コード例 #1
0
    def testImplicit(self):
        print("====  BracketModel Test =======================")
        m1 = GaussModel()
        m1 += PolynomialModel(0)  # Gauss on a constant background
        m2 = BracketModel(m1)
        m3 = SineModel()
        m3 *= m2  # sine * ( gauss + const )
        print("Explicit Use")
        print(m3)

        g1 = GaussModel()
        g1 += PolynomialModel(0)  # m1 is a chain of models
        g3 = SineModel()
        g3 *= g1  # sine * ( gauss + const )
        print("Implicit Use")
        print(g3)  # exactly the same

        p = [8.0, 1.0, 0.0, 1.0, 0.0, 0.2, 1.0]
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])

        assertAE(g3.result(x, p), m3.result(x, p))
        assertAE(g3.partial(x, p), m3.partial(x, p))
        assertAE(g3.derivative(x, p), m3.derivative(x, p))

        stdModeltest(g3, p, plot=self.doplot)
コード例 #2
0
    def test2(self):
        print("\n   CombiModel Test 2\n")
        gm = GaussModel()
        pars = numpy.linspace(0.0, 1.0, 3, dtype=float)
        gm.parameters = pars

        cm = CombiModel(gm, 3)

        Tools.printclass(cm)

        self.assertTrue(cm.deep == 1)
        print(str(cm._head))
        self.assertTrue(str(cm._head) == "Combi of 3 times Gauss")
        self.assertTrue(cm._next is None)
        self.assertTrue(cm._npchain == 9 and cm.npchain == 9)
        assertAE(cm.addindex, [])
        assertAE(cm.addvalue, [])
        assertAE(cm.mulindex, [])
        assertAE(cm.mulvalue, [])
        assertAE(cm.expandindex, numpy.arange(9, dtype=int))
        assertAE(cm.select, numpy.arange(9, dtype=int))
        assertAE(cm.parameters, [0.0, 0.5, 1.0] * 3)
        p = numpy.ones(9, dtype=float)
        p[1:9:3] /= 2
        p[2:9:3] /= 10
        stdModeltest(cm, p, plot=self.doplot)
コード例 #3
0
ファイル: TestModels.py プロジェクト: dokester/BayesicFitting
    def testConstantModel(self):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******NULL***********************")
        m = ConstantModel()
        self.assertTrue(m.npchain == 0)
        p = []
        stdModeltest(m, p)

        print("******CONSTANT VALUE*******************")
        sm = SineModel()
        m = ConstantModel(fixedModel=sm)
        m.values = [2.0, 0.0, 0.5]
        stdModeltest(m, p, silent=False)

        print("******CONSTANT MODEL*******************")
        tbl = numpy.linspace(0, 1, 11)
        m = ConstantModel(table=tbl)
        stdModeltest(m, p)

        print("******CONSTANT TABLE*******************")
        m = ConstantModel(values=5.5)
        stdModeltest(m, p)

        print("******COMPOUND*******************")
        m = ConstantModel(values=1.0)
        m.addModel(ExpModel())
        self.assertTrue(m.npbase == 0)
        self.assertTrue(m.npchain == 2)
        p = [1.0, -3.0]
        stdModeltest(m, p, plot=self.doplot)
コード例 #4
0
    def testSplinesModel(self, plot=False):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******SPLINES*************************")
        knots = numpy.arange(11, dtype=float)
        m0 = SplinesModel(knots=knots)
        self.assertTrue(m0.order == 3)
        self.assertTrue(m0.getNumberOfParameters() == 13)
        self.assertTrue(m0.npbase == 13)
        m1 = SplinesModel(nrknots=5, min=-1, max=1)
        self.assertTrue(m1.order == 3)
        self.assertTrue(m1.getNumberOfParameters() == 7)
        self.assertTrue(m1.npbase == 7)
        for k in range(len(m1.knots)):
            self.assertTrue(m1.knots[k] == -1 + k / 2)
        xin = numpy.linspace(0, 10, 101, dtype=float)
        m2 = SplinesModel(xrange=xin, order=2, nrknots=11)
        self.assertTrue(m2.order == 2)
        self.assertTrue(m2.getNumberOfParameters() == 12)
        self.assertTrue(m2.npbase == 12)
        for k in range(len(m2.knots)):
            self.assertTrue(m2.knots[k] == k)

        self.assertRaises(ValueError, SplinesModel)

