コード例 #1
0
def test_fourier_interpolate_nyquist(plot=False):
    # asserts that the interpolation follows the "minimal-osciallation"
    # assumption for the nyquist frequency

    topography = Topography(np.array([[1], [-1]]), physical_sizes=(1., 1.))
    interpolated_topography = topography.interpolate_fourier((64, 1))

    if plot:
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots()

        x, y = topography.positions()
        ax.plot(x.flat, topography.heights().flat, "+")

        x, y = interpolated_topography.positions()
        ax.plot(x.flat, interpolated_topography.heights().flat, "-")
        fig.show()

    x, y = interpolated_topography.positions()
    np.testing.assert_allclose(interpolated_topography.heights(),
                               np.cos(2 * np.pi * x), atol=1e-14)
コード例 #2
0
def test_positions(comm):
    nx, ny = (12 * comm.Get_size(), 10 * comm.Get_size() + 1)
    sx = 33.
    sy = 54.
    fftengine = FFT((nx, ny), fft='mpi', communicator=comm)

    surf = Topography(np.zeros(fftengine.nb_subdomain_grid_pts),
                      physical_sizes=(sx, sy),
                      decomposition='subdomain',
                      nb_grid_pts=(nx, ny),
                      subdomain_locations=fftengine.subdomain_locations,
                      communicator=comm)

    x, y = surf.positions()
    assert x.shape == fftengine.nb_subdomain_grid_pts
    assert y.shape == fftengine.nb_subdomain_grid_pts

    assert Reduction(comm).min(x) == 0
    assert abs(Reduction(comm).max(x) - sx * (1 - 1. / nx)) \
           < 1e-8 * sx / nx, "{}".format(x)
    assert Reduction(comm).min(y) == 0
    assert abs(Reduction(comm).max(y) - sy * (1 - 1. / ny)) < 1e-8