def test_model_name_is_set(test_output_dirs: OutputFolderForTests) -> None: container = DummyContainerWithModel() container.local_dataset = test_output_dirs.root_dir runner = MLRunner(model_config=None, container=container) runner.setup() expected_name = "DummyContainerWithModel" assert runner.container._model_name == expected_name assert expected_name in str(runner.container.outputs_folder)
def _create_container( extra_local_dataset_paths: List[Path] = [], extra_azure_dataset_ids: List[str] = []) -> LightningContainer: container = DummyContainerWithModel() container.local_dataset = test_output_dirs.root_dir container.extra_local_dataset_paths = extra_local_dataset_paths # type: ignore container.extra_azure_dataset_ids = extra_azure_dataset_ids runner = MLRunner(model_config=None, container=container) runner.setup() return runner.container
def test_regression_test(test_output_dirs: OutputFolderForTests) -> None: """ Test that the file comparison for regression tests is actually called in the workflow. """ container = DummyContainerWithModel() container.local_dataset = test_output_dirs.root_dir container.regression_test_folder = Path(str(uuid.uuid4().hex)) runner = MLRunner(container=container) runner.setup() with pytest.raises(ValueError) as ex: runner.run() assert "Folder with expected files does not exist" in str(ex)
def test_optim_params2(test_output_dirs: OutputFolderForTests) -> None: """ Test if the optimizer parameters are read correctly for containers. """ container = DummyContainerWithModel() container.local_dataset = test_output_dirs.root_dir runner = MLRunner(model_config=None, container=container) runner.setup() lightning_model = runner.container.model optim, _ = lightning_model.configure_optimizers() expected_lr = 1e-1 assert container.l_rate == expected_lr assert optim[0].param_groups[0]["lr"] == expected_lr