        p = numpy.asarray([0, 1, 0, 1, 0, 1, 0], dtype=float)
        stdModeltest(m1, p, plot=plot)
コード例 #5
0
 def testVoigtModel(self, plot=False):
     x = numpy.asarray(
         [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
     print("******VOIGT***********************")
     m = VoigtModel()
     p = numpy.asarray([1.2, 0.2, 0.3, 0.4], dtype=float)
     print(p)
     stdModeltest(m, p, plot=plot, warn=["nopart"])
コード例 #6
0
    def test1b(self):
        model = SoftMaxModel(ndim=1, ndout=2, offset=True, normed=False)

        print(model.npars)
        p = numpy.asarray([1.0, 1.0, 2.0, 2.0])
        x = numpy.linspace(0, 10, 101, dtype=float)

        stdModeltest(model, p, x=x, plot=self.doplot)
コード例 #7
0
ファイル: TestModels.py プロジェクト: dokester/BayesicFitting
    def testArctanModel(self):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******ARCTAN***********************")
        m = ArctanModel()
        p = numpy.asarray([1.2, -0.1, 30], dtype=float)

        stdModeltest(m, p, plot=self.doplot)
コード例 #8
0
ファイル: TestModels.py プロジェクト: dokester/BayesicFitting
    def testGaussModel(self):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******GAUSS*************************")
        m = GaussModel()
        p = numpy.asarray([1.2, -0.2, 0.3], dtype=float)

        stdModeltest(m, p, plot=self.doplot)
コード例 #9
0
    def test2(self):
        x = numpy.linspace(0, 10, 101, dtype=float)
        x += 0.01  ## avoid awkward non-continuities
        print("****** FREESHAPE test 2 ********************")
        m = FreeShapeModel(10, nconvolve=3, center=0.0)
        p = numpy.asarray([1.2, 0.2, 1.0, 0.5, 0.3, 1.2, 0.2, 1.0, 0.5, 0.3])

        stdModeltest(m, p, x=x, plot=self.doplot)
コード例 #10
0
ファイル: TestModels.py プロジェクト: dokester/BayesicFitting
    def testEtalonModel(self):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******ETALON***********************")
        m = EtalonModel()
        p = numpy.asarray([1.2, 0.6, 2.0, 0.2], dtype=float)

        stdModeltest(m, p, plot=self.doplot)
コード例 #11
0
    def testGaussModel(self, plot=False):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******GAUSS*************************")
        m = GaussModel(fixed={2: 0.3})
        p = numpy.asarray([1.2, -0.2], dtype=float)

        stdModeltest(m, p, plot=plot)
コード例 #12
0
    def testExpModel(self, plot=False):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******EXP**************************")
        m = ExpModel(fixed={1: 0.1})
        p = numpy.asarray([1.2], dtype=float)

        stdModeltest(m, p, plot=plot)
コード例 #13
0
    def testLorentzModel(self, plot=False):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******LORENTZ***********************")
        m = LorentzModel(fixed={0: 4})
        p = numpy.asarray([-0.2, 0.3], dtype=float)

        stdModeltest(m, p, plot=plot)
コード例 #14
0
ファイル: TestModels.py プロジェクト: dokester/BayesicFitting
    def testLorentzModel(self):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******LORENTZ***********************")
        m = LorentzModel()
        p = numpy.asarray([1.2, -0.2, 0.3], dtype=float)

        stdModeltest(m, p, plot=self.doplot)
コード例 #15
0
    def testArctanModel(self, plot=False):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******ARCTAN******************")
        m = ArctanModel(fixed={1: -1.2})
        p = numpy.asarray([1.2, 30], dtype=float)

        stdModeltest(m, p, plot=plot)
コード例 #16
0
    def test2(self):
        print("******ASTROPY MODEL 2***********************")
        gm = modeling.models.Gaussian1D()

        m = AstropyModel(gm, fixed={0: 2.6})
        p = numpy.asarray([-0.1, 30], dtype=float)

        stdModeltest(m, p, plot=self.doplot)
コード例 #17
0
    def testEtalonModel(self, plot=False):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******ETALON***********************")
        m = EtalonModel(fixed={0: 1.5})
        p = numpy.asarray([30.0, 2.0, 0.2], dtype=float)

