コード例 #1
0
    def forward(self, input, max_layer):
        input = sf.pad(input, (2,2,2,2))
        if self.training: #forward pass for train
            pot = self.conv1(input)
            spk, pot = sf.fire(pot, Threshold_1, True)
            pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
            if max_layer == 1:
                winners = sf.get_k_winners(pot, 8, 5)
                self.save_data(input, pot, spk, winners)
                return spk, pot
            spk_in = sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1))
            pot = self.conv2(spk_in)
            spk, pot = sf.fire(pot, Threshold_2, True)
            pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
            if max_layer == 2:
                winners = sf.get_k_winners(pot, 8, 5)
                self.save_data(spk_in, pot, spk, winners)
                return spk, pot

        else:
            pot = self.conv1(input)
            spk, pot = sf.fire(pot, Threshold_1, True)
            pot = self.conv2(sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1)))
            # spk, pot = sf.fire(pot, 10, True)
            # pot = self.conv3(sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1)))
           # spk = sf.fire(pot, 10)
           # pot = self.conv3(sf.pad(sf.pooling(spk, 3, 3), (2,2,2,2)))
           # spk = sf.fire_(pot)

            return spk, pot
コード例 #2
0
ファイル: SkipCTNN.py プロジェクト: zifanw/tnn
 def forward(self, input, max_layer):
     input = sf.pad(input, (2,2,2,2))
     if self.training: #forward pass for train
         if max_layer < 3:
             pot = self.conv1(input)
             spk, pot = sf.fire(pot, 15, True)
             pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
             if max_layer == 1:
                 winners = sf.get_k_winners(pot, 5, 3)
                 self.save_data(input, pot, spk, winners)
                 return spk, pot
             spk_in = sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1))
             pot = self.conv2(spk_in)
             spk, pot = sf.fire(pot, 10, True)
             pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
             if max_layer == 2:
                 winners = sf.get_k_winners(pot, 8, 5)
                 self.save_data(spk_in, pot, spk, winners)
                 return spk, pot
         else:
             pot = self.conv3(input)
             spk, pot = sf.fire(pot, 15, True)
             pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
             if max_layer == 3:
                 winners = sf.get_k_winners(pot, 5, 3)
                 self.save_data(input, pot, spk, winners)
                 return spk, pot
     else:
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, 15, True)
         pot_1 = self.conv2(sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1)))
         pot_2 = self.conv3(input)
         pot_2 = self.pool(pot_2)
         return spk, torch.cat([pot_1, pot_2], dim=1)
コード例 #3
0
    def forward(self, input):
        input = input.float()
        pot = self.s2(input)

        if self.training and self.dropout[0] > 0:
            sf.feature_inhibition_(pot, self.to_be_dropped)

        spk, pot = sf.fire(pot, self.threshold, True)
        winners = sf.get_k_winners(pot, 1, 0, spk)
        output = -1
        if len(winners) != 0:
            output = self.decision_map[winners[0][0]]

        if self.training:
            self.ctx["input_spikes"] = input
            self.ctx["potentials"] = pot
            self.ctx["output_spikes"] = spk
            self.ctx["winners"] = winners
        else:
            self.ctx["input_spikes"] = None
            self.ctx["potentials"] = None
            self.ctx["output_spikes"] = None
            self.ctx["winners"] = None

