コード例 #1
0
def equity_interest_pledge_too_high(securities: str, time_serial: tuple,
                                    data_hub: DataHubEntry,
                                    database: DatabaseEntry,
                                    context: AnalysisContext,
                                    **kwargs) -> AnalysisResult:
    nop(database, context, kwargs)

    query_fields = ['质押次数', '无限售股质押数量', '限售股份质押数量', '总股本', '质押比例']
    if not data_hub.get_data_center().check_readable_name(query_fields):
        return AnalysisResult(securities, None,
                              AnalysisResult.SCORE_NOT_APPLIED, '无法识别的字段名',
                              '无法识别的字段名')

    df = data_hub.get_data_center().query('Stockholder.PledgeStatus',
                                          securities, (years_ago(2), now()),
                                          fields=query_fields +
                                          ['stock_identity', 'due_date'],
                                          readable=True)
    if df is None or len(df) == 0:
        return AnalysisResult(securities, None,
                              AnalysisResult.SCORE_NOT_APPLIED, '没有数据', '没有数据')
    df = df.sort_values('due_date', ascending=False)

    score = 100
    reason = []
    previous_pledge_times = 0
    for index, row in df.iterrows():
        due_date = row['due_date']

        pledge_rate = row['质押比例']
        pledge_times = row['质押次数']
        if pledge_times != previous_pledge_times:
            if pledge_rate > 50.0:
                score = 0
            if pledge_rate > 20.0:
                score = 60
                reason.append('%s: 质押比例:%.2f%%' %
                              (str(due_date.date()), pledge_rate))
            previous_pledge_times = pledge_times

    if len(reason) == 0:
        brief = '近4年没有超过20%%的质押记录'
        reason = brief
    else:
        brief = '近4年有%s次超过20%%的质押记录' % len(reason)
        reason = brief

    return AnalysisResult(securities, None, score, reason, brief)
def analysis_investigation(securities: str, time_serial: tuple, data_hub: DataHubEntry,
                           database: DatabaseEntry, context: AnalysisContext, **kwargs) -> AnalysisResult:
    nop(time_serial, database, )

    if context.cache.get('investigation', None) is None:
        context.cache['investigation'] = data_hub.get_data_center().query('Market.Investigation')
    df = context.cache.get('investigation', None)

    error_report = check_gen_report_when_data_missing(df, securities, 'Market.Investigation',
                                                      ['stock_identity', 'investigate_date',
                                                       'investigate_topic', 'investigate_reason'])
    if error_report is not None:
        return error_report

    df_slice = df[df['stock_identity'] == securities]
    df_slice_in_4_years = df_slice[df_slice['investigate_date'] > years_ago(5)]

    score = 100
    reason = []

    for index, row in df_slice_in_4_years.iterrows():
        score = 0
        investigate_date = row['investigate_date']
        investigate_topic = row['investigate_topic']
        investigate_reason = row['investigate_reason']
        reason.append('%s: <<%s>> -- %s' % (date2text(investigate_date), investigate_topic, investigate_reason))
    if len(reason) == 0:
        reason.append('近四年无立案调查记录')

    return AnalysisResult(securities, None, score, reason, AnalysisResult.WEIGHT_ONE_VOTE_VETO)
コード例 #3
0
def analysis_location_limitation(securities: str, time_serial: tuple,
                                 data_hub: DataHubEntry,
                                 database: DatabaseEntry,
                                 context: AnalysisContext,
                                 **kwargs) -> [AnalysisResult]:
    nop(kwargs)
    nop(database)
    nop(time_serial)

    if context.cache.get('securities_info', None) is None:
        context.cache['securities_info'] = data_hub.get_data_center().query(
            'Market.SecuritiesInfo')
    df = context.cache.get('securities_info', None)

    df_slice = df[df['stock_identity'] == securities]
    area = get_dataframe_slice_item(df_slice, 'area', 0, '')

