def main(): for count in range(5): output1 = [] output1.append(testCarData()[1]) print "accuracy1", testCarData()[1] print "max", max(output1) print "stddev", stDeviation(output1) print "average", average(output1) output2 = [] output2.append(testPenData()[1]) print "accuracy2", testPenData()[1] print "max", max(output2) print "stddev", stDeviation(output2) print "average", average(output2)
def varyPtronsTestCarData(): ptrons = 0 testAccuracy = [] while ptrons <= 40: nnet, ta = testCarData([ptrons]) testAccuracy.append(ta) ptrons += 5 return testAccuracy
def trainCarDataWithRestart(n, hiddenLayerPerceptrons=None): accuracyList = [] with open(OUTPUT_FILENAME, 'a+') as fh: fh.write("-------------------- Training with " + str(hiddenLayerPerceptrons) + " Perceptron(s) --------------------\n") fh.write("Start training car data for " + str(n) + " round(s) ...\n") for run in range(n): if hiddenLayerPerceptrons is not None: _, accuracy = testCarData(hiddenLayers=[hiddenLayerPerceptrons]) else: _, accuracy = testCarData() accuracyList.append(accuracy) with open(OUTPUT_FILENAME, 'a+') as fh: fh.write("Round " + str(run + 1) + ": " + str(accuracy) + "\n") with open(OUTPUT_FILENAME, 'a+') as fh: fh.write("All rounds finished.\n") fh.write("---------- Accuracy Statistics ----------\n") fh.write("Max : " + str(max(accuracyList)) + "\n") fh.write("Average : " + str(average(accuracyList)) + "\n") fh.write("Standard Deviation: " + str(stDeviation(accuracyList)) + "\n\n")
def main(): count = 0 while count <= 40: output1 = [] output2 = [] for num in range(5): output1.append(testCarData([count])[1]) output2.append(testPenData([count])[1]) print "max1", max(output1) print "stddev1", stDeviation(output1) print "average1", average(output1) print "max2", max(output2) print "stddev2", stDeviation(output2) print "average2", average(output2) count += 5
from NeuralNetUtil import buildExamplesFromCarData, buildExamplesFromPenData from NeuralNet import buildNeuralNet from Testing import testPenData, testCarData, average, stDeviation accuracyPenData = [] accuracyCarData = [] for i in range(5): nnet, accuracy = testPenData() accuracyPenData.append(accuracy) nnet, accuracyCar = testCarData() accuracyCarData.append(accuracyCar) print("Pen Data Average Accuracy: ", average(accuracyPenData)) print("Pen Data Max Accuracy: ", max(accuracyPenData)) print("Pen Data St Dev Accuracy: ", stDeviation(accuracyPenData)) print(accuracyPenData) print("Car Data Average Accuracy: ", average(accuracyCarData)) print("Car Data Max Accuracy: ", max(accuracyCarData)) print("Car Data St Dev Accuracy: ", stDeviation(accuracyCarData)) print(accuracyCarData)
from Testing import testPenData, testCarData, average, stDeviation penList = [] carList = [] for i in range(5): penResults = testPenData() penList.append(penResults[1]) carResults = testCarData() carList.append(carResults[1]) print 'Pen', penList print 'Car', carList penAverage = average(penList) penStDev = stDeviation(penList) penMax = max(penList) carAverage = average(carList) carStDev = stDeviation(carList) carMax = max(carList) print 'Pen:', penAverage, penStDev, penMax print 'Car:', carAverage, carStDev, carMax
with open('Pen0.csv', 'wb') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow([ 'Data Type', 'Perceptrons', 'Average Accuracy', 'Standard Deviation', 'Maximum Accuracy' ]) for i in range(0, 9): penAccuracyList = [] carAccuracyList = [] for k in range(5): penAccuracyList.append(testPenData(hiddenLayers=[i * 5])[1]) carAccuracyList.append(testCarData(hiddenLayers=[i * 5])[1]) avgPen = average(penAccuracyList) stDevPen = stDeviation(penAccuracyList) maxPen = max(penAccuracyList) avgCar = average(carAccuracyList) stDevCar = stDeviation(carAccuracyList) maxCar = max(carAccuracyList) print "writing" spamwriter.writerow( ['PenData', str(i * 5), str(avgPen), str(stDevPen), str(maxPen)]) spamwriter.writerow(
