def test_train_step(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8, )).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) speaker_ids = torch.randint(0, 5, (8, )).long().to(device) criterion = GlowTTSLoss() # model to train config = GlowTTSConfig(num_chars=32) model = GlowTTS(config).to(device) # reference model to compare model weights model_ref = GlowTTS(config).to(device) model.train() print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) # pass the state to ref model model_ref.load_state_dict(copy.deepcopy(model.state_dict())) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=0.001) for _ in range(5): optimizer.zero_grad() outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, None) loss_dict = criterion( outputs["z"], outputs["y_mean"], outputs["y_log_scale"], outputs["logdet"], mel_lengths, outputs["durations_log"], outputs["total_durations_log"], input_lengths, ) loss = loss_dict["loss"] loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1
def test_inference(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8,)).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device) mel_lengths = torch.randint(20, 30, (8,)).long().to(device) speaker_ids = torch.randint(0, 5, (8,)).long().to(device) # create model config = GlowTTSConfig(num_chars=32) model = GlowTTS(config).to(device) model.eval() print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) # inference encoder and decoder with MAS y = model.inference_with_MAS(input_dummy, input_lengths, mel_spec, mel_lengths) y2 = model.decoder_inference(mel_spec, mel_lengths) assert ( y2["model_outputs"].shape == y["model_outputs"].shape ), "Difference between the shapes of the glowTTS inference with MAS ({}) and the inference using only the decoder ({}) !!".format( y["model_outputs"].shape, y2["model_outputs"].shape )
def test_unlock_act_norm_layers(self): config = GlowTTSConfig(num_chars=32) model = GlowTTS(config).to(device) model.unlock_act_norm_layers() for f in model.decoder.flows: if getattr(f, "set_ddi", False): self.assertFalse(f.initialized)
def _test_inference(self, batch_size): input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs( batch_size) config = GlowTTSConfig(num_chars=32) model = GlowTTS(config).to(device) model.eval() outputs = model.inference(input_dummy, {"x_lengths": input_lengths}) self._assert_inference_outputs(outputs, input_dummy, mel_spec)
def test_train_step(self): batch_size = BATCH_SIZE input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs( batch_size) criterion = GlowTTSLoss() # model to train config = GlowTTSConfig(num_chars=32) model = GlowTTS(config).to(device) # reference model to compare model weights model_ref = GlowTTS(config).to(device) model.train() print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) # pass the state to ref model model_ref.load_state_dict(copy.deepcopy(model.state_dict())) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=0.001) for _ in range(5): optimizer.zero_grad() outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, None) loss_dict = criterion( outputs["z"], outputs["y_mean"], outputs["y_log_scale"], outputs["logdet"], mel_lengths, outputs["durations_log"], outputs["total_durations_log"], input_lengths, ) loss = loss_dict["loss"] loss.backward() optimizer.step() # check parameter changes self._check_parameter_changes(model, model_ref)
def test_inference(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8, )).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, c.audio["num_mels"], 30).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) speaker_ids = torch.randint(0, 5, (8, )).long().to(device) # create model model = GlowTTS( num_chars=32, hidden_channels_enc=48, hidden_channels_dec=48, hidden_channels_dp=32, out_channels=80, encoder_type="rel_pos_transformer", encoder_params={ "kernel_size": 3, "dropout_p": 0.1, "num_layers": 6, "num_heads": 2, "hidden_channels_ffn": 16, # 4 times the hidden_channels "input_length": None, }, use_encoder_prenet=True, num_flow_blocks_dec=12, kernel_size_dec=5, dilation_rate=1, num_block_layers=4, dropout_p_dec=0.0, num_speakers=0, c_in_channels=0, num_splits=4, num_squeeze=1, sigmoid_scale=False, mean_only=False, ).to(device) model.eval() print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) # inference encoder and decoder with MAS y, *_ = model.inference_with_MAS(input_dummy, input_lengths, mel_spec, mel_lengths, None) y_dec, _ = model.decoder_inference(mel_spec, mel_lengths) assert ( y_dec.shape == y.shape ), "Difference between the shapes of the glowTTS inference with MAS ({}) and the inference using only the decoder ({}) !!".format( y.shape, y_dec.shape)
def test_init_multispeaker(self): config = GlowTTSConfig(num_chars=32) model = GlowTTS(config) # speaker embedding with default speaker_embedding_dim config.use_speaker_embedding = True config.num_speakers = 5 config.d_vector_dim = None model.init_multispeaker(config) self.assertEqual(model.c_in_channels, model.hidden_channels_enc) # use external speaker embeddings with speaker_embedding_dim = 301 config = GlowTTSConfig(num_chars=32) config.use_d_vector_file = True config.d_vector_dim = 301 model = GlowTTS(config) model.init_multispeaker(config) self.assertEqual(model.c_in_channels, 301) # use speaker embedddings by the provided speaker_manager config = GlowTTSConfig(num_chars=32) config.use_speaker_embedding = True config.speakers_file = os.path.join(get_tests_data_path(), "ljspeech", "speakers.json") speaker_manager = SpeakerManager.init_from_config(config) model = GlowTTS(config) model.speaker_manager = speaker_manager model.init_multispeaker(config) self.assertEqual(model.c_in_channels, model.hidden_channels_enc) self.assertEqual(model.num_speakers, speaker_manager.num_speakers) # use external speaker embeddings by the provided speaker_manager config = GlowTTSConfig(num_chars=32) config.use_d_vector_file = True config.d_vector_dim = 256 config.d_vector_file = os.path.join(get_tests_data_path(), "dummy_speakers.json") speaker_manager = SpeakerManager.init_from_config(config) model = GlowTTS(config) model.speaker_manager = speaker_manager model.init_multispeaker(config) self.assertEqual(model.c_in_channels, speaker_manager.embedding_dim) self.assertEqual(model.num_speakers, speaker_manager.num_speakers)
