コード例 #1
0
def test_geometric(rnd, p, loc=0):
    # geometric random variate generator
    geometric_dist = RVGs.Geometric(p, loc)

    # obtain samples
    samples = get_samples(geometric_dist, rnd)

    # report mean and variance
    print_test_results('Geometric',
                       samples,
                       expectation=1 / p + loc,
                       variance=(1 - p) / (p**2))
コード例 #2
0
dist = RVGs.Gamma(10, 1, 2)
dat_gamma = np.array(get_samples(dist, np.random))  # generate data
dictResults = Fit.fit_gamma(dat_gamma, 'Data', fixed_location=1)  # fit
print("Fitting Gamma:", dictResults)

# 7 GammaPoisson
dist = RVGs.GammaPoisson(a=2, gamma_scale=4, loc=1, scale=2)
dat_gamma_poisson = np.array(get_samples(dist, np.random))
dictResults = Fit.fit_gamma_poisson(dat_gamma_poisson,
                                    'Data',
                                    fixed_location=1,
                                    fixed_scale=2)  # fit
print("Fitting GammaPoisson:", dictResults)

# 8 Geometric
dist = RVGs.Geometric(0.3, 1)
dat_geom = np.array(get_samples(dist, np.random))  # generate data
dictResults = Fit.fit_geometric(dat_geom, 'Data', fixed_location=1)  # fit
print("Fitting Geometric:", dictResults)

# 9 fitting a JohnsonSb distribution
dist = RVGs.JohnsonSb(a=10, b=3, loc=1, scale=2)
dat_JohnsonSb = np.array(get_samples(dist, np.random))  # generate data
dictResults = Fit.fit_johnsonSb(dat_JohnsonSb, 'Data', fixed_location=1)  # fit
print("Fitting johnsonSb:", dictResults)

# 10 fitting a JohnsonSu distribution
dist = RVGs.JohnsonSu(a=10, b=3, loc=1, scale=2)
dat_JohnsonSu = np.array(get_samples(dist, np.random))  # generate data
dictResults = Fit.fit_johnsonSu(dat_JohnsonSu, 'Data', fixed_location=1)  # fit
print("Fitting johnsonSu:", dictResults)