        return output
コード例 #4
0
 def forward(self, input, max_layer):
     input = sf.pad(input.float(), (2, 2, 2, 2), 0)
     if self.training:
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, self.conv1_t, True)
         if max_layer == 1:
             self.spk_cnt1 += 1
             if self.spk_cnt1 >= 500:
                 self.spk_cnt1 = 0
                 ap = torch.tensor(
                     self.stdp1.learning_rate[0][0].item(),
                     device=self.stdp1.learning_rate[0][0].device) * 2
                 ap = torch.min(ap, self.max_ap)
                 an = ap * -0.75
                 self.stdp1.update_all_learning_rate(ap.item(), an.item())
             pot = sf.pointwise_inhibition(pot)
             spk = pot.sign()
             winners = sf.get_k_winners(pot, self.k1, self.r1, spk)
             self.save_data(input, pot, spk, winners)
             return spk, pot
         spk_in = sf.pad(sf.pooling(spk, 2, 2, 1), (1, 1, 1, 1))
         spk_in = sf.pointwise_inhibition(spk_in)
         pot = self.conv2(spk_in)
         spk, pot = sf.fire(pot, self.conv2_t, True)
         if max_layer == 2:
             pot = sf.pointwise_inhibition(pot)
             spk = pot.sign()
             winners = sf.get_k_winners(pot, self.k2, self.r2, spk)
             self.save_data(spk_in, pot, spk, winners)
             return spk, pot
         spk_out = sf.pooling(spk, 2, 2, 1)
         return spk_out
     else:
         print("input:", input.shape)
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, self.conv1_t, True)
         print("spk_conv1:", spk.shape)
         pot = self.conv2(sf.pad(sf.pooling(spk, 2, 2, 1), (1, 1, 1, 1)))
         spk, pot = sf.fire(pot, self.conv2_t, True)
         print("spk_conv2:", spk.shape)
         spk = sf.pooling(spk, 2, 2, 1)
         print("spk_pool1:", spk.shape)
         return spk
コード例 #5
0
ファイル: RLCTNN.py プロジェクト: zifanw/tnn
 def forward(self, input, max_layer):
     input = sf.pad(input, (2,2,2,2))
     if self.training: #forward pass for train
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, Threshold_1, True)
         pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
         if max_layer == 1:
             winners = sf.get_k_winners(pot, 5, 3)
             self.save_data(input, pot, spk, winners)
             return spk, pot
         spk_in = sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1))
         pot = self.conv2(spk_in)
         spk, pot = sf.fire(pot, Threshold_2, True)
         pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
         if max_layer == 2:
             winners = sf.get_k_winners(pot, 8, 2)
             self.save_data(spk_in, pot, spk, winners)
             return spk, pot
         spk_in = sf.pad(sf.pooling(spk, 3, 3), (2,2,2,2))
         pot = self.conv3(spk_in)
         spk = sf.fire_(pot)
         winners = sf.get_k_winners(pot, 1)
         self.save_data(spk_in, pot, spk, winners)
         output = -1
         if len(winners) != 0:
             output = self.decision_map[winners[0][0]]
         return output
     else:
         pot = self.conv1(input)
         spk = sf.fire(pot, 15)
         pot = self.conv2(sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1)))
         spk = sf.fire(pot, 10)
         pot = self.conv3(sf.pad(sf.pooling(spk, 3, 3), (2,2,2,2)))
         spk = sf.fire_(pot)
         winners = sf.get_k_winners(pot, 1)
         output = -1
         if len(winners) != 0:
             output = self.decision_map[winners[0][0]]
 
         return output
コード例 #6
0
ファイル: columns.py プロジェクト: caleblu/18847_spring_2020
 def forward(self, rec_field):
     ###############################################################################
     #output = Column(rec_field)
     #input:
     #       rec_field: first-layer output       [timesteps, 1, k, rf_size]
     #output:
     #       center word representation          [timesteps, k, 1, 1]
     ###############################################################################
     #output size: (timesteps, k, 1, 1)
     out = self.ec(rec_field)
     spike, pot = sf.fire(out, self.thresh, True)
     winners = sf.get_k_winners(pot,
                                kwta=self.kwta,
                                inhibition_radius=self.inhibition_radius)
     coef = torch.zeros_like(out)
     coef[:, winners, :, :] = 1
     return torch.mul(pot, coef).sign()
コード例 #7
0
ファイル: columns.py プロジェクト: caleblu/18847_spring_2020
    def forward(self, rec_field, reward):
        ###############################################################################
        #output = Column1(rec_field, reward)
        #input:
        #       rec_field: fixed input encoding     [timesteps, 1, rf_size, length]
        #       reward: context word reward         [timesteps, k, rf_size]
        #output:
        #       context word 1st layer output      [timesteps, 1, k, rf_size]
        ###############################################################################
        outs = [
            self.ec_list[i](torch.unsqueeze(rec_field[:, :, i, :], 2))
            for i in range(self.rf_size)
        ]

        pots = [sf.fire(o, self.thresh, True)[1] for o in outs]

        #kwta
        winners = [
            sf.get_k_winners(pot,
                             kwta=self.kwta,
                             inhibition_radius=self.inhibition_radius)
            for pot in pots
        ]
        coefs = [torch.zeros_like(out) for out in outs]
        for i in range(self.rf_size):
            coefs[i][:, winners[i], :, :] = 1
        pots = [
            torch.mul(pots[i], coefs[i]).sign() for i in range(self.rf_size)
        ]
        pots = torch.cat(pots, 2).squeeze().unsqueeze(1)