def _test_inference_with_MAS(self, batch_size): input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs( batch_size) # create model config = GlowTTSConfig(num_chars=32) model = GlowTTS(config).to(device) model.eval() # inference encoder and decoder with MAS y = model.inference_with_MAS(input_dummy, input_lengths, mel_spec, mel_lengths) y2 = model.decoder_inference(mel_spec, mel_lengths) assert ( y2["model_outputs"].shape == y["model_outputs"].shape ), "Difference between the shapes of the glowTTS inference with MAS ({}) and the inference using only the decoder ({}) !!".format( y["model_outputs"].shape, y2["model_outputs"].shape)
def _test_forward(self, batch_size): input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs( batch_size) # create model config = GlowTTSConfig(num_chars=32) model = GlowTTS(config).to(device) model.train() print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) # inference encoder and decoder with MAS y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths) self.assertEqual(y["z"].shape, mel_spec.shape) self.assertEqual(y["logdet"].shape, torch.Size([batch_size])) self.assertEqual(y["y_mean"].shape, mel_spec.shape) self.assertEqual(y["y_log_scale"].shape, mel_spec.shape) self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1], )) self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1, )) self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1, ))
# Check `TTS.tts.datasets.load_tts_samples` for more details. train_samples, eval_samples = load_tts_samples( dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # init speaker manager for multi-speaker training # it maps speaker-id to speaker-name in the model and data-loader speaker_manager = SpeakerManager() speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") config.num_speakers = speaker_manager.num_speakers # init model model = GlowTTS(config, ap, tokenizer, speaker_manager=speaker_manager) # INITIALIZE THE TRAINER # Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training, # distributed training, etc. trainer = Trainer(TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples) # AND... 3,2,1... 🚀 trainer.fit()
# Audio processor is used for feature extraction and audio I/O. # It mainly serves to the dataloader and the training loggers. ap = AudioProcessor(**config.audio.to_dict()) # LOAD DATA SAMPLES # Each sample is a list of ```[text, audio_file_path, speaker_name]``` # You can define your custom sample loader returning the list of samples. # Or define your custom formatter and pass it to the `load_tts_samples`. # Check `TTS.tts.datasets.load_tts_samples` for more details. train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True) # INITIALIZE THE MODEL # Models take a config object and a speaker manager as input # Config defines the details of the model like the number of layers, the size of the embedding, etc. # Speaker manager is used by multi-speaker models. model = GlowTTS(config, speaker_manager=None) # INITIALIZE THE TRAINER # Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training, # distributed training, etc. trainer = Trainer( TrainingArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, training_assets={"audio_processor": ap}, # assets are objetcs used by the models but not class members. ) # AND... 3,2,1... 🚀
def test_train_step(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8, )).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, c.audio["num_mels"], 30).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) speaker_ids = torch.randint(0, 5, (8, )).long().to(device) criterion = GlowTTSLoss() # model to train model = GlowTTS( num_chars=32, hidden_channels_enc=48, hidden_channels_dec=48, hidden_channels_dp=32, out_channels=80, encoder_type="rel_pos_transformer", encoder_params={ "kernel_size": 3, "dropout_p": 0.1, "num_layers": 6, "num_heads": 2, "hidden_channels_ffn": 16, # 4 times the hidden_channels "input_length": None, }, use_encoder_prenet=True, num_flow_blocks_dec=12, kernel_size_dec=5, dilation_rate=1, num_block_layers=4, dropout_p_dec=0.0, num_speakers=0, c_in_channels=0, num_splits=4, num_squeeze=1, sigmoid_scale=False, mean_only=False, ).to(device) # reference model to compare model weights model_ref = GlowTTS( num_chars=32, hidden_channels_enc=48, hidden_channels_dec=48, hidden_channels_dp=32, out_channels=80, encoder_type="rel_pos_transformer", encoder_params={ "kernel_size": 3, "dropout_p": 0.1, "num_layers": 6, "num_heads": 2, "hidden_channels_ffn": 16, # 4 times the hidden_channels "input_length": None, }, use_encoder_prenet=True, num_flow_blocks_dec=12, kernel_size_dec=5, dilation_rate=1, num_block_layers=4, dropout_p_dec=0.0, num_speakers=0, c_in_channels=0, num_splits=4, num_squeeze=1, sigmoid_scale=False, mean_only=False, ).to(device) model.train() print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) # pass the state to ref model model_ref.load_state_dict(copy.deepcopy(model.state_dict())) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=0.001) for _ in range(5): optimizer.zero_grad() z, logdet, y_mean, y_log_scale, alignments, o_dur_log, o_total_dur = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, None) loss_dict = criterion(z, y_mean, y_log_scale, logdet, mel_lengths, o_dur_log, o_total_dur, input_lengths) loss = loss_dict["loss"] loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1