algorithms = [ 'shrinkingCone', 'TaNC', 'hps', 'calo' ] if __name__ == "__main__": ROOT.gROOT.SetBatch(True) ROOT.gROOT.SetStyle("Plain") ROOT.gStyle.SetOptStat(0) # Get ZTT samples ztt = samples.zttPU156bx_mc # particleFlow # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare plotter.add_sample(ztt, "Z #rightarrow #ell #ell, BX156", **style.QCD_MC_STYLE_HIST) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data_wjets.effective_luminosity()) # Get the ntuple we produced ntuple_manager = ztt.build_ntuple_manager("tauIdEffNtuple") # Get generator level tau ntuple genTaus = ntuple_manager.get_ntuple("tauGenJets") # Get ntuple with vertex information vertex = ntuple_manager.get_ntuple("offlinePrimaryVertices")
custom_LUMI_LABEL_UPPER_LEFT = copy.deepcopy(style.LUMI_LABEL_UPPER_LEFT) custom_LUMI_LABEL_UPPER_LEFT.SetTextSize(0.0375) custom_LUMI_LABEL_UPPER_LEFT.Clear() custom_LUMI_LABEL_UPPER_LEFT.AddText("Data, L = 8.4nb^{-1}") custom_LUMI_LABEL_UPPER_LEFT.Draw() style.SQRTS_LABEL_UPPER_LEFT.Draw() for extra_label in fakerate_results['calo'][x_var]['extra_labels']: extra_label.Draw() # Save the plot canvas.SaveAs("plots/%s.png" % '_'.join(['fakerate_algo_comparison', 'vs', x_var])) canvas.SaveAs("plots/%s.pdf" % '_'.join(['fakerate_algo_comparison', 'vs', x_var])) if __name__ == "__main__": plotter = PlotManager() # Add each sample we want to plot/compare # Uncomment to add QCD plotter.add_sample(samples.qcddijet_mc, "Simulation", **style.QCD_MC_PYTHIA6_STYLE_HIST) plotter.add_sample(samples.data_dijet, "Data", **style.DATA_STYLE) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data_dijet.effective_luminosity()) # Build the ntuple manager ntuple_manager = samples.data_dijet.build_ntuple_manager("tauIdEffNtuple") nTuples = { "shrinkingCone": ntuple_manager.get_ntuple("patPFTausDijetTagAndProbeShrinkingCone"),
algorithms = ['shrinkingCone', 'TaNC', 'hps', 'calo'] if __name__ == "__main__": ROOT.gROOT.SetBatch(True) ROOT.gROOT.SetStyle("Plain") ROOT.gStyle.SetOptStat(0) # Get ZTT samples ztt = samples.zttPU156bx_mc # particleFlow # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare plotter.add_sample(ztt, "Z #rightarrow #ell #ell, BX156", **style.QCD_MC_STYLE_HIST) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data_wjets.effective_luminosity()) # Get the ntuple we produced ntuple_manager = ztt.build_ntuple_manager("tauIdEffNtuple") # Get generator level tau ntuple genTaus = ntuple_manager.get_ntuple("tauGenJets") # Get ntuple with vertex information
canvas_diff.cd() canvas_diff.Update() canvas_diff.SaveAs(outputFileName[:outputFileName.find(".")] + "_%s_diff.png" % algorithm) canvas_diff.SaveAs(outputFileName[:outputFileName.find(".")] + "_%s_diff.pdf" % algorithm) return result_algorithm if __name__ == "__main__": # define PlotManagers for QCD Monte Carlo and data samples plotter_dijet_mc = PlotManager() plotter_dijet_mc.add_sample(sample_dijet_mc, "QCDj Simulation", **custom_style_dijet_mc) plotters_dijet_data = {} for dijet_dataHLTpath in dijet_dataHLTpaths: plotter_dijet_data = PlotManager() plotter_dijet_data.add_sample( samples_dijet_data[dijet_dataHLTpath], "QCDj Data: %s" % dijet_dataHLTpath, **custom_styles_dijet_data[dijet_dataHLTpath]) plotters_dijet_data[dijet_dataHLTpath] = plotter_dijet_data # Build the ntuple manager ntuple_manager = sample_dijet_mc.build_ntuple_manager("tauIdEffNtuple") nTuples = {
