コード例 #1
0
def getCSMSmithWatermanScores(Features1, O1, Features2, O2, Kappa, Type, doPlot = False):
    """
    Compute the Smith Waterman score between two songs
    using a single feature set
    :param Features1: Mxk matrix of features in song 1
    :param O1: Auxiliary info for song 1
    :param Features2: Nxk matrix of features in song 2
    :param O2: Auxiliary info for song 2
    :param Kappa: Nearest neighbors param for CSM
    :param Type: Type of CSM to use
    :param doPlot: If True, plot the results of Smith waterman
    :returns: Score if doPlot = False, or dictionary of
        {'score', 'DBinary', 'D', 'maxD', 'CSM'}
        if doPlot is True
    """
    CSM = getCSMType(Features1, O1, Features2, O2, Type)
    DBinary = CSMToBinaryMutual(CSM, Kappa)
    if doPlot:
        (maxD, D) = SA.swalignimpconstrained(DBinary)
        plt.subplot(131)
        plt.imshow(CSM, interpolation = 'nearest', cmap = 'afmhot')
        plt.title('CSM')
        plt.subplot(132)
        plt.imshow(1-DBinary, interpolation = 'nearest', cmap = 'gray')
        plt.title("CSM Binary, $\kappa$=%g"%Kappa)
        plt.subplot(133)
        plt.imshow(D, interpolation = 'nearest', cmap = 'afmhot')
        plt.title("Smith Waterman Score = %g"%maxD)
        return {'score':maxD, 'DBinary':DBinary, 'D':D, 'maxD':maxD, 'CSM':CSM}
    return SAC.swalignimpconstrained(DBinary)
コード例 #2
0
def getCSMSmithWatermanScoresORMerge(AllFeatures1,
                                     O1,
                                     AllFeatures2,
                                     O2,
                                     Kappa,
                                     CSMTypes,
                                     doPlot=False):
    """
    Compute the Smith Waterman score between two songs
    after doing a binary OR on individual feature sets
    :param AllFeatures1: A dictionary of Mxk matric of
        features in song 1
    :param O1: Auxiliary info for song 1
    :param AllFeatures2: A dictionary of Nxk matrix of
        features in song 2
    :param O2: Auxiliary info for song 2
    :param Kappa: Nearest neighbors param for CSM
    :param CSMTypes: Dictionary of types of CSMs for each
        feature
    :param doPlot: If True, plot the results of the fusion
        and of Smith Waterman
    :returns: Score if doPlot = False, or dictionary of
        {'score', 'DBinary', 'D', 'maxD'}
        if doPlot is True
    """
    CSMs = []
    DsBinary = []
    Features = list(AllFeatures1)
    #Compute all CSMs
    for i in range(len(Features)):
        F = Features[i]
        CSMs.append(
            getCSMType(AllFeatures1[F], O1, AllFeatures2[F], O2, CSMTypes[F]))
        DsBinary.append(CSMToBinaryMutual(CSMs[i], Kappa))
    #Do an OR merge
    DBinary = np.zeros(DsBinary[0].shape)
    for D in DsBinary:
        DBinary += D
    DBinary[DBinary > 0] = 1
    if doPlot:
        #TODO: I have no idea why I'm seeing a large gap
        (maxD, D) = SA.swalignimpconstrained(DBinary)
        N = len(CSMs)
        for i in range(N):
            print("plt.subplot(2, %i, %i)" % (N + 1, i + 1))
            plt.subplot(2, N + 1, i + 1)
            plt.imshow(CSMs[i], interpolation='nearest', cmap='afmhot')
            plt.title('CSM %s' % Features[i])
            plt.subplot(2, N + 1, N + 2 + i)
            plt.imshow(1 - DsBinary[i], interpolation='nearest', cmap='gray')
            plt.title("CSM Binary %s K=%g" % (Features[i], Kappa))
        plt.subplot(2, N + 1, 2 * N + 2)
        plt.imshow(DBinary, interpolation='nearest', cmap='afmhot')
