コード例 #1
0
def test_mlp_mnist():
    train_set, test_set = mnist(one_hot=True)

    x_train, y_train = train_set[0], train_set[1]
    x_test, y_test = test_set[0], test_set[1]
    x_train = x_train.reshape(x_train.shape[0],
                              x_train.shape[1] * x_train.shape[2])
    x_test = x_test.reshape(x_test.shape[0], x_test.shape[1] * x_test.shape[2])

    num_classes = 10
    batch_size = 32
    epochs = 1

    model = Sequential()
    model.add(Dense(units=256, activation='relu', input_shape=(784, )))
    model.add(Dense(units=128, activation='relu'))
    model.add(Dense(units=64, activation='relu'))
    model.add(Dense(num_classes, activation='softmax'))

    model.summary()

    model.compile(loss='categorical_crossentropy',
                  optimizer='momentum',
                  learning_rate=0.05)
    history = model.fit(x_train,
                        y_train,
                        batch_size=batch_size,
                        epochs=epochs,
                        verbose=1,
                        validation_data=(x_test, y_test))
    score = model.evaluate(x_test, y_test, verbose=0)
コード例 #2
0
def test_simple_mlp():
    Asamples = np.random.multivariate_normal([6, 6], [[1, 0], [0, 1]], 200)
    Bsamples = np.random.multivariate_normal([1, 1], [[1, 0], [0, 1]], 200)

    x_train = np.vstack((Asamples, Bsamples))
    y_train = np.vstack((np.array([[0, 1]] * 200), np.array([[1, 0]] * 200)))
    print(x_train.shape, y_train.shape)
    num_classes = 2
    batch_size = 10
    epochs = 10

    model = Sequential()
    model.add(Dense(units=2, activation='relu', input_shape=(2, )))
    model.add(Dense(units=num_classes, activation='softmax'))

    model.summary()

    model.compile(loss='categorical_crossentropy',
                  optimizer='sgd',
                  learning_rate=0.05)

    history = model.fit(x_train,
                        y_train,
                        batch_size=batch_size,
                        epochs=epochs,
                        verbose=1,
                        validation_data=(None, None))
コード例 #3
0
def test_mlp():
    model = Sequential()
    model.add(Dense(units=512, activation='relu', input_shape=(784, )))
    model.add(Dense(units=512, activation='relu'))
    model.add(Dense(num_classes, activation='softmax'))

    model.summary()

    model.compile(loss='categorical_crossentropy', optimizer='RMSprop')

    history = model.fit(x_train,
                        y_train,
                        batch_size=batch_size,
                        epochs=epochs,
                        verbose=1,
                        validation_data=(None, None))
    score = model.evaluate(x_test, y_test, verbose=0)
コード例 #4
0
def test_single_layer():
    Asamples = np.random.multivariate_normal([6, 6], [[1, 0], [0, 1]], 200)
    Bsamples = np.random.multivariate_normal([1, 1], [[1, 0], [0, 1]], 200)
    Csamples = np.random.multivariate_normal([12, 12], [[1, 0], [0, 1]], 200)

    # plt.figure()
    # plt.plot(Asamples[:, 0], Asamples[:, 1], 'r.')
    # plt.plot(Bsamples[:, 0], Bsamples[:, 1], 'b.')
    # plt.plot(Csamples[:, 0], Csamples[:, 1], 'g.')
    # plt.show()

    x_train = np.vstack((Asamples, Bsamples, Csamples))
    y_train = np.vstack(
        (np.array([[0, 0, 1]] * 200), np.array([[0, 1, 0]] * 200),
         np.array([[1, 0, 0]] * 200)))
    print(x_train.shape, y_train.shape)
    num_classes = 3
    batch_size = 20
    epochs = 100

    model = Sequential()
    model.add(Dense(units=num_classes, activation='softmax',
                    input_shape=(2, )))

    model.summary()

    model.compile(loss='categorical_crossentropy',
                  optimizer='sgd',
                  learning_rate=0.005)

    history = model.fit(x_train,
                        y_train,
                        batch_size=batch_size,
                        epochs=epochs,
                        verbose=1,
                        validation_data=(None, None))
コード例 #5
0
ファイル: mnsit_mlp.py プロジェクト: hw201212/SemiFlow
x_train, y_train = train_set[0], train_set[1]
x_test, y_test = test_set[0], test_set[1]
x_val, y_val = valid_set[0], valid_set[1]

num_classes = 10
batch_size = 32
epochs = 3

model = Sequential()
model.add(Dense(units=256, activation='relu', input_shape=(784, )))
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=64, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))

model.summary()

model.compile(loss='categorical_crossentropy',
              optimizer='RMSprop',
              learning_rate=0.05,
              metrics=['train_loss', 'val_loss'])

history = model.fit(
    x_train,
    y_train,
    batch_size=batch_size,
    epochs=epochs,
    verbose=1,
    validation_data=(x_val, y_val),
    # validation_split=0.2,
)