    # Add your exclude area here
    exclude = area in []

    # List the stock code here helps us resolving report line stock and result not matching issue
    reason = '%s: 地域为%s' % (securities, str(area))

    return AnalysisResult(securities, None, not exclude, reason,
                          '排除' if exclude else '正常')
コード例 #4
0
def analysis_current_and_quick_ratio(securities: str, time_serial: tuple, data_hub: DataHubEntry,
                                     database: DatabaseEntry, context: AnalysisContext, **kwargs) -> [AnalysisResult]:
    nop(database, context, kwargs)

    df = data_hub.get_data_center().query_from_factor(
        'Factor.Finance', securities, time_serial, fields=['流动比率', '速动比率'], readable=True)
    if df is None or len(df) == 0:
        return AnalysisResult(securities, None, AnalysisResult.SCORE_NOT_APPLIED, '')

    # Annual report
    df = df[df['period'].dt.month == 12]

    results = []
    for index, row in df.iterrows():
        score = 100
        reason = []
        period = row['period']

        if row['流动比率'] < 2.0:
            score -= 50
            reason.append('%s: 流动比率为%.2f < 2.0' % (str(period), row['流动比率']))
        else:
            reason.append('%s: 流动比率为%.2f - 合格' % (str(period), row['流动比率']))

        if row['速动比率'] < 1.0:
            score -= 50
            reason.append('%s: 速动比率为%.2f < 1.0' % (str(period), row['速动比率']))
        else:
            reason.append('%s: 速动比率为%.2f - 合格' % (str(period), row['速动比率']))

        results.append(AnalysisResult(securities, period,  score, reason))
    return results
def analysis_inquiry(securities: str, time_serial: tuple, data_hub: DataHubEntry,
                     database: DatabaseEntry, context: AnalysisContext, **kwargs) -> AnalysisResult:
    nop(time_serial, database, )

    df = data_hub.get_data_center().query('Market.Enquiries', securities)
    if df is None or len(df) == 0:
        return AnalysisResult(securities, None, AnalysisResult.SCORE_PASS, '四年内无问询记录(也可能是数据缺失)')

    error_report = check_gen_report_when_data_missing(df, securities, 'Market.Enquiries',
                                                      ['stock_identity', 'enquiry_date', 'enquiry_topic'])
    if error_report is not None:
        return error_report

    df_slice = df[df['stock_identity'] == securities]
    df_slice_in_4_years = df_slice[df_slice['enquiry_date'] > years_ago(5)]

    score = 100
    reason = []

    for index, row in df_slice_in_4_years.iterrows():
        enquiry_date = row['enquiry_date']
        enquiry_topic = row['enquiry_topic']
        enquiry_title = row['enquiry_title']
        if '问询函' in enquiry_topic or '关注函' in enquiry_topic:
            score = 59
            reason.append('%s: <<%s>> -- %s' % (date2text(enquiry_date), enquiry_topic, enquiry_title))

    if len(reason) == 0:
        reason.append('近四年无敏感问询')

    return AnalysisResult(securities, None, score, reason)
コード例 #6
0
def analysis_finance_report_sign(securities: str, time_serial: tuple, data_hub: DataHubEntry,
                                 database: DatabaseEntry, context: AnalysisContext, **kwargs) -> [AnalysisResult]:
    nop(database, kwargs)
    if context.cache.get('finance_audit', None) is None:
        context.cache['finance_audit'] = data_hub.get_data_center().query('Finance.Audit', None, time_serial)
    df = context.cache.get('finance_audit', None)

    error_report = check_gen_report_when_data_missing(df, securities, 'Finance.Audit',
                                                      ['stock_identity', 'period', 'conclusion'])
    if error_report is not None:
        return error_report

    df_slice = df[df['stock_identity'] == securities]
    # df_slice_in_4_years = df_slice[df_slice['period'] > years_ago(5)]

    results = []
    for index, row in df_slice.iterrows():
        reason = []
        period = row['period']
        conclusion = row['conclusion']

        if pd.isnull(conclusion):
            score = AnalysisResult.SCORE_NOT_APPLIED
            reason.append(date2text(period) + ' : No sign data.')
        elif conclusion != '标准无保留意见':
            score = AnalysisResult.SCORE_FAIL
            reason.append(date2text(period) + ' : ' + conclusion)
        else:
            score = AnalysisResult.SCORE_PASS
        results.append(AnalysisResult(securities, period, score, reason, AnalysisResult.WEIGHT_ONE_VOTE_VETO))

    return results
コード例 #7
0
def analysis_finance_report_sign(securities: str, data_hub: DataHubEntry,
                                 database: DatabaseEntry, context: AnalysisContext) -> AnalysisResult:
    nop(database)