        plt.title('CSM Binary OR Merged')
        plt.subplot(2, N + 1, N + 1)
        plt.imshow(D, interpolation='nearest', cmap='afmhot')
        plt.title("Smith Waterman Score = %g" % maxD)
        return {'score': maxD, 'DBinary': DBinary, 'D': D, 'maxD': maxD}
    return SAC.swalignimpconstrained(DBinary)
コード例 #3
0
def getCSMSmithWatermanScoresORMerge(AllFeatures1, O1, AllFeatures2, O2, Kappa, CSMTypes, doPlot = False):
    """
    Compute the Smith Waterman score between two songs
    after doing a binary OR on individual feature sets
    :param AllFeatures1: A dictionary of Mxk matric of
        features in song 1
    :param O1: Auxiliary info for song 1
    :param AllFeatures2: A dictionary of Nxk matrix of
        features in song 2
    :param O2: Auxiliary info for song 2
    :param Kappa: Nearest neighbors param for CSM
    :param CSMTypes: Dictionary of types of CSMs for each
        feature
    :param doPlot: If True, plot the results of the fusion
        and of Smith Waterman
    :returns: Score if doPlot = False, or dictionary of
        {'score', 'DBinary', 'D', 'maxD'}
        if doPlot is True
    """
    CSMs = []
    DsBinary = []
    Features = list(AllFeatures1)
    #Compute all CSMs
    for i in range(len(Features)):
        F = Features[i]
        CSMs.append(getCSMType(AllFeatures1[F], O1, AllFeatures2[F], O2, CSMTypes[F]))
        DsBinary.append(CSMToBinaryMutual(CSMs[i], Kappa))
    #Do an OR merge
    DBinary = np.zeros(DsBinary[0].shape)
    for D in DsBinary:
        DBinary += D
    DBinary[DBinary > 0] = 1
    if doPlot:
        #TODO: I have no idea why I'm seeing a large gap
        (maxD, D) = SA.swalignimpconstrained(DBinary)
        N = len(CSMs)
        for i in range(N):
            print("plt.subplot(2, %i, %i)"%(N+1, i+1))
            plt.subplot(2, N+1, i+1)
            plt.imshow(CSMs[i], interpolation = 'nearest', cmap = 'afmhot')
            plt.title('CSM %s'%Features[i])
            plt.subplot(2, N+1, N+2+i)
            plt.imshow(1-DsBinary[i], interpolation = 'nearest', cmap = 'gray')
            plt.title("CSM Binary %s K=%g"%(Features[i], Kappa))
        plt.subplot(2, N+1, 2*N+2)
        plt.imshow(DBinary, interpolation = 'nearest', cmap = 'afmhot')
        plt.title('CSM Binary OR Merged')
        plt.subplot(2, N+1, N+1)
        plt.imshow(D, interpolation = 'nearest', cmap = 'afmhot')
        plt.title("Smith Waterman Score = %g"%maxD)
        return {'score':maxD, 'DBinary':DBinary, 'D':D, 'maxD':maxD}
    return SAC.swalignimpconstrained(DBinary)
コード例 #4
0
def getCSMSmithWatermanScores(Features1,
                              O1,
                              Features2,
                              O2,
                              Kappa,
                              Type,
                              doPlot=False):
    """
    Compute the Smith Waterman score between two songs
    using a single feature set
    :param Features1: Mxk matrix of features in song 1
    :param O1: Auxiliary info for song 1
    :param Features2: Nxk matrix of features in song 2
    :param O2: Auxiliary info for song 2
    :param Kappa: Nearest neighbors param for CSM
    :param Type: Type of CSM to use
    :param doPlot: If True, plot the results of Smith waterman
    :returns: Score if doPlot = False, or dictionary of
        {'score', 'DBinary', 'D', 'maxD', 'CSM'}
        if doPlot is True
    """
    CSM = getCSMType(Features1, O1, Features2, O2, Type)
    DBinary = CSMToBinaryMutual(CSM, Kappa)
    if doPlot:
        (maxD, D) = SA.swalignimpconstrained(DBinary)
        plt.subplot(131)
        plt.imshow(CSM, interpolation='nearest', cmap='afmhot')
        plt.title('CSM')
        plt.subplot(132)
        plt.imshow(1 - DBinary, interpolation='nearest', cmap='gray')
        plt.title("CSM Binary, $\kappa$=%g" % Kappa)
        plt.subplot(133)
        plt.imshow(D, interpolation='nearest', cmap='afmhot')
        plt.title("Smith Waterman Score = %g" % maxD)
        return {
            'score': maxD,
            'DBinary': DBinary,
            'D': D,
            'maxD': maxD,
            'CSM': CSM
        }
    return SAC.swalignimpconstrained(DBinary)
コード例 #5
0
def getCSMSmithWatermanScoresEarlyFusionFull(AllFeatures1,
                                             O1,
                                             AllFeatures2,
                                             O2,
                                             Kappa,
                                             K,
                                             NIters,
                                             CSMTypes,
                                             doPlot=False,
                                             conservative=False):
    """
    Compute the Smith Waterman score between two songs
    after doing early similarity network fusion on
    individual feature sets
    :param AllFeatures1: A dictionary of Mxk matric of
        features in song 1
    :param O1: Auxiliary info for song 1
    :param AllFeatures2: A dictionary of Nxk matrix of
        features in song 2
    :param O2: Auxiliary info for song 2
    :param Kappa: Nearest neighbors param for CSM
    :param CSMTypes: Dictionary of types of CSMs for each
        feature
    :param doPlot: If True, plot the results of the fusion
        and of Smith Waterman
    :param conservative: Whether to use a percentage of the
        closest distances instead of mutual nearest neighbors
        (False by default, but useful for audio synchronization)
    :returns:
        if doPlot = False
            {'score', 'CSM', 'DBinary', 'OtherCSMs'}
        if doPlot = True
            {'score', 'CSM', 'DBinary', 'D', 'maxD', 'path'}
    """
    CSMs = []  #Individual CSMs
    Ws = []  #W built from fused CSMs/SSMs
    Features = list(AllFeatures1)
    OtherCSMs = {}
    #Compute all CSMs and SSMs
    for i in range(len(Features)):
        F = Features[i]
        SSMA = getCSMType(AllFeatures1[F], O1, AllFeatures1[F], O1,
                          CSMTypes[F])
        SSMB = getCSMType(AllFeatures2[F], O2, AllFeatures2[F], O2,
                          CSMTypes[F])
        CSMAB = getCSMType(AllFeatures1[F], O1, AllFeatures2[F], O2,
                           CSMTypes[F])
        CSMs.append(CSMAB)
        OtherCSMs[F] = CSMAB
        #Build W from CSM and SSMs
        Ws.append(getWCSMSSM(SSMA, SSMB, CSMAB, K))
    tic = time.time()
    D = doSimilarityFusionWs(Ws, K, NIters, 1)
    toc = time.time()
    t1 = toc - tic
    N = AllFeatures1[Features[0]].shape[0]
    CSM = D[0:N, N::] + D[N::, 0:N].T
    #sio.savemat("CSM.mat", {"CSM":CSM})
    #Note that the CSM is in probabalistic weight form, so the
    #"nearest neighbors" are actually those with highest weight.  So
    #apply monotonic exp(-CSM) to fix this

    if conservative:
        x = CSM.flatten()
        x = x[np.argsort(-x)]
        cutoff = x[int(3 * np.sqrt(CSM.size))]
        DBinary = np.array(CSM)
        DBinary[CSM < cutoff] = 0
        DBinary[DBinary > 0] = 1
    else:
        DBinary = CSMToBinaryMutual(np.exp(-CSM), Kappa)

    if doPlot:
        print("Elapsed Time Similarity Fusion: %g" % t1)
        N = len(CSMs)
        for i in range(N):
            plt.subplot(3, N + 1, i + 1)
            plt.imshow(CSMs[i], interpolation='nearest', cmap='afmhot')
            plt.title('CSM %s' % Features[i])
            plt.subplot(3, N + 1, N + 2 + i)
            thisDBinary = CSMToBinaryMutual(CSMs[i], Kappa)
            plt.imshow(1 - thisDBinary, interpolation='nearest', cmap='gray')
            plt.title("CSM Binary %s K=%g" % (Features[i], Kappa))
            (maxD, D) = SA.swalignimpconstrained(thisDBinary)
            plt.subplot(3, N + 1, 2 * N + 3 + i)
            plt.imshow(D, interpolation='nearest', cmap='afmhot')
            plt.title("Score = %g" % maxD)
        plt.subplot(3, N + 1, N + 1)
        plt.imshow(CSM, interpolation='nearest', cmap='afmhot')
        plt.title("CSM W Fused")
        plt.subplot(3, N + 1, 2 * N + 2)
        plt.imshow(1 - DBinary, interpolation='nearest', cmap='gray')
        plt.title('CSM Binary W Fused')
        plt.subplot(3, N + 1, 3 * N + 3)
        (maxD, D, path) = SA.SWBacktrace(DBinary)
        plt.imshow(D, interpolation='nearest', cmap='afmhot')
        plt.title("Fused Score = %g" % maxD)
        return {
            'score': maxD,
            'CSM': CSM,
            'DBinary': DBinary,
            'D': D,
            'maxD': maxD,
            'path': path
        }
    return {
        'score': SAC.swalignimpconstrained(DBinary),
        'CSM': CSM,
        'DBinary': DBinary,
        'OtherCSMs': OtherCSMs
    }
コード例 #6
0
def compareBatchBlock(args):
    """
    Process a rectangular block of the all pairs score matrix
    between all of the songs.  Return score matrices for each
    individual type of feature, in addition to one for early
    similarity network fusion
    :param idxs: [start1, end1, start2, end2] range of rectangular
        block of songs to compare
    :param Kappa: Percent nearest neighbors to use both for
        binary cross-similarity and similarity network fusion
    :param CSMTypes: Dictionary of types of features and
        associated cross-similarity comparisons to do
    :param allFiles: List of all files that are being compared
        from which this block is drawn
    :param scratchDir: Path to directory for storing block results
    """
    (idxs, Kappa, CSMTypes, allFiles, scratchDir) = args
    DsFilename = "%s/D%i_%i_%i_%i.mat" % (scratchDir, idxs[0], idxs[1],
                                          idxs[2], idxs[3])
    if os.path.exists(DsFilename):
        return sio.loadmat(DsFilename)
    #Figure out block size thisM x thisN
    thisM = idxs[1] - idxs[0]
    thisN = idxs[3] - idxs[2]
    D = np.zeros((thisM, thisN))

    AllFeatures = {}
    tic = time.time()
    allidxs = [i + idxs[0] for i in range(thisM)]
    allidxs += [j + idxs[2] for j in range(thisN)]
    allidxs = np.unique(np.array(allidxs))
    #Preload features and Ws for SSM parts
    ticfeatures = time.time()
    count = 1
    for idx in allidxs:
        filename = getMatFilename(scratchDir, allFiles[idx])
        AllFeatures[idx] = sio.loadmat(filename)
        for key, val in AllFeatures[idx].items():
            if type(val) is np.ndarray:
                if val.size == 1:
                    AllFeatures[idx][key] = val.flatten()[0]
    tocfeatures = time.time()
    print("Elapsed Time Loading Features: ", tocfeatures - ticfeatures)
    stdout.flush()

    K = 20
    NIters = 3
