def save_best_model_test(self): # create a dummy model model = Prenet(256, out_features=[256, 256]) model = T.nn.DataParallel(layer) # save the model save_best_model(model, None, 0, 100, OUT_PATH, 10, 1) # load the model to CPU model_dict = T.load(MODEL_PATH, map_location=lambda storage, loc: storage) model.load_state_dict(model_dict['model'])
def main(args): #pylint: disable=redefined-outer-name # Audio processor ap = AudioProcessor(**c.audio) # DISTRUBUTED if num_gpus > 1: init_distributed(args.rank, num_gpus, args.group_id, c.distributed["backend"], c.distributed["url"]) num_chars = len(phonemes) if c.use_phonemes else len(symbols) if c.use_speaker_embedding: speakers = get_speakers(c.data_path, c.meta_file_train, c.dataset) if args.restore_path: prev_out_path = os.path.dirname(args.restore_path) speaker_mapping = load_speaker_mapping(prev_out_path) assert all([speaker in speaker_mapping for speaker in speakers]), "As of now you, you cannot " \ "introduce new speakers to " \ "a previously trained model." else: speaker_mapping = {name: i for i, name in enumerate(speakers)} save_speaker_mapping(OUT_PATH, speaker_mapping) num_speakers = len(speaker_mapping) print("Training with {} speakers: {}".format(num_speakers, ", ".join(speakers))) else: num_speakers = 0 model = setup_model(num_chars, num_speakers, c) print(" | > Num output units : {}".format(ap.num_freq), flush=True) optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0) if c.stopnet and c.separate_stopnet: optimizer_st = RAdam(model.decoder.stopnet.parameters(), lr=c.lr, weight_decay=0) else: optimizer_st = None if c.loss_masking: criterion = L1LossMasked() if c.model in ["Tacotron", "TacotronGST" ] else MSELossMasked() else: criterion = nn.L1Loss() if c.model in ["Tacotron", "TacotronGST" ] else nn.MSELoss() criterion_st = nn.BCEWithLogitsLoss() if c.stopnet else None if args.restore_path: checkpoint = torch.load(args.restore_path) try: # TODO: fix optimizer init, model.cuda() needs to be called before # optimizer restore # optimizer.load_state_dict(checkpoint['optimizer']) if c.reinit_layers: raise RuntimeError model.load_state_dict(checkpoint['model']) except: print(" > Partial model initialization.") model_dict = model.state_dict() model_dict = set_init_dict(model_dict, checkpoint, c) model.load_state_dict(model_dict) del model_dict for group in optimizer.param_groups: group['lr'] = c.lr print(" > Model restored from step %d" % checkpoint['step'], flush=True) args.restore_step = checkpoint['step'] else: args.restore_step = 0 if use_cuda: model = model.cuda() criterion.cuda() if criterion_st: criterion_st.cuda() # DISTRUBUTED if num_gpus > 1: model = apply_gradient_allreduce(model) if c.lr_decay: scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1) else: scheduler = None num_params = count_parameters(model) print("\n > Model has {} parameters".format(num_params), flush=True) if 'best_loss' not in locals(): best_loss = float('inf') global_step = args.restore_step for epoch in range(0, c.epochs): # set gradual training if c.gradual_training is not None: r, c.batch_size = gradual_training_scheduler(global_step, c) c.r = r model.decoder.set_r(r) print(" > Number of outputs per iteration:", model.decoder.r) train_loss, global_step = train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler, ap, global_step, epoch) val_loss = evaluate(model, criterion, criterion_st, ap, global_step, epoch) print(" | > Training Loss: {:.5f} Validation Loss: {:.5f}".format( train_loss, val_loss), flush=True) target_loss = train_loss if c.run_eval: target_loss = val_loss best_loss = save_best_model(model, optimizer, target_loss, best_loss, OUT_PATH, global_step, epoch)