# Figure out how to get the information about the pileup information. This # has to be determiend from one of the MC samples. ntuple_mananger_wPUinfo = sample_dijet_mc.build_ntuple_manager( "tauIdEffNtuple") # Define the expression which re-weights events for PU. puinfo_ntuple = ntuple_mananger_wPUinfo.get_ntuple("addPileupInfo") pu_reweight_expr = puinfo_ntuple.expr('$vtxMultReweight') # Uncomment following line to DISABLE reweighting # pu_reweight_expr = "1.0" # define PlotManagers for QCD multi-jet, QCD muon enriched and W + jets samples # For the MC samples, reweight according to PU vertices plotter_dijet = PlotManager() plotter_dijet.add_sample(sample_dijet_data, "QCDj Data", **custom_style_dijet_data) plotter_dijet.add_sample(sample_dijet_mc, "QCDj Simulation", weight_expr=pu_reweight_expr, **custom_style_dijet_mc) plotter_dijet.set_integrated_lumi(intLumiData) plotter_ppmux = PlotManager() plotter_ppmux.add_sample(sample_ppmux_data, "QCD#mu Data", **custom_style_ppmux_data) plotter_ppmux.add_sample(sample_ppmux_mc, "QCD#mu Simulation", weight_expr=pu_reweight_expr, **custom_style_ppmux_mc)
#!/usr/bin/env python import ROOT from TauAnalysis.TauIdEfficiency.ntauples.PlotManager import PlotManager import TauAnalysis.TauIdEfficiency.ntauples.styles as style # Definition of input files. import samples_cache as samples plotter = PlotManager() # Add each sample we want to plot/compare # Uncomment to add QCD plotter.add_sample(samples.qcd_mc_pythia8, "Simulation", **style.QCD_MC_PYTHIA8_STYLE_HIST) #plotter.add_sample(samples.qcd_mc_pythia6, "QCD (Pythia 6)", **style.QCD_MC_PYTHIA6_STYLE_HIST) #plotter.add_sample(samples.minbias_mc, "Minbias MC", **style.MINBIAS_MC_STYLE) plotter.add_sample(samples.data, "Data", **style.DATA_STYLE) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data.effective_luminosity()) # Build the ntuple manager ntuple_manager = samples.data.build_ntuple_manager("tauIdEffNtuple") shrinking_ntuple = ntuple_manager.get_ntuple( "patPFTausDijetTagAndProbeShrinkingCone") hlt = ntuple_manager.get_ntuple("TriggerResults")
import ROOT from TauAnalysis.TauIdEfficiency.ntauples.PlotManager import PlotManager import TauAnalysis.TauIdEfficiency.ntauples.styles as style import os import samples_cache as samples if __name__ == "__main__": ROOT.gROOT.SetBatch(True) if not os.path.isdir('plots_Control'): os.mkdir('plots_Control') # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() plotter.add_sample(samples.qcd_mc_pythia6, "PYTHIA 6", **style.QCD_MC_PYTHIA6_STYLE_DOTS) plotter.add_sample(samples.qcd_mc_pythia8, "PYTHIA 8", **style.QCD_MC_PYTHIA8_STYLE_HIST) plotter.add_sample(samples.data, "Data", **style.DATA_STYLE) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data.effective_luminosity()) # Build the ntuple maanger ntuple_manager = samples.data.build_ntuple_manager("tauIdEffNtuple")
