コード例 #1
0
def eval_genome(genome, config):
    net = neat.nn.FeedForwardNetwork.create(genome, config)

    fitnesses = []

    for runs in range(runs_per_net):
        sim = Simulator(testNum=runs)

        # Run the given simulation for up to num_steps time steps.
        while sim.shouldContinue():
            inputs = sim.getInputActivations()
            action = net.activate(inputs)

            # Apply action to the simulated cart-pole
            sim.update(action[0], action[1])

        fitnesses.append(sim.getFitness())

    # The genome's fitness is its worst performance across all runs.
    return statistics.mean(fitnesses)
コード例 #2
0
class SimulationRenderer(arcade.Window):
    def __init__(self, isTeleop, neuralNet=None):
        super().__init__(500, 500, title="Sim", resizable=False)
        self.isTeleop = isTeleop
        self.neuralNet = neuralNet

        self.robotPos = 0
        self.targetPos = 0

        self.moveRight = 0
        self.moveLeft = 0

        self.simulator = Simulator(testNum=0)

        arcade.set_background_color(arcade.color.WHITE)

        self.setup()
        arcade.run()

    def on_draw(self):
        """ Render the screen. """
        arcade.start_render()

        arcade.draw_text("Sim Time: " + str(round(self.simulator.simTime, 1)),
                         500,
                         500,
                         arcade.color.BLACK,
                         9,
                         width=130,
                         align="left",
                         anchor_x="right",
                         anchor_y="top",
                         font_name="Monaco")
        arcade.draw_text(
            "Right Motor: " +
            str(round(self.simulator.rightMotor.getPercentOutput(), 2)) + "%",
            500,
            480,
            arcade.color.BLACK,
            9,
            width=130,
            align="left",
            anchor_x="right",
            anchor_y="top",
            font_name="Monaco")
        arcade.draw_text(
            "Left Motor:  " +
            str(round(self.simulator.leftMotor.getPercentOutput(), 2)) + "%",
            500,
            460,
            arcade.color.BLACK,
            9,
            width=130,
            align="left",
            anchor_x="right",
            anchor_y="top",
            font_name="Monaco")

        #draw the robot
        arcade.draw_rectangle_filled(
            self.simulator.robotPosAbsolute[0] + 150,
            self.simulator.robotPosAbsolute[1] + 150,  #x,y,width,height
            self.simulator.robotWheelBase * 2,
            self.simulator.robotWheelBase * 2,
            arcade.color.GRAY,
            tilt_angle=math.degrees(self.simulator.robotPosAbsolute[2]))

        arcade.draw_rectangle_filled(
            self.simulator.robotPosAbsolute[0] + 150 +
            10 * math.cos(self.simulator.robotPosAbsolute[2]),
            self.simulator.robotPosAbsolute[1] + 150 + 10 *
            math.sin(self.simulator.robotPosAbsolute[2]),  #x,y,width,height
            10,
            10,
            arcade.color.LIGHT_GRAY,
            tilt_angle=math.degrees(self.simulator.robotPosAbsolute[2]))

        #draw the target
        arcade.draw_rectangle_filled(
            self.simulator.targetPosAbsolute[0] + 150,
            self.simulator.targetPosAbsolute[1] + 150,  #x,y,width,height
            self.simulator.robotWheelBase * 2,
            self.simulator.robotWheelBase * 2,
            arcade.color.GREEN,
            tilt_angle=math.degrees(self.simulator.targetPosAbsolute[2]))

        arcade.draw_rectangle_filled(
            self.simulator.targetPosAbsolute[0] + 150 +
            10 * math.cos(self.simulator.targetPosAbsolute[2]),
            self.simulator.targetPosAbsolute[1] + 150 + 10 *
            math.sin(self.simulator.targetPosAbsolute[2]),  #x,y,width,height
            10,
            10,
            arcade.color.LIGHT_GREEN,
            tilt_angle=math.degrees(self.simulator.targetPosAbsolute[2]))

    def on_key_press(self, key, modifiers):
        """
		Called whenever a key is pressed.
		"""
        if (modifiers == arcade.key.MOD_CTRL or modifiers
                == arcade.key.MOD_COMMAND) and (key == arcade.key.Q
                                                or key == arcade.key.W):
            sys.exit(
            )  # make command + Q work so the program can be quit more easily

        if not self.isTeleop:  #ignore keypresses if teleop is disabled
            return

        if key == arcade.key.A:
            self.moveRight = 1
            self.moveLeft = 0
        elif key == arcade.key.S:
            self.moveRight = 1
            self.moveLeft = 1
        elif key == arcade.key.D:
            self.moveRight = 0
            self.moveLeft = 1

    def on_key_release(self, key, modifiers):
        """Called when the user releases a key. """
        if not self.isTeleop:  #ignore keypresses if teleop is disabled
            return

        if key == arcade.key.A or key == arcade.key.S or key == arcade.key.D:
            self.moveRight = 0
            self.moveLeft = 0

    def setMovement(self, right, left):
        self.moveRight = right
        self.moveLeft = left
        self.simulator.update(self.moveRight, self.moveLeft)

    def getInputActivations(self):
        return self.simulator.getInputActivations()

    def setup(self):
        # Set up your game here
        pass

    def update(self, delta_time):
        if self.isTeleop:  #update automatically when it is teleop mode
            self.simulator.update(self.moveRight, self.moveLeft)
        elif self.neuralNet != None:
            cmd = self.neuralNet.activate(self.getInputActivations())
            self.setMovement(cmd[0], cmd[1])

    def sigmoid(self, x):
        return 1 / (1 + math.exp(-x))

    def stopRender(self):
        arcade.close_window()

    def startTeleop():
        window = SimulationRenderer(True)

    def startAI():
        local_dir = os.path.dirname(__file__)
        with open(local_dir + '/winner-net', 'rb') as f:
            print(f)
            winner_net = pickle.load(f)

        simWindow = SimulationRenderer(False, winner_net)