def transform(self, X, y=None): nyc_center = (40.7141667, -74.0063889) X["nyc_lat"], X["nyc_lng"] = nyc_center[0], nyc_center[1] args_pickup = dict(start_lat="nyc_lat", start_lon="nyc_lng", end_lat="pickup_latitude", end_lon="pickup_longitude") args_dropoff = dict(start_lat="nyc_lat", start_lon="nyc_lng", end_lat="dropoff_latitude", end_lon="dropoff_longitude") X['pickup_distance_to_center'] = haversine_vectorized(X, **args_pickup) X['dropoff_distance_to_center'] = haversine_vectorized(X, **args_dropoff) return X[["pickup_distance_to_center", "dropoff_distance_to_center"]]
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance'""" return pd.DataFrame(haversine_vectorized(X, start_lat=self.start_lat, start_lon=self.start_lon, end_lat=self.end_lat, end_lon=self.end_lon))
def transform(self, X, y=None): assert isinstance(X, pd.DataFrame) if self.distance_type == "haversine": X["distance"] = haversine_vectorized(X, **dist_args) if self.distance_type == "euclidian": X["distance"] = minkowski_distance() return X[["distance"]]
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance'""" X['distance'] = haversine_vectorized(X, start_lat="pickup_latitude", start_lon="pickup_longitude", end_lat="dropoff_latitude", end_lon="dropoff_longitude") return X[['distance']]
def transform(self, X, y=None): assert isinstance(X, pd.DataFrame) if self.distance_type == "haversine": X["distance"] = haversine_vectorized(X, **DIST_ARGS) if self.distance_type == "euclidian": X["distance"] = minkowski_distance(X, p=2, **DIST_ARGS) if self.distance_type == "manhattan": X["distance"] = minkowski_distance(X, p=1, **DIST_ARGS) return X[["distance"]]
def transform(self, X, y=None): assert isinstance(X, pd.DataFrame) X_ = X.copy() X_["distance"] = haversine_vectorized(X_, start_lat=self.start_lat, start_lon=self.start_lon, end_lat=self.end_lat, end_lon=self.end_lon) return X_[['distance']]
def transform(self, X, y=None): jfk_center = (40.6441666667, -73.7822222222) X["jfk_lat"], X["jfk_lng"] = jfk_center[0], jfk_center[1] args_pickup = dict(start_lat="jfk_lat", start_lon="jfk_lng", end_lat="pickup_latitude", end_lon="pickup_longitude") args_dropoff = dict(start_lat="jfk_lat", start_lon="jfk_lng", end_lat="dropoff_latitude", end_lon="dropoff_longitude") X['pickup_distance_to_jfk'] = haversine_vectorized(X, **args_pickup) X['dropoff_distance_to_jfk'] = haversine_vectorized(X, **args_dropoff) X['from_to_airport'] = (np.logical_or(X['pickup_distance_to_jfk']<2,\ X['dropoff_distance_to_jfk']<2))*1 #return X[["pickup_distance_to_center", "dropoff_distance_to_center",'from_to_airport']] return X[['from_to_airport']]
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance_to_center'""" nyc_center = (40.7141667, -74.0063889) X["nyc_latitude"], X["nyc_longitude"] = nyc_center[0], nyc_center[1] args = dict(start_lat="nyc_latitude", start_lon="nyc_longitude", end_lat="pickup_latitude", end_lon="pickup_longitude") X['distance_to_center'] = haversine_vectorized(X, **args) return X[['distance_to_center']]
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance'""" assert isinstance(X, pd.DataFrame) X_temp = X.copy() X_temp['distance'] = haversine_vectorized(X_temp, start_lat=self.start_lat, start_lon=self.start_lon, end_lat=self.end_lat, end_lon=self.end_lon) return X_temp[['distance']]
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance'""" X['distance'] = haversine_vectorized(X, start_lat=self.start_lat, start_lon=self.start_lon, end_lat=self.end_lat, end_lon=self.end_lon) X = X.reset_index(drop=True) return X[['distance']]
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance'""" assert isinstance(X, pd.DataFrame) X_temp = X.copy() X_temp['nyc_lat'] = 40.7141667 X_temp['nyc_lon'] = -74.0063889 X_temp['distance_to_center'] = haversine_vectorized( X_temp, start_lat=self.nyc_lat, start_lon=self.nyc_lon, end_lat=self.end_lat, end_lon=self.end_lon) return X_temp[['distance_to_center']]
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance'""" return pd.DataFrame(haversine_vectorized (X.copy(),self.start_lat,self.start_lon,self.end_lat,self.end_lon))\ .rename(columns={0:"distance"})
def transform(self, X, y=None): a = haversine_vectorized(X) """Returns a copy of the DataFrame X with only one column: 'distance'""" return pd.DataFrame(a)
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only 1 column: 'distance'""" df = pd.DataFrame(haversine_vectorized(X.copy())) df.columns = ['distance'] return df
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance'""" assert isinstance(X,pd.DataFrame) X_ = X.copy() X_['distance'] = haversine_vectorized(X_) return X_[['distance']]
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance'""" return pd.DataFrame(haversine_vectorized(X.copy()),columns=['distance']) \ .sort_index()
def transform(self, X, y=None): return pd.DataFrame(haversine_vectorized(X))
def test_haversine(): df = get_data(nrows=1) assert round(haversine_vectorized(df)[0], 2) == 1.03, "Distance not right"
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance'""" X_ = X.copy() X_["distance"] = haversine_vectorized(X_) distance = pd.DataFrame(X_["distance"]) return distance
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance'""" X = X.copy() X['distance'] = haversine_vectorized(X) return X[['distance']]
def transform(self, X, y=None): """Returns a copy of the DataFrame X with only one column: 'distance'""" a = pd.DataFrame() a['distance'] = haversine_vectorized(X) return a