exit(1) # Declaration of the Dynamical System processDS = MyFOLDS(x0, A) # XXX b is not automatically created ... processDS.setb([0, 0]) # Model process = Model(t0, T) process.nonSmoothDynamicalSystem().insertDynamicalSystem(processDS) # time discretization processTD = TimeDiscretisation(t0, h) tSensor = TimeDiscretisation(t0, hControl) tActuator = TimeDiscretisation(t0, hControl) # Creation of the Simulation processSimulation = TimeStepping(processTD, 0) processSimulation.setName("plant simulation") # Declaration of the integrator processIntegrator = ZeroOrderHoldOSI(processDS) processSimulation.insertIntegrator(processIntegrator) # Actuator, Sensor & ControlManager control = ControlManager(process) sens = LinearSensor(tSensor, processDS, sensorC) control.addSensorPtr(sens) act = LinearSMCOT2(tActuator, processDS) act.setCsurfacePtr(Csurface) act.addSensorPtr(sens) control.addActuatorPtr(act) # Initialization process.initialize(processSimulation) control.initialize()
def test_smc1(): from Siconos.Kernel import FirstOrderLinearDS, Model, TimeDiscretisation, \ TimeStepping, ZeroOrderHoldOSI, TD_EVENT from Siconos.Control import ControlManager, LinearSensor, LinearSMCOT2 from numpy import eye, empty, zeros import numpy as np from math import ceil, sin # Derive our own version of FirstOrderLinearDS class MyFOLDS(FirstOrderLinearDS): def computeb(self, time): t = sin(50*time) # XXX fix this ! u = [t, -t] self.setb(u) # variable declaration ndof = 2 # Number of degrees of freedom of your system t0 = 0.0 # start time T = 1 # end time h = 1.0e-4 # time step for simulation hControl = 1.0e-2 # time step for control Xinit = 1.0 # initial position N = ceil((T-t0)/h + 10) # number of time steps outputSize = 4 # number of variable to store at each time step # Matrix declaration A = zeros((ndof, ndof)) x0 = [Xinit, -Xinit] Brel = np.array([[0], [1]]) sensorC = eye(ndof) sensorD = zeros((ndof, ndof)) Csurface = [[0, 1.0]] # Simple check if h > hControl: print("hControl must be bigger than h") exit(1) # Declaration of the Dynamical System processDS = MyFOLDS(x0, A) # XXX b is not automatically created ... # processDS.setb([0, 0]) # Model process = Model(t0, T) process.nonSmoothDynamicalSystem().insertDynamicalSystem(processDS) # time discretization processTD = TimeDiscretisation(t0, h) tSensor = TimeDiscretisation(t0, hControl) tActuator = TimeDiscretisation(t0, hControl) # Creation of the Simulation processSimulation = TimeStepping(processTD, 0) processSimulation.setName("plant simulation") # Declaration of the integrator processIntegrator = ZeroOrderHoldOSI(processDS) processSimulation.insertIntegrator(processIntegrator) # Actuator, Sensor & ControlManager control = ControlManager(processSimulation) sens = LinearSensor(processDS, sensorC, sensorD) control.addSensorPtr(sens, tSensor) act = LinearSMCOT2(sens) act.setCsurface(Csurface) act.setB(Brel) control.addActuatorPtr(act, tActuator) # Initialization. process.initialize(processSimulation) control.initialize(process) # This is not working right now # eventsManager = s.eventsManager() # Matrix for data storage dataPlot = empty((3*(N+1), outputSize)) dataPlot[0, 0] = t0 dataPlot[0, 1] = processDS.x()[0] dataPlot[0, 2] = processDS.x()[1] dataPlot[0, 3] = act.u()[0] # Main loop k = 1 while processSimulation.hasNextEvent(): if processSimulation.eventsManager().nextEvent().getType() == TD_EVENT: processSimulation.computeOneStep() dataPlot[k, 0] = processSimulation.nextTime() dataPlot[k, 1] = processDS.x()[0] dataPlot[k, 2] = processDS.x()[1] dataPlot[k, 3] = act.u()[0] k += 1 processSimulation.nextStep() # print processSimulation.nextTime() # Resize matrix dataPlot.resize(k, outputSize)