        stdModeltest(m, p, plot=plot)
コード例 #18
0
 def testPowerLawModel(self, plot=False):
     x = numpy.asarray(
         [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
     print("******POWERLAW*******************")
     m = PowerLawModel(fixed={1: -2})
     self.assertTrue(m.npchain == 2)
     self.assertTrue(m.npbase == 2)
     p = [2.3, 0.5]
     stdModeltest(m, p, plot=plot)
コード例 #19
0
 def testChebyshevPolynomialModel(self, plot=False):
     x = numpy.asarray(
         [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
     print("******CHEBYSHEV POLYNOMIAL*************")
     m = ChebyshevPolynomialModel(4, fixed={4: 0.1})
     self.assertTrue(m.getNumberOfParameters() == 4)
     self.assertTrue(m.npbase == 4)
     p = numpy.asarray([1, -2, 3, -2], dtype=float)
     stdModeltest(m, p, plot=plot)
コード例 #20
0
 def testSineDriftModel(self, plot=False):
     x = numpy.asarray(
         [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
     print("******SINEDRIFT******************")
     m = SineDriftModel()
     self.assertTrue(m.npchain == 4)
     self.assertTrue(m.npbase == 4)
     p = [1.1, 0.5, 0.8, 0.4]
     stdModeltest(m, p, plot=plot)
コード例 #21
0
 def testSineModel(self, plot=False):
     x = numpy.asarray(
         [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
     print("******SINE***********************")
     m = SineModel(fixed={0: 1})
     self.assertTrue(m.npchain == 2)
     self.assertTrue(m.npbase == 2)
     p = [-1.1, 0.5]
     stdModeltest(m, p, plot=plot)
コード例 #22
0
    def testFreeShapeModel(self, plot=False):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******FREESHAPE********************")
        m = FreeShapeModel(5, pixperbin=1, xlo=-1, xhi=1.1)
        self.assertTrue(m.npbase == 5)
        p = numpy.asarray([1.2, 0.2, 1.0, 0.5, 0.3], dtype=float)

        stdModeltest(m, p, plot=plot)
コード例 #23
0
    def test1(self):
        x = numpy.linspace(0, 10, 101, dtype=float)
        x += 0.01  ## avoid awkward non-continuities
        print("****** FREESHAPE test 1 ********************")
        m = FreeShapeModel(10)
        self.assertTrue(m.npbase == 10)
        p = numpy.asarray([1.2, 0.2, 1.0, 0.5, 0.3, 1.2, 0.2, 1.0, 0.5, 0.3])

        stdModeltest(m, p, x=x, plot=self.doplot)
コード例 #24
0
 def testPolynomialModel(self, plot=False):
     x = numpy.asarray(
         [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
     print("******POLYNOMIAL**********************")
     m = PolynomialModel(3)
     self.assertTrue(m.getNumberOfParameters() == 4)
     self.assertTrue(m.npbase == 4)
     p = numpy.asarray([1, -2, 3, -2], dtype=float)
     stdModeltest(m, p, plot=plot)
コード例 #25
0
 def testPadeModel(self, plot=False):
     x = numpy.asarray(
         [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
     print("******PADE**********************")
     m = PadeModel(3, 2)
     self.assertTrue(m.getNumberOfParameters() == 6)
     self.assertTrue(m.npbase == 6)
     p = numpy.asarray([1, -2, 3, -2, 0.3, 1], dtype=float)
     stdModeltest(m, p, plot=plot)
コード例 #26
0
 def testPowerModel(self, plot=False):
     x = numpy.asarray(
         [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
     print("******POWER**********************")
     m = PowerModel(3, fixed={0: 1.2})
     self.assertTrue(m.getNumberOfParameters() == 0)
     self.assertTrue(m.npbase == 0)
     p = []
     stdModeltest(m, p, plot=plot)
コード例 #27
0
 def testSincModel(self, plot=False):
     x = numpy.asarray(
         [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
     print("******SINC***********************")
     m = SincModel(fixed={2: 0.1, 1: 2})
     self.assertTrue(m.npchain == 1)
     self.assertTrue(m.npbase == 1)
     p = [2.3]
     stdModeltest(m, p, plot=plot)
コード例 #28
0
    def testEtalonModel2(self, plot=False):
        x = numpy.asarray(
            [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        print("******ETALON 2***********************")
        fm = PolynomialModel(1)
        m = EtalonModel(fixed={0: 1.5, 1: fm})
        p = numpy.asarray([2.0, 0.2, 1.0, 0.9], dtype=float)

        stdModeltest(m, p, plot=plot)
コード例 #29
0
 def testSineAmpModel(self, plot=False):
     x = numpy.asarray(
         [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
     print("******SINEAMP********************")
     m = SineAmpModel(1.3, fixed={1: 1})
     self.assertTrue(m.npchain == 1)
     self.assertTrue(m.npbase == 1)
     p = [-1.1]
     stdModeltest(m, p, plot=plot)
コード例 #30
0
 def testSincModel(self, plot=False):
     x = numpy.asarray(
         [-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
     print("******SINC***********************")
     m = SincModel()
     self.assertTrue(m.npchain == 3)
     self.assertTrue(m.npbase == 3)
     p = [2.3, -1.1, 0.5]
     stdModeltest(m, p, plot=plot)