def test_a(self): gcd_res = readCompleteMatFile(r'C:\Users\ORI\Documents\Thesis\dataset_all\RSVP_Color116msVPicr.mat'); all_data, columns, all_data_for_sum = create_target_table(gcd_res, gcd_res['target']) results_table = pd.DataFrame( all_data) results_table.rename(columns=columns, inplace=True) # print results_table.columns results_table.to_csv('res.csv') # print results_table #now get a vector of random probabilities: temp = np.random.rand(len(gcd_res['target']),1) all_data2, columns2, all_data_for_sum2 = create_target_table(gcd_res, temp) # sum over the trials axe compare gt = np.argmax(np.sum(all_data_for_sum, axis=1),axis=1) actual = np.argmax(np.sum(all_data_for_sum2, axis=1),axis=1) print accuracy_by_repetition(all_data_for_sum, all_data_for_sum2) results_table2 = pd.DataFrame( all_data2) results_table2.rename(columns=columns2, inplace=True) # print results_table.columns results_table2.to_csv('res2.csv') temp2 = results_table2[all_data2[:, 1]<3, :] pass
def test_a(self): gcd_res = readCompleteMatFile( r'C:\Users\ORI\Documents\Thesis\dataset_all\RSVP_Color116msVPicr.mat' ) all_data, columns, all_data_for_sum = create_target_table( gcd_res, gcd_res['target']) results_table = pd.DataFrame(all_data) results_table.rename(columns=columns, inplace=True) # print results_table.columns results_table.to_csv('res.csv') # print results_table #now get a vector of random probabilities: temp = np.random.rand(len(gcd_res['target']), 1) all_data2, columns2, all_data_for_sum2 = create_target_table( gcd_res, temp) # sum over the trials axe compare gt = np.argmax(np.sum(all_data_for_sum, axis=1), axis=1) actual = np.argmax(np.sum(all_data_for_sum2, axis=1), axis=1) print accuracy_by_repetition(all_data_for_sum, all_data_for_sum2) results_table2 = pd.DataFrame(all_data2) results_table2.rename(columns=columns2, inplace=True) # print results_table.columns results_table2.to_csv('res2.csv') temp2 = results_table2[all_data2[:, 1] < 3, :] pass
def LoadSingleSubjectPythonNoPermute(file_name): res = readCompleteMatFile(file_name) all_data, all_tags = ExtractDataVer3(res["all_relevant_channels"], res["marker_positions"], res["target"], 0, 400) trasposed_data = all_data.transpose(0, 2, 1) trasposed_data = trasposed_data.reshape(trasposed_data.shape[0], -1) all_target = trasposed_data[np.where(all_tags == 1)[0], :] all_non_target = trasposed_data[np.where(all_tags != 1)[0], :] subset_size = all_target.shape[0] all_target = all_target all_non_target = all_non_target return [all_target, all_non_target, res["marker_positions"]]
def LoadSingleSubjectPythonNoPermute(file_name): res = readCompleteMatFile(file_name) all_data, all_tags = ExtractDataVer3(res['all_relevant_channels'], res['marker_positions'], res['target'], 0, 400) trasposed_data = all_data.transpose(0, 2, 1) trasposed_data = trasposed_data.reshape(trasposed_data.shape[0], -1) all_target = trasposed_data[np.where(all_tags == 1)[0], :] all_non_target = trasposed_data[np.where(all_tags != 1)[0], :] subset_size = all_target.shape[0] all_target = all_target all_non_target = all_non_target return [all_target, all_non_target, res['marker_positions']]