def HessAffNetHardNet_DetectAndDescribe(img, Nfeatures=500): var_image = torch.autograd.Variable(torch.from_numpy(img.astype( np.float32)), volatile=True) var_image_reshape = var_image.view(1, 1, var_image.size(0), var_image.size(1)) HessianAffine = ScaleSpaceAffinePatchExtractor(mrSize=5.192, num_features=Nfeatures, border=5, num_Baum_iters=1, AffNet=AffNetPix) if USE_CUDA: HessianAffine = HessianAffine.cuda() var_image_reshape = var_image_reshape.cuda() with torch.no_grad(): LAFs, responses = HessianAffine(var_image_reshape, do_ori=True) patches = HessianAffine.extract_patches_from_pyr(LAFs, PS=32) descriptors = HardNetDescriptor(patches) # these are my affine maps to work with Alist = convertLAFs_to_A23format(LAFs).cpu().numpy().astype(np.float32) KPlist = [ cv2.KeyPoint(x=A[0, 2], y=A[1, 2], _size=10, _angle=0.0, _response=1, _octave=packSIFTOctave(0, 0), _class_id=1) for A in Alist ] return KPlist, patches, descriptors, Alist, responses
def AffNetHardNet_describeFromKeys(img_np, KPlist): img = torch.autograd.Variable(torch.from_numpy(img_np.astype(np.float32)), volatile=True) img = img.view(1, 1, img.size(0), img.size(1)) HessianAffine = ScaleSpaceAffinePatchExtractor(mrSize=5.192, num_features=0, border=0, num_Baum_iters=0) if USE_CUDA: HessianAffine = HessianAffine.cuda() img = img.cuda() with torch.no_grad(): HessianAffine.createScaleSpace( img) # to generate scale pyramids and stuff descriptors = [] Alist = [] n = 0 # for patch_np in patches: for kp in KPlist: x, y = np.float32(kp.pt) LAFs = normalizeLAFs( torch.tensor([[AffNetPix.PS / 2, 0, x], [0, AffNetPix.PS / 2, y]]).reshape(1, 2, 3), img.size(3), img.size(2)) with torch.no_grad(): patch = HessianAffine.extract_patches_from_pyr(denormalizeLAFs( LAFs, img.size(3), img.size(2)), PS=AffNetPix.PS) if WRITE_IMGS_DEBUG: SaveImageWithKeys(patch.detach().cpu().numpy().reshape([32, 32]), [], 'p2/' + str(n) + '.png') if USE_CUDA: # or ---> A = AffNetPix(subpatches.cuda()).cpu() with torch.no_grad(): A = batched_forward(AffNetPix, patch.cuda(), 256).cpu() else: with torch.no_grad(): A = AffNetPix(patch) new_LAFs = torch.cat([torch.bmm(A, LAFs[:, :, 0:2]), LAFs[:, :, 2:]], dim=2) dLAFs = denormalizeLAFs(new_LAFs, img.size(3), img.size(2)) with torch.no_grad(): patchaff = HessianAffine.extract_patches_from_pyr(dLAFs, PS=32) if WRITE_IMGS_DEBUG: SaveImageWithKeys( patchaff.detach().cpu().numpy().reshape([32, 32]), [], 'p1/' + str(n) + '.png') SaveImageWithKeys(img_np, [kp], 'im1/' + str(n) + '.png') descriptors.append( HardNetDescriptor(patchaff).cpu().numpy().astype(np.float32)) Alist.append( convertLAFs_to_A23format(LAFs.detach().cpu().numpy().astype( np.float32))) n = n + 1 return descriptors, Alist
def test(model,epoch): torch.cuda.empty_cache() # switch to evaluate mode model.eval() from architectures import AffNetFast affnet = AffNetFast() model_weights = 'pretrained/AffNet.pth' hncheckpoint = torch.load(model_weights) affnet.load_state_dict(hncheckpoint['state_dict']) affnet.eval() detector = ScaleSpaceAffinePatchExtractor( mrSize = 5.192, num_features = 3000, border = 5, num_Baum_iters = 1, AffNet = affnet, OriNet = model) descriptor = HardNet() model_weights = 'HardNet++.pth' hncheckpoint = torch.load(model_weights) descriptor.load_state_dict(hncheckpoint['state_dict']) descriptor.eval() if args.cuda: detector = detector.cuda() descriptor = descriptor.cuda() input_img_fname1 = 'test-graf/img1.png'#sys.argv[1] input_img_fname2 = 'test-graf/img6.png'#sys.argv[1] H_fname = 'test-graf/H1to6p'#sys.argv[1] output_img_fname = 'graf_match.png'#sys.argv[3] img1 = load_grayscale_var(input_img_fname1) img2 = load_grayscale_var(input_img_fname2) H = np.loadtxt(H_fname) H1to2 = Variable(torch.from_numpy(H).float()) SNN_threshold = 0.8 with torch.no_grad(): LAFs1, descriptors1 = get_geometry_and_descriptors(img1, detector, descriptor) torch.cuda.empty_cache() LAFs2, descriptors2 = get_geometry_and_descriptors(img2, detector, descriptor) visualize_LAFs(img1.detach().cpu().numpy().squeeze(), LAFs1.detach().cpu().numpy().squeeze(), 'b', show = False, save_to = LOG_DIR + "/detections1_" + str(epoch) + '.png') visualize_LAFs(img2.detach().cpu().numpy().squeeze(), LAFs2.detach().cpu().numpy().squeeze(), 'g', show = False, save_to = LOG_DIR + "/detection2_" + str(epoch) + '.png') dist_matrix = distance_matrix_vector(descriptors1, descriptors2) min_dist, idxs_in_2 = torch.min(dist_matrix,1) dist_matrix[:,idxs_in_2] = 100000;# mask out nearest neighbour to find second nearest min_2nd_dist, idxs_2nd_in_2 = torch.min(dist_matrix,1) mask = (min_dist / (min_2nd_dist + 1e-8)) <= SNN_threshold tent_matches_in_1 = indxs_in1 = torch.autograd.Variable(torch.arange(0, idxs_in_2.size(0)), requires_grad = False).cuda()[mask] tent_matches_in_2 = idxs_in_2[mask] tent_matches_in_1 = tent_matches_in_1.long() tent_matches_in_2 = tent_matches_in_2.long() LAF1s_tent = LAFs1[tent_matches_in_1,:,:] LAF2s_tent = LAFs2[tent_matches_in_2,:,:] min_dist, plain_indxs_in1, idxs_in_2 = get_GT_correspondence_indexes(LAF1s_tent, LAF2s_tent,H1to2.cuda(), dist_threshold = 6) plain_indxs_in1 = plain_indxs_in1.long() inl_ratio = float(plain_indxs_in1.size(0)) / float(tent_matches_in_1.size(0)) print 'Test epoch', str(epoch) print 'Test on graf1-6,', tent_matches_in_1.size(0), 'tentatives', plain_indxs_in1.size(0), 'true matches', str(inl_ratio)[:5], ' inl.ratio' visualize_LAFs(img1.detach().cpu().numpy().squeeze(), LAF1s_tent[plain_indxs_in1.long(),:,:].detach().cpu().numpy().squeeze(), 'g', show = False, save_to = LOG_DIR + "/inliers1_" + str(epoch) + '.png') visualize_LAFs(img2.detach().cpu().numpy().squeeze(), LAF2s_tent[idxs_in_2.long(),:,:].detach().cpu().numpy().squeeze(), 'g', show = False, save_to = LOG_DIR + "/inliers2_" + str(epoch) + '.png') return
img = np.mean(np.array(img), axis=2) var_image = torch.autograd.Variable(torch.from_numpy(img.astype(np.float32)), volatile=True) var_image_reshape = var_image.view(1, 1, var_image.size(0), var_image.size(1)) AffNetPix = AffNetFast(PS=32) weightd_fname = '../../pretrained/AffNet.pth' checkpoint = torch.load(weightd_fname) AffNetPix.load_state_dict(checkpoint['state_dict']) AffNetPix.eval() HA = ScaleSpaceAffinePatchExtractor(mrSize=5.192, num_features=nfeats, border=5, num_Baum_iters=1, th=th, AffNet=AffNetPix) if USE_CUDA: HA = HA.cuda() var_image_reshape = var_image_reshape.cuda() with torch.no_grad(): LAFs, resp = HA(var_image_reshape) ells = LAFs2ell(LAFs.data.cpu().numpy()) np.savetxt(output_fname, ells, delimiter=' ', fmt='%10.10f') line_prepender(output_fname, str(len(ells))) line_prepender(output_fname, '1.0')
d4 = nn.Sequential(d4, L2Norm()) desc_list = [d1, d2, d3, d4] desc_names = ['Pixels', 'HardNet', 'SIFT', 'TFeat'] USE_CUDA = False detector = ScaleSpaceAffinePatchExtractor(mrSize=5.12, num_features=200, border=32, num_Baum_iters=0) descriptor = HardNet() model_weights = '../../HardNet++.pth' hncheckpoint = torch.load(model_weights) descriptor.load_state_dict(hncheckpoint['state_dict']) descriptor.eval() if USE_CUDA: detector = detector.cuda() descriptor = descriptor.cuda() def get_geometry(img, det): with torch.no_grad(): LAFs, resp = det(img) return LAFs #, descriptors #visualize_LAFs(img1.cpu().numpy().squeeze(), L3.cpu().numpy().squeeze(), 'g') #LOP.optimize(L1, L2, img1, img2, n_iters = 200); #LOP.savemp4_per_desc('test.mp4') from Losses import loss_HardNet