maxRound = round( maximumPen, 3) maximumPenList.append( maxRound ) avg = round( average( accuracyListPen ) , 3) avgPenList.append( avg ) stdev = round( stDeviation( accuracyListPen ) , 3) stdevPenList.append( stdev ) # do hidden layer size = 0, for Car maximumCar = 0 accuracyListCar = [] for i in xrange(5): nnet, accuracy = testCarData( [] ) # accuracyList.append(accuracy) accuracyListCar.append(accuracy) if maximumCar < accuracy: maximumCar = accuracy maxRound = round( maximumCar, 3) maximumCarList.append( maxRound ) avg = round( average( accuracyListCar ) , 3) avgCarList.append( avg ) stdev = round( stDeviation( accuracyListCar ) , 3) stdevCarList.append( stdev ) # do hidden layer size = 5, 10, ..., 40
import Testing from Testing import testCarData from Testing import testPenData from Testing import average from Testing import stDeviation from NeuralNetUtil import buildExamplesFromCarData, buildExamplesFromPenData from NeuralNet import buildNeuralNet import cPickle from math import pow, sqrt if __name__ == "__main__": pAccuracy = [] cAccuracy = [] for i in range(5): nnet, p = testPenData() nnet, c = testCarData() pAccuracy.append(p) cAccuracy.append(c) print "PenData:" print "Max = " + str(max(pAccuracy)) print "Average = " + str(average(pAccuracy)) print "SD = " + str(stDeviation(pAccuracy)) print "CarData:" print "Max = " + str(max(cAccuracy)) print "Average = " + str(average(cAccuracy)) print "SD = " + str(stDeviation(cAccuracy))
avg = 0 stdev = 0 accuracyList = [] # both pen and data accuracyListCar = [] for i in xrange(5): nnet, accuracy = testPenData() accuracyList.append(accuracy) if maximum < accuracy: maximum = accuracy avg = average(accuracyList) stdev = stDeviation(accuracyList) for i in xrange(5): nnet, accuracy = testCarData() accuracyList.append(accuracy) accuracyListCar.append(accuracy) if maximumCar < accuracy: maximumCar = accuracy avgCar = average(accuracyListCar) stdevCar = stDeviation(accuracyListCar) avgBoth = average(accuracyList) stdevBoth = stDeviation(accuracyList) print "maximum: ", maximum print "avg: ", avg print "stdev: ", stdev print "\n"
def randResTestCarData(randRestarts=1): testAccuracy = [] for testNum in range(0, randRestarts): nnet, ta = testCarData() testAccuracy.append(ta) return testAccuracy
from Testing import testPenData, testCarData, average, stDeviation import csv with open('Pen0.csv', 'wb') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(['Data Type', 'Perceptrons', 'Average Accuracy', 'Standard Deviation', 'Maximum Accuracy']) for i in range(0, 9): penAccuracyList = [] carAccuracyList = [] for k in range(5): penAccuracyList.append(testPenData(hiddenLayers=[i * 5])[1]) carAccuracyList.append(testCarData(hiddenLayers=[i * 5])[1]) avgPen = average(penAccuracyList) stDevPen = stDeviation(penAccuracyList) maxPen = max(penAccuracyList) avgCar = average(carAccuracyList) stDevCar = stDeviation(carAccuracyList) maxCar = max(carAccuracyList) print "writing" spamwriter.writerow(['PenData', str(i * 5), str(avgPen), str(stDevPen), str(maxPen)]) spamwriter.writerow(['Car Data', str(i * 5), str(avgCar), str(stDevCar), str(maxCar)])
if len(sys.argv) == 1 or sys.argv[1] == "5": print("Q5") f = open("q5results.txt", "w") f.write("\n>>> QUESTION 5 Pen \n") ans = [] for x in range(5): nnet, accuracy = testPenData(hiddenLayers = [24]) ans.append(accuracy) results(ans, f) f.write("\n\n\n>>> QUESTION 5 Car \n") ans = [] for x in range(5): nnet, accuracy = testCarData(hiddenLayers = [24]) ans.append(accuracy) results(ans, f) f.close() if len(sys.argv) == 1 or sys.argv[1] == "6": print("Q6") pans = [] for p in range(0, 41, 5): perp = [] for x in range(5): print("P=" + str(p) + " I=" + str(x)) nnet, accuracy = testPenData(hiddenLayers = [p]) perp.append(accuracy)