    Ds = {'SNF': np.zeros((thisM, thisN))}
    for Feature in CSMTypes.keys():
        Ds[Feature] = np.zeros((thisM, thisN))
    for i in range(thisM):
        print("i = %i" % i)
        stdout.flush()
        thisi = i + idxs[0]
        Features1 = AllFeatures[thisi]
        for j in range(thisN):
            thisj = j + idxs[2]
            if thisj < thisi:
                #Only compute upper triangular part since it's symmetric
                continue
            Features2 = AllFeatures[thisj]
            #Compare all tempo levels
            for a in range(Features1['NTempos']):
                O1 = {'ChromaMean': Features1['ChromaMean%i' % a].flatten()}
                for b in range(Features2['NTempos']):
                    O2 = {
                        'ChromaMean': Features2['ChromaMean%i' % b].flatten()
                    }
                    Ws = []
                    OtherCSMs = {}
                    #Compute all W matrices
                    (M, N) = (0, 0)
                    for F in CSMTypes.keys():
                        CSMAB = getCSMType(Features1['%s%i' % (F, a)], O1,
                                           Features2['%s%i' % (F, b)], O2,
                                           CSMTypes[F])
                        OtherCSMs[F] = CSMAB
                        (M, N) = (CSMAB.shape[0], CSMAB.shape[1])
                        k1 = int(0.5 * Kappa * M)
                        k2 = int(0.5 * Kappa * N)
                        WCSMAB = getWCSM(CSMAB, k1, k2)
                        WSSMA = Features1['W%s%i' % (F, a)]
                        WSSMB = Features2['W%s%i' % (F, b)]
                        Ws.append(setupWCSMSSM(WSSMA, WSSMB, WCSMAB))
                    #Do Similarity Fusion
                    D = doSimilarityFusionWs(Ws, K, NIters, 1)
                    #Extract CSM Part
                    CSM = D[0:M, M::] + D[M::, 0:M].T
                    DBinary = CSMToBinaryMutual(np.exp(-CSM), Kappa)
                    score = SAC.swalignimpconstrained(DBinary)
                    Ds['SNF'][i, j] = max(score, Ds['SNF'][i, j])
                    #In addition to fusion, compute scores for individual
                    #features to be used with the fusion later
                    for Feature in OtherCSMs:
                        DBinary = CSMToBinaryMutual(OtherCSMs[Feature], Kappa)
                        score = SAC.swalignimpconstrained(DBinary)
                        Ds[Feature][i, j] = max(Ds[Feature][i, j], score)
    toc = time.time()
    print("Elapsed Time Block: ", toc - tic)
    stdout.flush()
    sio.savemat(DsFilename, Ds)
    return Ds
コード例 #7
0
def compareBatchBlock(args):
    """
    Process a rectangular block of the all pairs score matrix
    between all of the songs.  Return score matrices for each
    individual type of feature, in addition to one for early
    similarity network fusion
    :param idxs: [start1, end1, start2, end2] range of rectangular
        block of songs to compare
    :param Kappa: Percent nearest neighbors to use both for
        binary cross-similarity and similarity network fusion
    :param CSMTypes: Dictionary of types of features and
        associated cross-similarity comparisons to do
    :param allFiles: List of all files that are being compared
        from which this block is drawn
    :param scratchDir: Path to directory for storing block results
    """
    (idxs, Kappa, CSMTypes, allFiles, scratchDir) = args
    DsFilename = "%s/D%i_%i_%i_%i.mat"%(scratchDir, idxs[0], idxs[1], idxs[2], idxs[3])
