def solve(self, show_iter=False):

        supply = self.table[1:-1, -1]
        demand = self.table[-1, 1:-1]

        n = len(supply)
        m = len(demand)

        #compute Rij and Rji
        Rij, Rji = np.zeros((2, n, m), dtype=object)
        for i, s in enumerate(supply):
            for j, d in enumerate(demand):
                Rij[i, j] = d / s
                Rji[i, j] = s / d

        #solve for WCD and WCS
        min_cost = np.inf
        for R, title in zip([Rij, Rji], ["WCD", "WCS"]):

            if show_iter:
                print("{} SOLUSTION\n".format(title))

            #make a copy of table then multiply with Rij/Rji (WCD/WCS)
            cost = self.table[1:-1, 1:-1] * R
            supply = self.table[1:-1, -1]
            demand = self.table[-1, 1:-1]

            trans = Transportation(cost, supply, demand)
            trans.setup_table()

            ks = KaragulSahin(trans)

            alloc = ks.solve_part(show_iter=show_iter)
            total_cost = self.find_cost(alloc, self.table)

            if show_iter:
                print("{} TOTAL COST = {}\n".format(title, total_cost))

            #save allocation if it has minimum cost
            if total_cost < min_cost:
                min_cost = total_cost
                self.alloc = alloc[:]

        return np.array(self.alloc, dtype=object)
コード例 #2
0

if __name__ == "__main__":

    #example 1 balance problem
    cost = np.array([[11, 13, 17, 14], [16, 18, 14, 10], [21, 24, 13, 10]])
    supply = np.array([250, 300, 400])
    demand = np.array([200, 225, 275, 250])

    #example 2 unbalance problem
    cost = np.array([[2, 7, 14], [3, 3, 1], [5, 4, 7], [1, 6, 2]])
    supply = np.array([5, 8, 7, 15])
    demand = np.array([7, 9, 18])

    #initialize transportation problem
    trans = Transportation(cost, supply, demand)

    #setup transportation table.
    #minimize=True for minimization problem, change to False for maximization, default=True.
    #ignore this if problem is minimization and already balance
    trans.setup_table(minimize=True)

    #initialize ASM method with table that has been prepared before.
    ASM = AssigningShortestMinimax(trans)

    #solve problem and return allocation lists which consist n of (Ri, Cj, v)
    #Ri and Cj is table index where cost is allocated and v it's allocated value.
    #(R0, C1, 3) means 3 cost is allocated at Row 0 and Column 1.
    #show_iter=True will showing table changes per iteration, default=False.
    #revision=True will using ASM Revision algorithm for unbalance problem, default=False.
    allocation = ASM.solve(show_iter=False, revision=False)