        #feedback
        for i in range(self.rf_size):
            self.rstdp_list[i](torch.unsqueeze(rec_field[:, :, i, :], 2),
                               pots[:, :, :, i].squeeze(), reward[:, :,
                                                                  i].squeeze())

        return pots
コード例 #8
0
 def forward(self, input, max_layer):
     input = sf.pad(input, (2, 2, 2, 2), 0)
     if self.training:
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, self.conv1_t, True)
         if max_layer == 1:
             self.spk_cnt1 += 1
             if self.spk_cnt1 >= 500:
                 self.spk_cnt1 = 0
                 ap = torch.tensor(
                     self.stdp1.learning_rate[0][0].item(),
                     device=self.stdp1.learning_rate[0][0].device) * 2
                 ap = torch.min(ap, self.max_ap)
                 an = ap * -0.75
                 self.stdp1.update_all_learning_rate(ap.item(), an.item())
             pot = sf.pointwise_inhibition(pot)
             spk = pot.sign()
             winners = sf.get_k_winners(pot, self.k1, self.r1, spk)
             self.ctx["input_spikes"] = input
             self.ctx["potentials"] = pot
             self.ctx["output_spikes"] = spk
             self.ctx["winners"] = winners
             return spk, pot
         spk_in = sf.pad(sf.pooling(spk, 2, 2), (1, 1, 1, 1))
         pot = self.conv2(spk_in)
         spk, pot = sf.fire(pot, self.conv2_t, True)
         if max_layer == 2:
             self.spk_cnt2 += 1
             if self.spk_cnt2 >= 500:
                 self.spk_cnt2 = 0
                 ap = torch.tensor(
                     self.stdp2.learning_rate[0][0].item(),
                     device=self.stdp2.learning_rate[0][0].device) * 2
                 ap = torch.min(ap, self.max_ap)
                 an = ap * -0.75
                 self.stdp2.update_all_learning_rate(ap.item(), an.item())
             pot = sf.pointwise_inhibition(pot)
             spk = pot.sign()
             winners = sf.get_k_winners(pot, self.k2, self.r2, spk)
             self.ctx["input_spikes"] = spk_in
             self.ctx["potentials"] = pot
             self.ctx["output_spikes"] = spk
             self.ctx["winners"] = winners
             return spk, pot
         spk_in = sf.pad(sf.pooling(spk, 3, 3), (2, 2, 2, 2))
         pot = self.conv3(spk_in)
         spk = sf.fire(pot)
         winners = sf.get_k_winners(pot, 1, 0, spk)
         self.ctx["input_spikes"] = spk_in
         self.ctx["potentials"] = pot
         self.ctx["output_spikes"] = spk
         self.ctx["winners"] = winners
         output = -1
         if len(winners) != 0:
             output = self.decision_map[winners[0][0]]
         return output
     else:
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, self.conv1_t, True)
         if max_layer == 1:
             return spk, pot
         pot = self.conv2(sf.pad(sf.pooling(spk, 2, 2), (1, 1, 1, 1)))
         spk, pot = sf.fire(pot, self.conv2_t, True)
         if max_layer == 2:
             return spk, pot
         pot = self.conv3(sf.pad(sf.pooling(spk, 3, 3), (2, 2, 2, 2)))
         spk = sf.fire(pot)
         winners = sf.get_k_winners(pot, 1, 0, spk)
         output = -1
         if len(winners) != 0:
             output = self.decision_map[winners[0][0]]
         return output
コード例 #9
0
test_loader = DataLoader(dataset, sampler=SubsetRandomSampler(test_indices))

import SpykeTorch.snn as snn

pool = snn.Pooling(kernel_size=3, stride=2)
conv = snn.Convolution(in_channels=4, out_channels=20, kernel_size=30)
stdp = snn.STDP(conv_layer=conv, learning_rate=(0.05, -0.015))
for iter in range(300):
    print('\rIteration:', iter, end="")
    for data, _ in train_loader:
        for x in data:
            x = pool(x)
            p = conv(x)
            o, p = sf.fire(p, 20, return_thresholded_potentials=True)
            winners = sf.get_k_winners(p,
                                       kwta=1,
                                       inhibition_radius=0,
                                       spikes=o)
            stdp(x, p, o, winners)
print()
print("Unsupervised Training is Done.")

#######################################################
train_x_spike = []
train_x_pot = []
train_y = []
for data, targets in train_loader:
    for x, t in zip(data, targets):
        x = pool(x)
        p = conv(x)
        o = sf.fire(p, 20)
        train_x_spike.append(o.reshape(-1).cpu().numpy())