コード例 #1
0
from Time_and_flux import gettimeflux_1800, gettimeflux_120

ids = ['415438368', '450061615']
cadence = '0120'
sector = '5'
for this_id in ids:
    if (cadence == '1800'):
        obsTable = Observations.query_criteria(target_name=this_id,
                                               obs_collection="HLSP",
                                               filters="TESS",
                                               t_exptime=[1799, 1801])
        if sector == '':
            sector = obsTable['sequence_number']
        else:
            continue
        tess_bjds = gettimeflux_1800(this_id, str(sector[0]))[0]
        sap_fluxes = gettimeflux_1800(this_id, str(sector[0]))[1]
        med_flux_1 = signal.medfilt(sap_fluxes, kernel_size=65)
    else:
        tess_bjds = gettimeflux_120(this_id, sector)[0]
        sap_fluxes = gettimeflux_120(this_id, sector)[1]
        med_flux_1 = signal.medfilt(sap_fluxes, kernel_size=101)

    fig, ax = plt.subplots()

    ax.plot(tess_bjds, sap_fluxes, 'bo')  #RAW blue

    fig.suptitle("TIC " + this_id + " Flare")
    ax.set_ylabel("Flux (e-/s)")
    ax.set_xlabel("Time (TBJD)")
コード例 #2
0
            closest = "Closest TIC ID to %s: TIC %s, seperation of %f arcsec. and a TESS mag. of %f" % (target_name, catalogTIC['ID'][where_closest], catalogTIC['dstArcSec'][where_closest], catalogTIC['Tmag'][where_closest])

            #sectors_search = Observations.query_criteria(target_name=this_id, provenance_project='TASOC')
            sectors_search = Observations.query_criteria(target_name=this_id, obs_collection="HLSP", filters="TESS",
                                                         t_exptime=[1799, 1801])
            #print('Getting sectors')
            #import pdb; pdb.set_trace()
            sector_length = len(sectors_search)
            if  sector_length !=0:
                sector = sectors_search['sequence_number']
                sector_length = sector_length-1
                

            print('Getting times')
            #import pdb; pdb.set_trace()
            time = gettimeflux_1800(this_id, str(sector[0]))[0]
            print(time)
            flux = gettimeflux_1800(this_id, str(sector[0]))[1]
            Tmag = get_catalog_data(this_id)[0]
            Teff = get_catalog_data(this_id)[1]
            logg = get_catalog_data(this_id)[2]
            CCD = get_header_data(this_id, str(sector[0]))[0]
            Camera = get_header_data(this_id, str(sector[0]))[1]

            if period == 0:
                period = flatwrm.FindPeriod(time, flux, maxper=10,debug=debug)
            window_var = 1.5

            if degree == 0:
                degree = flatwrm.SelectDegree(time, flux, period * window_var, debug=debug)
            istart, istop = flatwrm.FindFlares(time, flux, period,
コード例 #3
0
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from Time_and_flux import gettimeflux_1800

time = gettimeflux_1800('167602025', '1')[0]
flux = gettimeflux_1800('167602025', '1')[1]

title = 'SAP_FLUX'
x = np.array(time).byteswap().newbyteorder()
y = np.array(flux).byteswap().newbyteorder()

total = len(x)
flare = pd.DataFrame(y, x)

Writer = animation.writers['imagemagick']
Writer = Writer(fps=60, metadata=dict(artist='Me'), bitrate=1800)

for i in range(50):
    fig, ax = plt.subplots(figsize=(10, 6))
    plt.xlim(1618.0, 1619.0)
    plt.ylim(np.min(flare)[0], np.max(flare)[0])
    plt.xlabel('TBJD', fontsize=20)
    plt.ylabel('FLUX', fontsize=20)
    plt.title('TIC 167602025 flare', fontsize=20)


def animate(i):