# Figure out how to get the information about the pileup information. This # has to be determiend from one of the MC samples. ntuple_mananger_wPUinfo = sample_dijet_mc.build_ntuple_manager( "tauIdEffNtuple") # Define the expression which re-weights events for PU. puinfo_ntuple = ntuple_mananger_wPUinfo.get_ntuple("addPileupInfo") pu_reweight_expr = puinfo_ntuple.expr('$vtxMultReweight') # Uncomment following line to DISABLE reweighting # pu_reweight_expr = "1.0" # define PlotManagers for QCD multi-jet, QCD muon enriched and W + jets samples # For the MC samples, reweight according to PU vertices plotter_dijet = PlotManager() plotter_dijet.add_sample(sample_dijet_data, "QCDj Data", **custom_style_dijet_data) plotter_dijet.add_sample(sample_dijet_mc, "QCDj Simulation", weight_expr = pu_reweight_expr, **custom_style_dijet_mc) plotter_dijet.set_integrated_lumi(intLumiData) plotter_ppmux = PlotManager() plotter_ppmux.add_sample(sample_ppmux_data, "QCD#mu Data", **custom_style_ppmux_data) plotter_ppmux.add_sample(sample_ppmux_mc, "QCD#mu Simulation", weight_expr = pu_reweight_expr, **custom_style_ppmux_mc) plotter_ppmux.set_integrated_lumi(intLumiData) plotter_wjets = PlotManager() plotter_wjets.add_sample(sample_wjets_data, "W #rightarrow #mu #nu Data", **custom_style_wjets_data) plotter_wjets.add_sample(sample_wjets_mc, "W #rightarrow #mu #nu Simulation", weight_expr = pu_reweight_expr, **custom_style_wjets_mc)
import TauAnalysis.TauIdEfficiency.ntauples.styles as style # Defintion of input files. import samples_cache as samples import os if __name__ == "__main__": ROOT.gROOT.SetBatch(True) if not os.path.isdir('plots'): os.mkdir('plots') # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare # Uncomment to add QCD plotter.add_sample(samples.ztautau_mc, "Z->#tau#tau MC", **style.QCD_MC_STYLE_HIST) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data.effective_luminosity()) # Build the ntuple maanger ntuple_manager = samples.ztautau_mc.build_ntuple_manager("tauIdEffNtuple") # Get the shrinking ntuple shrinking_ntuple = ntuple_manager.get_ntuple( "patPFTausDijetTagAndProbeShrinkingCone")
# Defintion of input files. import samples as samples import os import sys if __name__ == "__main__": ROOT.gROOT.SetBatch(True) if not os.path.isdir('plots'): os.mkdir('plots') # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare # Uncomment to add QCD plotter.add_sample(samples.ztautau_mc, "Z->#tau#tau MC", **style.QCD_MC_STYLE_HIST) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data.effective_luminosity()) # Build the ntuple maanger ntuple_manager = samples.ztautau_mc.build_ntuple_manager("tauIdEffNtuple") # Get the shrinking ntuple hps_ntuple = ntuple_manager.get_ntuple( "patPFTausDijetTagAndProbeHPS")
canvas_diff.Update() canvas_diff.SaveAs("plots/" + filename + "_diff.png") canvas_diff.SaveAs("plots/" + filename + "_diff.pdf") canvas_diff.IsA().Destructor(canvas_diff) if __name__ == "__main__": ROOT.gROOT.SetBatch(True) if not os.path.isdir('plots'): os.mkdir('plots') # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare plotter.add_sample(sample_wjets_data, "W #rightarrow #mu #nu Data", **custom_style_wjets_data) plotter.add_sample(sample_wjets_mc, "W #rightarrow #mu #nu Simulation", **custom_style_wjets_mc) # Normalize everything to the data luminosity plotter.set_integrated_lumi(sample_wjets_data.effective_luminosity()) # Build the ntuple manager ntuple_manager = sample_wjets_data.build_ntuple_manager("tauIdEffNtuple") # Get HLT trigger decisions hlt_ntuple = ntuple_manager.get_ntuple("patTriggerEvent") ######################################################