    if context.cache.get('finance_audit', None) is None:
        context.cache['finance_audit'] = data_hub.get_data_center().query('Finance.Audit')
    df = context.cache.get('finance_audit', None)

    error_report = check_gen_report_when_data_missing(df, securities, 'Finance.Audit',
                                                      ['stock_identity', 'period', 'conclusion'])
    if error_report is not None:
        return error_report

    df_slice = df[df['stock_identity'] == securities]
    df_slice_in_4_years = df_slice[df_slice['period'] > years_ago(5)]

    score = 100
    reason = []

    for index, row in df_slice_in_4_years.iterrows():
        period = row['period']
        conclusion = row['conclusion']

        if conclusion != '标准无保留意见':
            score = 0
            reason.append(date2text(period) + ' : ' + conclusion)
    if len(reason) == 0:
        reason.append('近四年均为标准无保留意见')

    return AnalysisResult(securities, score, reason, AnalysisResult.WEIGHT_ONE_VOTE_VETO)
コード例 #8
0
def analysis_dispersed_ownership(securities: str, time_serial: tuple,
                                 data_hub: DataHubEntry,
                                 database: DatabaseEntry,
                                 context: AnalysisContext,
                                 **kwargs) -> AnalysisResult:
    nop(database, context, kwargs)
    df = data_hub.get_data_center().query(
        'Stockholder.Statistics',
        securities,
        (years_ago(3), now()),
    )
    if df is None or len(df) == 0:
        return AnalysisResult(securities, None,
                              AnalysisResult.SCORE_NOT_APPLIED, '没有数据')
    df = df[df['period'].dt.month == 12]
    df = df.sort_values('period', ascending=False)

    score = 100
    reason = []
    applied = False
    for index, row in df.iterrows():
        period = row['period']
        stockholder_top10 = row['stockholder_top10']
        stockholder_top10_nt = row['stockholder_top10_nt']

        if not isinstance(stockholder_top10, (list, tuple)):
            continue
        if len(stockholder_top10) != 10:
            continue

        largest_ratio = 0.0
        biggest_holder = ''
        for stockholder_data in stockholder_top10:
            if 'hold_ratio' not in stockholder_data.keys(
            ) or 'holder_name' not in stockholder_data.keys():
                break
            applied = True
            hold_ratio = stockholder_data.get('hold_ratio')
            holder_name = stockholder_data.get('holder_name')
            if hold_ratio > largest_ratio:
                largest_ratio = hold_ratio
                biggest_holder = holder_name
        if largest_ratio == 0.0:
            return AnalysisResult(securities, None,
                                  AnalysisResult.SCORE_NOT_APPLIED,
                                  '缺少必要数据,请确保数据包含tushare pro数据源')
        if largest_ratio < 0.1:
            score = 0
            reason.append('%s: 最大股东 %s 持股比例为%.2f%%,小于10%%' %
                          (str(period), biggest_holder, largest_ratio * 100))
        else:
            reason.append('%s: 最大股东 %s 持股比例为%.2f%%' %
                          (str(period), biggest_holder, largest_ratio * 100))

    if len(reason) == 0:
        reason.append('没有数据')
    return AnalysisResult(securities, None, score, reason) if applied else \
        AnalysisResult(securities, None, AnalysisResult.SCORE_NOT_APPLIED, reason)
コード例 #9
0
def analysis_repurchase(securities: str, time_serial: tuple,
                        data_hub: DataHubEntry, database: DatabaseEntry,
                        context: AnalysisContext, **kwargs) -> AnalysisResult:
    nop(time_serial, database, context, kwargs)
    df = data_hub.get_data_center().query('Stockholder.Repurchase', securities,
                                          (years_ago(1), now()))
    if df is None or len(df) == 0:
        return AnalysisResult(securities, None, AnalysisResult.SCORE_JUST,
                              '前后一年内没有回购数据', '无回购数据')
    # df = df.where(df.notnull(), None)

    volume = 0
    reasons = []
    for index, row in df.iterrows():
        proc = row['proc']

        if proc != '股东大会通过':
            # For multiple calculate, just count pass
            continue

        ann_date = row['ann_date']

