iteration_number), 'all', 'NaiveBayes' ]) naive_bayes_exp = ClassificationExperiment(exp.secuml_conf, session=exp.session) naive_bayes_exp.initExperiment(exp.project, exp.dataset, experiment_name=name, parent=exp.experiment_id) test_conf = UnlabeledLabeledConf(logger=exp.logger) naive_bayes_conf = GaussianNaiveBayesConfiguration( exp.conf.models_conf['multiclass'].n_jobs, exp.conf.models_conf['multiclass'].num_folds, False, True, test_conf, logger=exp.logger) naive_bayes_exp.setConf(naive_bayes_conf, exp.features_filename, annotations_id=exp.annotations_id) naive_bayes_exp.export() return naive_bayes_conf
def createNaiveBayesConf(self): test_conf = UnlabeledLabeledConf(logger=self.conf.logger) naive_bayes_conf = GaussianNaiveBayesConfiguration( 4, False, True, test_conf, logger=self.conf.logger) return naive_bayes_conf
def gornitzBinaryModelConf(logger): classifier_args = {} classifier_args['num_folds'] = 4 classifier_args['sample_weight'] = False classifier_args['families_supervision'] = False test_conf = UnlabeledLabeledConf() classifier_args['test_conf'] = test_conf binary_model_conf = ClassifierConfFactory.getFactory().fromParam( 'Sssvdd', classifier_args, logger=logger) return binary_model_conf
def generateParamsFromArgs(args): supervised_args = {} supervised_args['num_folds'] = 4 supervised_args['sample_weight'] = False supervised_args['families_supervision'] = False test_conf = UnlabeledLabeledConf() supervised_args['test_conf'] = test_conf binary_model_conf = ClassifierConfFactory.getFactory().fromParam( 'Sssvdd', supervised_args) params = ActiveLearningConfiguration.generateParamsFromArgs( args, binary_model_conf=binary_model_conf) params['batch'] = args.batch return params
def getMulticlassModel(self): params = {} params['num_folds'] = 4 params['sample_weight'] = False params['families_supervision'] = True params['optim_algo'] = 'liblinear' params['alerts_conf'] = None test_conf = UnlabeledLabeledConf(logger=self.alerts_conf.logger) params['test_conf'] = test_conf conf = ClassifierConfFactory.getFactory().fromParam( 'LogisticRegression', params, logger=self.alerts_conf.logger) model = conf.model_class(conf) return model
def generateParamsFromArgs(args, logger=None): supervised_args = {} supervised_args['num_folds'] = 4 supervised_args['sample_weight'] = False supervised_args['families_supervision'] = False test_conf = UnlabeledLabeledConf(logger=logger) supervised_args['test_conf'] = test_conf binary_model_conf = ClassifierConfFactory.getFactory().fromParam( 'LogisticRegression', supervised_args, logger=logger) params = ActiveLearningConfiguration.generateParamsFromArgs( args, binary_model_conf=binary_model_conf, logger=logger) params['num_annotations'] = args.num_annotations return params
def aladinMulticlassModelConf(logger): classifier_args = {} classifier_args['num_folds'] = 4 classifier_args['sample_weight'] = False classifier_args['families_supervision'] = True classifier_args['alerts_conf'] = None classifier_args['optim_algo'] = 'liblinear' test_conf = UnlabeledLabeledConf(logger=logger) classifier_args['test_conf'] = test_conf factory = ClassifierConfFactory.getFactory() multiclass_model_conf = factory.fromParam('LogisticRegression', classifier_args, logger=logger) return multiclass_model_conf
def generateParamsFromArgs(args): params = ActiveLearningConfiguration.generateParamsFromArgs(args) multiclass_classifier_args = {} multiclass_classifier_args['num_folds'] = args.num_folds multiclass_classifier_args['sample_weight'] = False multiclass_classifier_args['families_supervision'] = True multiclass_classifier_args['alerts_conf'] = None test_conf = UnlabeledLabeledConf() multiclass_classifier_args['test_conf'] = test_conf multiclass_conf = ClassifierConfFactory.getFactory().fromParam( args.model_class, multiclass_classifier_args) rare_category_detection_conf = RareCategoryDetectionStrategy(multiclass_conf, args.cluster_strategy, args.num_annotations, 'uniform') params['rare_category_detection_conf'] = rare_category_detection_conf params['num_annotations'] = args.num_annotations params['multiclass_model_conf'] = multiclass_conf return params
def generateParamsFromArgs(args): params = ActiveLearningConfiguration.generateParamsFromArgs(args) multiclass_classifier_args = {} multiclass_classifier_args['num_folds'] = args.num_folds multiclass_classifier_args['sample_weight'] = False multiclass_classifier_args['families_supervision'] = True multiclass_classifier_args['optim_algo'] = 'liblinear' test_conf = UnlabeledLabeledConf() multiclass_classifier_args['test_conf'] = test_conf multiclass_conf = ClassifierConfFactory.getFactory().fromParam( 'LogisticRegression', multiclass_classifier_args) rare_category_detection_conf = RareCategoryDetectionStrategy(multiclass_conf, args.cluster_strategy, args.num_annotations, 'uniform') params['rare_category_detection_conf'] = rare_category_detection_conf params['num_uncertain'] = args.num_uncertain params['eps'] = 0.49 return params
def getNaiveBayesConf(self): exp = self.experiment name = '-'.join([ 'AL' + str(exp.experiment_id), 'Iter' + str(self.iteration.iteration_number), 'all', 'NaiveBayes' ]) naive_bayes_exp = ClassificationExperiment(exp.project, exp.dataset, exp.session, experiment_name=name, parent=exp.experiment_id) test_conf = UnlabeledLabeledConf() naive_bayes_conf = GaussianNaiveBayesConfiguration( exp.conf.num_folds, False, True, test_conf) naive_bayes_exp.setConf(naive_bayes_conf, exp.features_filename, annotations_id=exp.annotations_id) naive_bayes_exp.export() return naive_bayes_conf
def generateParamsFromArgs(args, binary_model_conf=None): if binary_model_conf is None: supervised_args = {} supervised_args['num_folds'] = args.num_folds supervised_args['sample_weight'] = args.sample_weight supervised_args['families_supervision'] = False supervised_args['test_conf'] = UnlabeledLabeledConf() binary_model_conf = ClassifierConfFactory.getFactory().fromParam( args.model_class, supervised_args) active_learning_params = {} active_learning_params['auto'] = args.auto active_learning_params['budget'] = args.budget active_learning_params['binary_model_conf'] = binary_model_conf validation_conf = None if args.validation_dataset is not None: validation_conf = ValidationDatasetConf(args.validation_dataset) active_learning_params['validation_conf'] = validation_conf return active_learning_params
def getNaiveBayesConf(self): test_conf = UnlabeledLabeledConf() naive_bayes_conf = GaussianNaiveBayesConfiguration( 4, False, True, test_conf) return naive_bayes_conf