    if os.path.exists(DsFilename):
        return sio.loadmat(DsFilename)
    #Figure out block size thisM x thisN
    thisM = idxs[1] - idxs[0]
    thisN = idxs[3] - idxs[2]
    D = np.zeros((thisM, thisN))

    AllFeatures = {}
    tic = time.time()
    allidxs = [i + idxs[0] for i in range(thisM)]
    allidxs += [j + idxs[2] for j in range(thisN)]
    allidxs = np.unique(np.array(allidxs))
    #Preload features and Ws for SSM parts
    ticfeatures = time.time()
    count = 1
    for idx in allidxs:
        filename = getMatFilename(scratchDir, allFiles[idx])
        AllFeatures[idx] = sio.loadmat(filename)
    tocfeatures = time.time()
    print("Elapsed Time Loading Features: ", tocfeatures-ticfeatures)
    stdout.flush()

    K = 20
    NIters = 3
    Ds = {'SNF':np.zeros((thisM, thisN))}
    for Feature in CSMTypes.keys():
        Ds[Feature] = np.zeros((thisM, thisN))
    for i in range(thisM):
        print("i = %i"%i)
        stdout.flush()
        thisi = i + idxs[0]
        Features1 = AllFeatures[thisi]
        for j in range(thisN):
            thisj = j + idxs[2]
            if thisj < thisi:
                #Only compute upper triangular part since it's symmetric
                continue
            Features2 = AllFeatures[thisj]
            #Compare all tempo levels
            for a in range(Features1['NTempos']):
                O1 = {'ChromaMean':Features1['ChromaMean%i'%a].flatten()}
                for b in range(Features2['NTempos']):
                    O2 = {'ChromaMean':Features2['ChromaMean%i'%b].flatten()}
                    Ws = []
                    OtherCSMs = {}
                    #Compute all W matrices
                    (M, N) = (0, 0)
                    for F in CSMTypes.keys():
                        CSMAB = getCSMType(Features1['%s%i'%(F, a)], O1, Features2['%s%i'%(F, b)], O2, CSMTypes[F])
                        OtherCSMs[F] = CSMAB
                        (M, N) = (CSMAB.shape[0], CSMAB.shape[1])
                        k1 = int(0.5*Kappa*M)
                        k2 = int(0.5*Kappa*N)
                        WCSMAB = getWCSM(CSMAB, k1, k2)
                        WSSMA = Features1['W%s%i'%(F, a)]
                        WSSMB = Features2['W%s%i'%(F, b)]
                        Ws.append(setupWCSMSSM(WSSMA, WSSMB, WCSMAB))
                    #Do Similarity Fusion
                    D = doSimilarityFusionWs(Ws, K, NIters, 1)
                    #Extract CSM Part
                    CSM = D[0:M, M::] + D[M::, 0:M].T
                    DBinary = CSMToBinaryMutual(np.exp(-CSM), Kappa)
                    score = SAC.swalignimpconstrained(DBinary)
                    Ds['SNF'][i, j] = max(score, Ds['SNF'][i, j])
                    #In addition to fusion, compute scores for individual
                    #features to be used with the fusion later
                    for Feature in OtherCSMs:
                        DBinary = CSMToBinaryMutual(OtherCSMs[Feature], Kappa)
                        score = SAC.swalignimpconstrained(DBinary)
                        Ds[Feature][i, j] = max(Ds[Feature][i, j], score)
    toc = time.time()
    print("Elapsed Time Block: ", toc-tic)
    stdout.flush()
    sio.savemat(DsFilename, Ds)
    return Ds
コード例 #8
0
def getCSMSmithWatermanScoresEarlyFusionFull(AllFeatures1, O1, AllFeatures2, O2, Kappa, K, NIters, CSMTypes, doPlot = False, conservative = False):
    """
    Compute the Smith Waterman score between two songs
    after doing early similarity network fusion on
    individual feature sets