        # TS_ISSUE: Some fields may miss
        end_date = row['end_date'] if 'end_date' in df.columns else None

        volume = row['vol'] if 'vol' in df.columns else None
        low_limit = row['low_limit'] if 'low_limit' in df.columns else None
        high_limit = row['high_limit'] if 'high_limit' in df.columns else None

        end_date_text = ('截止%s' % end_date.date()) if \
            isinstance(end_date, datetime.datetime) and end_date is not pd.NaT else ''

        if not pd.isnull(low_limit) and not pd.isnull(high_limit):
            if low_limit == high_limit:
                price_text = '将以%s元的价格' % low_limit
            else:
                price_text = '将以%s - %s元的价格' % (low_limit, high_limit)
        elif not pd.isnull(low_limit):
            price_text = '将以最低%s元的价格' % low_limit
        elif not pd.isnull(high_limit):
            price_text = '将以最高%s元的价格' % high_limit
        else:
            price_text = ''

        if not pd.isnull(volume):
            volume += int(volume)
            volume_text = ('%s股' % volume)
        else:
            volume_text = ''

        reasons.append(
            '%s: 股东大会通过,%s%s回购%s股票' %
            (ann_date.date(), end_date_text, price_text, volume_text))

    brief = '期间计划回购%s股' % volume
    return AnalysisResult(securities, None, AnalysisResult.SCORE_PASS, reasons, brief) if len(reasons) > 0 else \
        AnalysisResult(securities, None, AnalysisResult.SCORE_JUST, '前后一年内没有回购数据', '近一年无数据')
コード例 #10
0
def analysis_roe_roa(securities: str, time_serial: tuple,
                     data_hub: DataHubEntry, database: DatabaseEntry,
                     context: AnalysisContext, **kwargs) -> [AnalysisResult]:
    nop(database, context, kwargs)

    df = data_hub.get_data_center().query_from_factor(
        'Factor.Finance',
        securities,
        time_serial,
        fields=['总资产收益率', '净资产收益率'],
        readable=True)
    if df is None or len(df) == 0:
        return AnalysisResult(securities, None,
                              AnalysisResult.SCORE_NOT_APPLIED, '')

    # Annual report
    df = df[df['period'].dt.month == 12]

    results = []
    for index, row in df.iterrows():
        score = 100
        reason = []
        period = row['period']

        if row['总资产收益率'] < 0.05:
            score -= 50
            reason.append('%s: 总资产收益率为%s%% - 过低' %
                          (str(period), format_pct(row['总资产收益率'])))
        elif row['总资产收益率'] > 0.15:
            score -= 50
            reason.append('%s: 总资产收益率为%s%% - 偏高,需要引起注意' %
                          (str(period), format_pct(row['总资产收益率'])))
        else:
            # Theory: 7.5% - 13%, but we use 5% - 15% for wider tolerance.
            reason.append('%s: 总资产收益率为%s%% - 合理' %
                          (str(period), format_pct(row['总资产收益率'])))
            pass

        if row['净资产收益率'] < 0.15:
            score -= 50
            reason.append('%s: 净资产收益率为%s%% - 偏低' %
                          (str(period), format_pct(row['净资产收益率'])))
        elif row['净资产收益率'] > 0.40:
            score = 0
            reason.append('%s: 净资产收益率为%s%% - 过高,可能是造假或偶然因素' %
                          (str(period), format_pct(row['净资产收益率'])))
        else:
            # Theory: 15% - 39%.
            reason.append('%s: 净资产收益率为%s%% - 合理' %
                          (str(period), format_pct(row['净资产收益率'])))

        results.append(AnalysisResult(securities, period, score, reason))
    return results
コード例 #11
0
def analysis_stock_unlock(securities: str, time_serial: tuple,
                          data_hub: DataHubEntry, database: DatabaseEntry,
                          context: AnalysisContext,
                          **kwargs) -> AnalysisResult:
    nop(time_serial, database, context, kwargs)
    no_data_result = AnalysisResult(securities, None,
                                    AnalysisResult.SCORE_PASS,
                                    '前三个月或后半年内没有解禁数据', '无解禁数据')

    df: pd.DataFrame = data_hub.get_data_center().query(
        'Stockholder.StockUnlock', securities, (years_ago(2), now()))
    if df is None or df.empty:
        return no_data_result

