def __testClassifier(self, segmentos, entities, model, fileClass): results = [] for j in segmentos: proc = TextCleaner(j) procesado = proc.get_processed_comment() vector = model.get_comment_tf_idf_vector([procesado]) supClass = load_data_from_disk(fileClass) classifier = SC() classifier.set_classifier(supClass) result = classifier.classify(vector) polaridadSup = result[0][0] for i in entities: if j.find(i[0]) != -1: value = (i[0], polaridadSup) results.append(value) return results
def procesar(self, file, type): if type == 1: comentarios = [] obj = Reader(file, 1) for i in obj.read(): for j in i: proc = TextCleaner(j[0]) value = [proc.get_processed_comment(), j[2]] if value[0] != "None!": comentarios.append(value) return comentarios else: obj = Reader(file, 4) comentarios = [] for i in obj.read(): proc = TextCleaner(i[0]) value = [proc.get_processed_comment(), i[1]] if value[0] != "None!": comentarios.append(value) return comentarios