    :param AllFeatures1: A dictionary of Mxk matric of
        features in song 1
    :param O1: Auxiliary info for song 1
    :param AllFeatures2: A dictionary of Nxk matrix of
        features in song 2
    :param O2: Auxiliary info for song 2
    :param Kappa: Nearest neighbors param for CSM
    :param CSMTypes: Dictionary of types of CSMs for each
        feature
    :param doPlot: If True, plot the results of the fusion
        and of Smith Waterman
    :param conservative: Whether to use a percentage of the
        closest distances instead of mutual nearest neighbors
        (False by default, but useful for audio synchronization)
    :returns:
        if doPlot = False
            {'score', 'CSM', 'DBinary', 'OtherCSMs'}
        if doPlot = True
            {'score', 'CSM', 'DBinary', 'D', 'maxD', 'path'}
    """
    CSMs = [] #Individual CSMs
    Ws = [] #W built from fused CSMs/SSMs
    Features = list(AllFeatures1)
    OtherCSMs = {}
    #Compute all CSMs and SSMs
    for i in range(len(Features)):
        F = Features[i]
        SSMA = getCSMType(AllFeatures1[F], O1, AllFeatures1[F], O1, CSMTypes[F])
        SSMB = getCSMType(AllFeatures2[F], O2, AllFeatures2[F], O2, CSMTypes[F])
        CSMAB = getCSMType(AllFeatures1[F], O1, AllFeatures2[F], O2, CSMTypes[F])
        CSMs.append(CSMAB)
        OtherCSMs[F] = CSMAB
        #Build W from CSM and SSMs
        Ws.append(getWCSMSSM(SSMA, SSMB, CSMAB, K))
    tic = time.time()
    D = doSimilarityFusionWs(Ws, K, NIters, 1)
    toc = time.time()
    t1 = toc - tic
    N = AllFeatures1[Features[0]].shape[0]
    CSM = D[0:N, N::] + D[N::, 0:N].T
    #sio.savemat("CSM.mat", {"CSM":CSM})
    #Note that the CSM is in probabalistic weight form, so the
    #"nearest neighbors" are actually those with highest weight.  So
    #apply monotonic exp(-CSM) to fix this

    if conservative:
        x = CSM.flatten()
        x = x[np.argsort(-x)]
        cutoff = x[int(3*np.sqrt(CSM.size))]
        DBinary = np.array(CSM)
        DBinary[CSM < cutoff] = 0
        DBinary[DBinary > 0] = 1
    else:
        DBinary = CSMToBinaryMutual(np.exp(-CSM), Kappa)

    if doPlot:
        print("Elapsed Time Similarity Fusion: %g"%t1)
        N = len(CSMs)
        for i in range(N):
            plt.subplot(3, N+1, i+1)
            plt.imshow(CSMs[i], interpolation = 'nearest', cmap = 'afmhot')
            plt.title('CSM %s'%Features[i])
            plt.subplot(3, N+1, N+2+i)
            thisDBinary = CSMToBinaryMutual(CSMs[i], Kappa)
            plt.imshow(1-thisDBinary, interpolation = 'nearest', cmap = 'gray')
            plt.title("CSM Binary %s K=%g"%(Features[i], Kappa))
            (maxD, D) = SA.swalignimpconstrained(thisDBinary)
            plt.subplot(3, N+1, 2*N+3+i)
            plt.imshow(D, interpolation = 'nearest', cmap = 'afmhot')
            plt.title("Score = %g"%maxD)
        plt.subplot(3, N+1, N+1)
        plt.imshow(CSM, interpolation = 'nearest', cmap = 'afmhot')
        plt.title("CSM W Fused")
        plt.subplot(3, N+1, 2*N+2)
        plt.imshow(1-DBinary, interpolation = 'nearest', cmap = 'gray')
        plt.title('CSM Binary W Fused')
        plt.subplot(3, N+1, 3*N+3)
        (maxD, D, path) = SA.SWBacktrace(DBinary)
        plt.imshow(D, interpolation = 'nearest', cmap = 'afmhot')
        plt.title("Fused Score = %g"%maxD)
        return {'score':maxD, 'CSM':CSM, 'DBinary':DBinary, 'D':D, 'maxD':maxD, 'path':path}
    return {'score':SAC.swalignimpconstrained(DBinary), 'CSM':CSM, 'DBinary':DBinary, 'OtherCSMs':OtherCSMs}