    df = df[df['unlock_date'].notna()]
    df['unlock_date'] = df['unlock_date'].apply(text_auto_time)
    mask = (df['unlock_date'] > days_ago(90)) & (df['unlock_date'] <=
                                                 days_after(180))
    df = df.loc[mask]
    if df is None or df.empty:
        return no_data_result

    df_group = df.groupby('unlock_date')

    reasons = []
    float_share_sum = 0
    for g, df in df_group:
        unlock_date = g
        float_share = sum(df['float_share'])
        float_ratio = sum(df['float_ratio'])

        float_share_sum += float_share
        reasons.append('%s: 解禁%s股,占总股份%s%%' %
                       (unlock_date.date(), float_share, float_ratio))

    # for index, row in df.iterrows():
    #     float_date = row['float_date']
    #     float_share = row['float_share']
    #     float_ratio = row['float_ratio']
    #
    #     # Maybe have not converted to datetime but keeping str
    #     # Maybe there're a lot of unlock in one day
    #
    #     if not isinstance(float_date, datetime.datetime):
    #         float_date = text_auto_time(float_date)
    #     if days_ago(90) < float_date < days_after(180):
    #         reasons.append('%s: 解禁%s股,占总股份%s%%' % (float_date.date(), float_share, float_ratio))

    brief = '共解禁%s股' % float_share_sum
    return AnalysisResult(securities, None, AnalysisResult.SCORE_FAIL, reasons, brief) if len(reasons) > 0 else \
        AnalysisResult(securities, None, AnalysisResult.SCORE_PASS, '前三个月或后半年内没有解禁数据', '无解禁数据')
コード例 #12
0
def analysis_location_limitation(securities: str, data_hub: DataHubEntry,
                                 database: DatabaseEntry,
                                 context: AnalysisContext) -> AnalysisResult:
    nop(database)

    if context.cache.get('securities_info', None) is None:
        context.cache['securities_info'] = data_hub.get_data_center().query(
            'Market.SecuritiesInfo')
    df = context.cache.get('securities_info', None)

    df_slice = df[df['stock_identity'] == securities]
    area = get_dataframe_slice_item(df_slice, 'area', 0, '')
    exclude = area in ['黑龙江', '辽宁', '吉林']
    reason = securities + '地域为' + str(area)
    return AnalysisResult(securities, not exclude, reason)
コード例 #13
0
def analysis_less_than_3_years(securities: str, data_hub: DataHubEntry,
                               database: DatabaseEntry,
                               context: AnalysisContext) -> AnalysisResult:
    nop(database)

    if context.cache.get('securities_info', None) is None:
        context.cache['securities_info'] = data_hub.get_data_center().query(
            'Market.SecuritiesInfo')
    df = context.cache.get('securities_info', None)

    df_slice = df[df['stock_identity'] == securities]
    listing_date = get_dataframe_slice_item(df_slice, 'listing_date', 0, now())
    exclude = now().year - listing_date.year < 3
    reason = '上市日期' + str(listing_date) + ('小于三年' if exclude else '大于三年')
    return AnalysisResult(securities, not exclude, reason)
コード例 #14
0
def analysis_exclude_industries(securities: str, data_hub: DataHubEntry,
                                database: DatabaseEntry,
                                context: AnalysisContext) -> AnalysisResult:
    nop(database)

    if context.cache.get('securities_info', None) is None:
        context.cache['securities_info'] = data_hub.get_data_center().query(
            'Market.SecuritiesInfo')
    df = context.cache.get('securities_info', None)

    df_slice = df[df['stock_identity'] == securities]

    industry = get_dataframe_slice_item(df_slice, 'industry', 0, '')
    exclude = industry in ['种植业', '渔业', '林业', '畜禽养殖', '农业综合']
    reason = '所在行业[' + str(industry) + (']属于农林牧渔' if exclude else ']不属于农林牧渔')
    return AnalysisResult(securities, not exclude, reason)
コード例 #15
0
def analysis_less_than_3_years(securities: str, time_serial: tuple,
                               data_hub: DataHubEntry, database: DatabaseEntry,
                               context: AnalysisContext,
                               **kwargs) -> [AnalysisResult]:
    nop(kwargs)
    nop(database)
    nop(time_serial)