canvas_diff.SaveAs("plots/" + filename + "_diff.png") canvas_diff.SaveAs("plots/" + filename + "_diff.pdf") canvas_diff.IsA().Destructor(canvas_diff) if __name__ == "__main__": ROOT.gROOT.SetBatch(True) if not os.path.isdir('plots'): os.mkdir('plots') # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare plotter.add_sample(sample_wjets_data, "W #rightarrow #mu #nu Data", **custom_style_wjets_data) plotter.add_sample(sample_wjets_mc, "W #rightarrow #mu #nu Simulation", **custom_style_wjets_mc) # Normalize everything to the data luminosity plotter.set_integrated_lumi(sample_wjets_data.effective_luminosity()) # Build the ntuple manager ntuple_manager = sample_wjets_data.build_ntuple_manager("tauIdEffNtuple") # Get HLT trigger decisions hlt_ntuple = ntuple_manager.get_ntuple("patTriggerEvent")
# Defintion of input files. import samples as samples import os import sys if __name__ == "__main__": ROOT.gROOT.SetBatch(True) if not os.path.isdir('plots'): os.mkdir('plots') # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare # Uncomment to add QCD plotter.add_sample(samples.qcd_mc_pythia8, "QCD MC", **style.QCD_MC_STYLE_HIST) #plotter.add_sample(samples.minbias_mc, "Minbias MC", **style.MINBIAS_MC_STYLE) plotter.add_sample(samples.data, "Data (7 TeV)", **style.DATA_STYLE) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data.effective_luminosity()) # Build the ntuple maanger ntuple_manager = samples.data.build_ntuple_manager("tauIdEffNtuple")
phi_resol['result'].GetXaxis().SetTitleOffset(1.2) # Make a pave text w/ mean rms stat_label = style.make_mean_rms_pave( phi_resol['samples']['mc_ztt']['plot']) stat_label.Draw() canvas.SaveAs("plots/%s%s_phi_resolution.png" % (algorithm, selection["style_name"])) canvas.SaveAs("plots/%s%s_phi_resolution.pdf" % (algorithm, selection["style_name"])) if __name__ == "__main__": plotter = PlotManager() # Add each sample we want to plot/compare # Uncomment to add QCD plotter.add_sample(samples.ztautau_mc, "Z->#tau#tau MC", **style.QCD_MC_STYLE_HIST) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data.effective_luminosity()) # Build the ntuple manager ntuple_manager = samples.ztautau_mc.build_ntuple_manager("tauIdEffNtuple") nTuples = { "shrinkingCone": ntuple_manager.get_ntuple("patPFTausDijetTagAndProbeShrinkingCone"),
# Defintion of input files. import samples_cache as samples import os import sys if __name__ == "__main__": ROOT.gROOT.SetBatch(True) if not os.path.isdir('plots'): os.mkdir('plots') # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare plotter.add_sample(samples.qcd_mc, "QCD MC", **style.QCD_MC_STYLE_HIST) # plotter.add_sample(samples.minbias_mc, "Minbias MC", **style.MINBIAS_MC_STYLE) plotter.add_sample(samples.data, "Data (7 TeV)", **style.DATA_STYLE) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data.effective_luminosity()) # Build the ntuple maanger ntuple_manager = samples.data.build_ntuple_manager("tauIdEffNtuple")
import ROOT from TauAnalysis.TauIdEfficiency.ntauples.PlotManager import PlotManager import TauAnalysis.TauIdEfficiency.ntauples.styles as style # Definition of input files. import samples_cache as samples import os import copy import sys from optparse import OptionParser # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare # Uncomment to add QCD plotter.add_sample(samples.qcd_mc_pythia8, "Pythia 8", **style.QCD_MC_PYTHIA8_STYLE_HIST) plotter.add_sample(samples.qcd_mc_pythia6, "Pythia 6", **style.QCD_MC_PYTHIA6_STYLE_HIST) #plotter.add_sample(samples.minbias_mc, "Minbias MC", **style.MINBIAS_MC_STYLE) plotter.add_sample(samples.data, "Data", **style.DATA_STYLE) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data.effective_luminosity())
h_mcDen.Delete() h_mc2Den.Delete() h_mc0Den.Delete() canvas_diff.IsA().Destructor(canvas_diff) if __name__ == "__main__": ROOT.gROOT.SetBatch(True) if not os.path.isdir('plots'): os.mkdir('plots') # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare plotter.add_sample(mySamples.data_ppmux_runs132440to145761, "Muon Data ", **style.DATA_STYLE) plotter.add_sample(mySamples.ppmux_mc, "PPMuX MC", **style.QCD_MC_PYTHIA6_STYLE_HIST) plotter.add_sample(mySamples.data_dijet_runs132440to135802, "JetMETTau Data ", **style.MINBIAS_MC_STYLE ) plotter.add_sample(mySamples.qcddijet_mc, "QCD MC", **style.QCD_MC_PYTHIA8_STYLE_HIST) # Normalize everything to the data luminosity plotter.set_integrated_lumi(mySamples.data_ppmux_runs132440to145761.effective_luminosity()) # Build the ntuple manager ntuple_manager = mySamples.data_ppmux_runs132440to145761.build_ntuple_manager("tauIdEffNtuple") # Get HLT trigger decisions # hlt = ntuple_manager.get_ntuple("TriggerResults")
logy = False ) phi_resol['result'].GetXaxis().SetTitleOffset(1.2) # Make a pave text w/ mean rms stat_label = style.make_mean_rms_pave(phi_resol['samples']['mc_ztt']['plot']) stat_label.Draw() canvas.SaveAs("plots/%s%s_phi_resolution.png"%(algorithm,selection["style_name"])) canvas.SaveAs("plots/%s%s_phi_resolution.pdf"%(algorithm,selection["style_name"])) if __name__ == "__main__": plotter = PlotManager() # Add each sample we want to plot/compare # Uncomment to add QCD plotter.add_sample(samples.ztautau_mc, "Z->#tau#tau MC", **style.QCD_MC_STYLE_HIST) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data.effective_luminosity()) # Build the ntuple manager ntuple_manager = samples.ztautau_mc.build_ntuple_manager("tauIdEffNtuple") nTuples = { "shrinkingCone": ntuple_manager.get_ntuple("patPFTausDijetTagAndProbeShrinkingCone"), "fixedCone": ntuple_manager.get_ntuple("patPFTausDijetTagAndProbeFixedCone"), "TaNC": ntuple_manager.get_ntuple("patPFTausDijetTagAndProbeShrinkingCone"),
canvas_diff.Update() canvas_diff.SaveAs("plots/" + filename + "_diff.png") canvas_diff.SaveAs("plots/" + filename + "_diff.pdf") canvas_diff.IsA().Destructor(canvas_diff) if __name__ == "__main__": ROOT.gROOT.SetBatch(True) if not os.path.isdir('plots'): os.mkdir('plots') # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare plotter.add_sample(sample_qcddijet_mc, "Simulation", **style.QCD_MC_STYLE_HIST) plotter.add_sample(sample_qcddijet_data, "Data", **style.DATA_STYLE) # Normalize everything to the data luminosity plotter.set_integrated_lumi(sample_qcddijet_data.effective_luminosity()) # Build the ntuple manager ntuple_manager = sample_qcddijet_data.build_ntuple_manager("tauIdEffNtuple") # Get HLT trigger decisions hlt_ntuple = ntuple_manager.get_ntuple("patTriggerEvent") ######################################################
import ROOT from TauAnalysis.TauIdEfficiency.ntauples.PlotManager import PlotManager import TauAnalysis.TauIdEfficiency.ntauples.styles as style # Definition of input files. import samples_cache as samples import os import copy import sys from optparse import OptionParser # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() # Add each sample we want to plot/compare # Uncomment to add QCD plotter.add_sample(samples.qcd_mc_pythia8, "Pythia 8", **style.QCD_MC_PYTHIA8_STYLE_HIST) plotter.add_sample(samples.qcd_mc_pythia6, "Pythia 6", **style.QCD_MC_PYTHIA6_STYLE_HIST) #plotter.add_sample(samples.minbias_mc, "Minbias MC", **style.MINBIAS_MC_STYLE) plotter.add_sample(samples.data, "Data", **style.DATA_STYLE) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data.effective_luminosity()) # Build the ntuple manager