    if context.cache.get('securities_info', None) is None:
        context.cache['securities_info'] = data_hub.get_data_center().query(
            'Market.SecuritiesInfo')
    df = context.cache.get('securities_info', None)

    df_slice = df[df['stock_identity'] == securities]
    listing_date = get_dataframe_slice_item(df_slice, 'listing_date', 0, now())
    less_than_3_years = now().year - listing_date.year < 3
    reason = '上市日期 %s (%s)' % (str(listing_date),
                               ('小于三年' if less_than_3_years else '大于三年'))
    return AnalysisResult(securities, None, not less_than_3_years, reason)
コード例 #16
0
def analysis_black_list(securities: str, time_serial: tuple,
                        data_hub: DataHubEntry, database: DatabaseEntry,
                        context: AnalysisContext,
                        **kwargs) -> [AnalysisResult]:
    nop(kwargs)
    nop(database)
    nop(time_serial)

    if context.cache.get('black_table', None) is None:
        black_list_module = data_hub.get_data_extra('black_list')
        if black_list_module is not None:
            context.cache[
                'black_table'] = black_list_module.get_black_list_data()
    black_table = context.cache.get('black_table', None)

    if isinstance(black_table, pd.DataFrame) and not black_table.empty:
        df_slice = black_table[black_table['security'] == securities]
        in_black_list = len(df_slice) > 0
        reason = get_dataframe_slice_item(df_slice, 'content', 0,
                                          '') if in_black_list else '不在黑名单中'
        return AnalysisResult(securities, None, not in_black_list, reason)
    else:
        return AnalysisResult(securities, None,
                              AnalysisResult.SCORE_NOT_APPLIED, '载入黑名单模块失败')
コード例 #17
0
def analysis_increase_decrease(securities: str, time_serial: tuple,
                               data_hub: DataHubEntry, database: DatabaseEntry,
                               context: AnalysisContext,
                               **kwargs) -> AnalysisResult:
    nop(time_serial, database, context, kwargs)
    no_data_result = AnalysisResult(securities, None,
                                    AnalysisResult.SCORE_NOT_APPLIED,
                                    '前后一年内没有增减持数据', '近一年无数据')

    df = data_hub.get_data_center().query('Stockholder.ReductionIncrease',
                                          securities, (years_ago(2), now()))
    if df is None or len(df) == 0:
        return no_data_result

    volume = 0
    reasons = []
    for index, row in df.iterrows():
        stock_holder = row['stock_holder']
        holder_type = row['holder_type']
        holder_type = {
            'G': '高管',
            'P': '个人',
            'C': '公司',
        }.get(holder_type, '')

        increase_or_decrease = row['in_de']
        change_vol = row['change_vol'] if 'change_vol' in df.columns else '?'
        change_ratio = row[
            'change_ratio'] if 'change_ratio' in df.columns else '?'
        avg_price = row['avg_price'] if 'avg_price' in df.columns else '?'

        begin_date = text_auto_time(
            row['begin_date']) if 'begin_date' in df.columns else None
        close_date = text_auto_time(
            row['close_date']) if 'close_date' in df.columns else None

        if (begin_date is not None and days_ago(365) < begin_date < days_after(365)) or \
           (close_date is not None and days_ago(365) < close_date < days_after(365)):
            if increase_or_decrease == 'IN':
                volume += change_vol
                operation = '增持'
            elif increase_or_decrease == 'DE':
                volume -= change_vol
                operation = '减持'
            else:
                operation = ''

            if operation != '':
                reasons.append(
                    '%s - %s: %s[%s]以平均价格%s元%s%s股,占流通股%s%%' %
                    (begin_date.date() if begin_date is not None else '?',
                     close_date.date() if close_date is not None else '?',
                     holder_type, stock_holder, avg_price, operation,
                     change_vol, change_ratio))

    if len(reasons) == 0:
        return no_data_result

    if volume > 0:
        conclusion = '此期间净增持%s股' % volume
    elif volume < 0:
        conclusion = '此期间净减持%s股' % -volume
    else:
        conclusion = '此期间增持减持持平'
    reasons.append(conclusion)
    final_score = AnalysisResult.SCORE_FAIL if volume < 0 else AnalysisResult.SCORE_PASS

    return AnalysisResult(securities, None, final_score, reasons,
                          conclusion.replace('此', ''))