custom_LUMI_LABEL_UPPER_LEFT.AddText("Data, L = 8.4nb^{-1}") custom_LUMI_LABEL_UPPER_LEFT.Draw() style.SQRTS_LABEL_UPPER_LEFT.Draw() for extra_label in fakerate_results['calo'][x_var]['extra_labels']: extra_label.Draw() # Save the plot canvas.SaveAs("plots/%s.png" % '_'.join(['fakerate_algo_comparison', 'vs', x_var])) canvas.SaveAs("plots/%s.pdf" % '_'.join(['fakerate_algo_comparison', 'vs', x_var])) if __name__ == "__main__": plotter = PlotManager() # Add each sample we want to plot/compare # Uncomment to add QCD plotter.add_sample(samples.qcddijet_mc, "Simulation", **style.QCD_MC_PYTHIA6_STYLE_HIST) plotter.add_sample(samples.data_dijet, "Data", **style.DATA_STYLE) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data_dijet.effective_luminosity()) # Build the ntuple manager ntuple_manager = samples.data_dijet.build_ntuple_manager("tauIdEffNtuple") nTuples = {
import ROOT from TauAnalysis.TauIdEfficiency.ntauples.PlotManager import PlotManager import TauAnalysis.TauIdEfficiency.ntauples.styles as style import os import samples_cache as samples if __name__ == "__main__": ROOT.gROOT.SetBatch(True) if not os.path.isdir('plots_Control'): os.mkdir('plots_Control') # Build the plot manager. The plot manager keeps track of all the samples # and ensures they are correctly normalized w.r.t. luminosity. See # samples.py for available samples. plotter = PlotManager() plotter.add_sample(samples.qcd_mc_pythia6, "PYTHIA 6", ** style.QCD_MC_PYTHIA6_STYLE_DOTS) plotter.add_sample(samples.qcd_mc_pythia8, "PYTHIA 8", ** style.QCD_MC_PYTHIA8_STYLE_HIST) plotter.add_sample(samples.data, "Data", ** style.DATA_STYLE) # Normalize everything to the data luminosity plotter.set_integrated_lumi(samples.data.effective_luminosity()) # Build the ntuple maanger ntuple_manager = samples.data.build_ntuple_manager("tauIdEffNtuple") # Get the shrinking ntuple
for dijet_dataHLTpath in dijet_dataHLTpaths: result_algorithm['%s_diff' % dijet_dataHLTpath]['samples'][samples_dijet_data[dijet_dataHLTpath].name].Draw("epsame") canvas_diff.cd() canvas_diff.Update() canvas_diff.SaveAs(outputFileName[:outputFileName.find(".")] + "_%s_diff.png" % algorithm) canvas_diff.SaveAs(outputFileName[:outputFileName.find(".")] + "_%s_diff.pdf" % algorithm) return result_algorithm if __name__ == "__main__": # define PlotManagers for QCD Monte Carlo and data samples plotter_dijet_mc = PlotManager() plotter_dijet_mc.add_sample(sample_dijet_mc, "QCDj Simulation", **custom_style_dijet_mc) plotters_dijet_data = {} for dijet_dataHLTpath in dijet_dataHLTpaths: plotter_dijet_data = PlotManager() plotter_dijet_data.add_sample(samples_dijet_data[dijet_dataHLTpath], "QCDj Data: %s" % dijet_dataHLTpath, **custom_styles_dijet_data[dijet_dataHLTpath]) plotters_dijet_data[dijet_dataHLTpath] = plotter_dijet_data # Build the ntuple manager ntuple_manager = sample_dijet_mc.build_ntuple_manager("tauIdEffNtuple") nTuples = { "shrinkingCone" : ntuple_manager.get_ntuple("shrinking"), "fixedCone" : ntuple_manager.get_ntuple("fixed"),